Remove all references to KVM_CR3_CACHE
[qemu-kvm/amd-iommu.git] / target-i386 / kvm.c
blob30d91a64d07539b591a2400c8078830c035d03c9
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
28 #ifdef KVM_UPSTREAM
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define dprintf(fmt, ...) \
41 do { } while (0)
42 #endif
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
71 return cpuid;
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
76 struct kvm_cpuid2 *cpuid;
77 int i, max;
78 uint32_t ret = 0;
79 uint32_t cpuid_1_edx;
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82 return -1U;
85 max = 1;
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87 max *= 2;
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
92 switch (reg) {
93 case R_EAX:
94 ret = cpuid->entries[i].eax;
95 break;
96 case R_EBX:
97 ret = cpuid->entries[i].ebx;
98 break;
99 case R_ECX:
100 ret = cpuid->entries[i].ecx;
101 break;
102 case R_EDX:
103 ret = cpuid->entries[i].edx;
104 switch (function) {
105 case 1:
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108 break;
109 case 0x80000001:
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0xdfeff7ff;
115 break;
117 break;
122 qemu_free(cpuid);
124 return ret;
127 #else
129 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
131 return -1U;
134 #endif
136 static void kvm_trim_features(uint32_t *features, uint32_t supported)
138 int i;
139 uint32_t mask;
141 for (i = 0; i < 32; ++i) {
142 mask = 1U << i;
143 if ((*features & mask) && !(supported & mask)) {
144 *features &= ~mask;
149 #ifdef CONFIG_KVM_PARA
150 struct kvm_para_features {
151 int cap;
152 int feature;
153 } para_features[] = {
154 #ifdef KVM_CAP_CLOCKSOURCE
155 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
156 #endif
157 #ifdef KVM_CAP_NOP_IO_DELAY
158 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
159 #endif
160 #ifdef KVM_CAP_PV_MMU
161 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
162 #endif
163 { -1, -1 }
166 static int get_para_features(CPUState *env)
168 int i, features = 0;
170 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
171 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
172 features |= (1 << para_features[i].feature);
175 return features;
177 #endif
179 int kvm_arch_init_vcpu(CPUState *env)
181 struct {
182 struct kvm_cpuid2 cpuid;
183 struct kvm_cpuid_entry2 entries[100];
184 } __attribute__((packed)) cpuid_data;
185 uint32_t limit, i, j, cpuid_i;
186 uint32_t unused;
187 struct kvm_cpuid_entry2 *c;
188 #ifdef KVM_CPUID_SIGNATURE
189 uint32_t signature[3];
190 #endif
192 env->mp_state = KVM_MP_STATE_RUNNABLE;
194 kvm_trim_features(&env->cpuid_features,
195 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
197 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
198 kvm_trim_features(&env->cpuid_ext_features,
199 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
200 env->cpuid_ext_features |= i;
202 kvm_trim_features(&env->cpuid_ext2_features,
203 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
204 kvm_trim_features(&env->cpuid_ext3_features,
205 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
207 cpuid_i = 0;
209 #ifdef CONFIG_KVM_PARA
210 /* Paravirtualization CPUIDs */
211 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
212 c = &cpuid_data.entries[cpuid_i++];
213 memset(c, 0, sizeof(*c));
214 c->function = KVM_CPUID_SIGNATURE;
215 c->eax = 0;
216 c->ebx = signature[0];
217 c->ecx = signature[1];
218 c->edx = signature[2];
220 c = &cpuid_data.entries[cpuid_i++];
221 memset(c, 0, sizeof(*c));
222 c->function = KVM_CPUID_FEATURES;
223 c->eax = env->cpuid_kvm_features & get_para_features(env);
224 #endif
226 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
228 for (i = 0; i <= limit; i++) {
229 c = &cpuid_data.entries[cpuid_i++];
231 switch (i) {
232 case 2: {
233 /* Keep reading function 2 till all the input is received */
234 int times;
236 c->function = i;
237 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
238 KVM_CPUID_FLAG_STATE_READ_NEXT;
239 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
240 times = c->eax & 0xff;
242 for (j = 1; j < times; ++j) {
243 c = &cpuid_data.entries[cpuid_i++];
244 c->function = i;
245 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
246 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
248 break;
250 case 4:
251 case 0xb:
252 case 0xd:
253 for (j = 0; ; j++) {
254 c->function = i;
255 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
256 c->index = j;
257 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
259 if (i == 4 && c->eax == 0)
260 break;
261 if (i == 0xb && !(c->ecx & 0xff00))
262 break;
263 if (i == 0xd && c->eax == 0)
264 break;
266 c = &cpuid_data.entries[cpuid_i++];
268 break;
269 default:
270 c->function = i;
271 c->flags = 0;
272 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
273 break;
276 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
278 for (i = 0x80000000; i <= limit; i++) {
279 c = &cpuid_data.entries[cpuid_i++];
281 c->function = i;
282 c->flags = 0;
283 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
286 cpuid_data.cpuid.nent = cpuid_i;
288 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
291 #endif
292 void kvm_arch_reset_vcpu(CPUState *env)
294 env->exception_injected = -1;
295 env->interrupt_injected = -1;
296 env->nmi_injected = 0;
297 env->nmi_pending = 0;
299 #ifdef KVM_UPSTREAM
301 static int kvm_has_msr_star(CPUState *env)
303 static int has_msr_star;
304 int ret;
306 /* first time */
307 if (has_msr_star == 0) {
308 struct kvm_msr_list msr_list, *kvm_msr_list;
310 has_msr_star = -1;
312 /* Obtain MSR list from KVM. These are the MSRs that we must
313 * save/restore */
314 msr_list.nmsrs = 0;
315 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
316 if (ret < 0 && ret != -E2BIG) {
317 return 0;
319 /* Old kernel modules had a bug and could write beyond the provided
320 memory. Allocate at least a safe amount of 1K. */
321 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
322 msr_list.nmsrs *
323 sizeof(msr_list.indices[0])));
325 kvm_msr_list->nmsrs = msr_list.nmsrs;
326 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
327 if (ret >= 0) {
328 int i;
330 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
331 if (kvm_msr_list->indices[i] == MSR_STAR) {
332 has_msr_star = 1;
333 break;
338 free(kvm_msr_list);
341 if (has_msr_star == 1)
342 return 1;
343 return 0;
346 int kvm_arch_init(KVMState *s, int smp_cpus)
348 int ret;
350 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
351 * directly. In order to use vm86 mode, a TSS is needed. Since this
352 * must be part of guest physical memory, we need to allocate it. Older
353 * versions of KVM just assumed that it would be at the end of physical
354 * memory but that doesn't work with more than 4GB of memory. We simply
355 * refuse to work with those older versions of KVM. */
356 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
357 if (ret <= 0) {
358 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
359 return ret;
362 /* this address is 3 pages before the bios, and the bios should present
363 * as unavaible memory. FIXME, need to ensure the e820 map deals with
364 * this?
366 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
369 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
371 lhs->selector = rhs->selector;
372 lhs->base = rhs->base;
373 lhs->limit = rhs->limit;
374 lhs->type = 3;
375 lhs->present = 1;
376 lhs->dpl = 3;
377 lhs->db = 0;
378 lhs->s = 1;
379 lhs->l = 0;
380 lhs->g = 0;
381 lhs->avl = 0;
382 lhs->unusable = 0;
385 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
387 unsigned flags = rhs->flags;
388 lhs->selector = rhs->selector;
389 lhs->base = rhs->base;
390 lhs->limit = rhs->limit;
391 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
392 lhs->present = (flags & DESC_P_MASK) != 0;
393 lhs->dpl = rhs->selector & 3;
394 lhs->db = (flags >> DESC_B_SHIFT) & 1;
395 lhs->s = (flags & DESC_S_MASK) != 0;
396 lhs->l = (flags >> DESC_L_SHIFT) & 1;
397 lhs->g = (flags & DESC_G_MASK) != 0;
398 lhs->avl = (flags & DESC_AVL_MASK) != 0;
399 lhs->unusable = 0;
402 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
404 lhs->selector = rhs->selector;
405 lhs->base = rhs->base;
406 lhs->limit = rhs->limit;
407 lhs->flags =
408 (rhs->type << DESC_TYPE_SHIFT)
409 | (rhs->present * DESC_P_MASK)
410 | (rhs->dpl << DESC_DPL_SHIFT)
411 | (rhs->db << DESC_B_SHIFT)
412 | (rhs->s * DESC_S_MASK)
413 | (rhs->l << DESC_L_SHIFT)
414 | (rhs->g * DESC_G_MASK)
415 | (rhs->avl * DESC_AVL_MASK);
418 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
420 if (set)
421 *kvm_reg = *qemu_reg;
422 else
423 *qemu_reg = *kvm_reg;
426 static int kvm_getput_regs(CPUState *env, int set)
428 struct kvm_regs regs;
429 int ret = 0;
431 if (!set) {
432 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
433 if (ret < 0)
434 return ret;
437 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
438 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
439 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
440 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
441 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
442 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
443 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
444 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
445 #ifdef TARGET_X86_64
446 kvm_getput_reg(&regs.r8, &env->regs[8], set);
447 kvm_getput_reg(&regs.r9, &env->regs[9], set);
448 kvm_getput_reg(&regs.r10, &env->regs[10], set);
449 kvm_getput_reg(&regs.r11, &env->regs[11], set);
450 kvm_getput_reg(&regs.r12, &env->regs[12], set);
451 kvm_getput_reg(&regs.r13, &env->regs[13], set);
452 kvm_getput_reg(&regs.r14, &env->regs[14], set);
453 kvm_getput_reg(&regs.r15, &env->regs[15], set);
454 #endif
456 kvm_getput_reg(&regs.rflags, &env->eflags, set);
457 kvm_getput_reg(&regs.rip, &env->eip, set);
459 if (set)
460 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
462 return ret;
465 static int kvm_put_fpu(CPUState *env)
467 struct kvm_fpu fpu;
468 int i;
470 memset(&fpu, 0, sizeof fpu);
471 fpu.fsw = env->fpus & ~(7 << 11);
472 fpu.fsw |= (env->fpstt & 7) << 11;
473 fpu.fcw = env->fpuc;
474 for (i = 0; i < 8; ++i)
475 fpu.ftwx |= (!env->fptags[i]) << i;
476 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
477 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
478 fpu.mxcsr = env->mxcsr;
480 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
483 static int kvm_put_sregs(CPUState *env)
485 struct kvm_sregs sregs;
487 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
488 if (env->interrupt_injected >= 0) {
489 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
490 (uint64_t)1 << (env->interrupt_injected % 64);
493 if ((env->eflags & VM_MASK)) {
494 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
495 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
496 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
497 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
498 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
499 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
500 } else {
501 set_seg(&sregs.cs, &env->segs[R_CS]);
502 set_seg(&sregs.ds, &env->segs[R_DS]);
503 set_seg(&sregs.es, &env->segs[R_ES]);
504 set_seg(&sregs.fs, &env->segs[R_FS]);
505 set_seg(&sregs.gs, &env->segs[R_GS]);
506 set_seg(&sregs.ss, &env->segs[R_SS]);
508 if (env->cr[0] & CR0_PE_MASK) {
509 /* force ss cpl to cs cpl */
510 sregs.ss.selector = (sregs.ss.selector & ~3) |
511 (sregs.cs.selector & 3);
512 sregs.ss.dpl = sregs.ss.selector & 3;
516 set_seg(&sregs.tr, &env->tr);
517 set_seg(&sregs.ldt, &env->ldt);
519 sregs.idt.limit = env->idt.limit;
520 sregs.idt.base = env->idt.base;
521 sregs.gdt.limit = env->gdt.limit;
522 sregs.gdt.base = env->gdt.base;
524 sregs.cr0 = env->cr[0];
525 sregs.cr2 = env->cr[2];
526 sregs.cr3 = env->cr[3];
527 sregs.cr4 = env->cr[4];
529 sregs.cr8 = cpu_get_apic_tpr(env);
530 sregs.apic_base = cpu_get_apic_base(env);
532 sregs.efer = env->efer;
534 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
537 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
538 uint32_t index, uint64_t value)
540 entry->index = index;
541 entry->data = value;
544 static int kvm_put_msrs(CPUState *env)
546 struct {
547 struct kvm_msrs info;
548 struct kvm_msr_entry entries[100];
549 } msr_data;
550 struct kvm_msr_entry *msrs = msr_data.entries;
551 int n = 0;
553 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
554 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
555 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
556 if (kvm_has_msr_star(env))
557 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
558 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
559 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
560 #ifdef TARGET_X86_64
561 /* FIXME if lm capable */
562 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
563 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
564 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
565 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
566 #endif
567 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
568 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
570 msr_data.info.nmsrs = n;
572 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
577 static int kvm_get_fpu(CPUState *env)
579 struct kvm_fpu fpu;
580 int i, ret;
582 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
583 if (ret < 0)
584 return ret;
586 env->fpstt = (fpu.fsw >> 11) & 7;
587 env->fpus = fpu.fsw;
588 env->fpuc = fpu.fcw;
589 for (i = 0; i < 8; ++i)
590 env->fptags[i] = !((fpu.ftwx >> i) & 1);
591 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
592 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
593 env->mxcsr = fpu.mxcsr;
595 return 0;
598 static int kvm_get_sregs(CPUState *env)
600 struct kvm_sregs sregs;
601 uint32_t hflags;
602 int bit, i, ret;
604 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
605 if (ret < 0)
606 return ret;
608 /* There can only be one pending IRQ set in the bitmap at a time, so try
609 to find it and save its number instead (-1 for none). */
610 env->interrupt_injected = -1;
611 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
612 if (sregs.interrupt_bitmap[i]) {
613 bit = ctz64(sregs.interrupt_bitmap[i]);
614 env->interrupt_injected = i * 64 + bit;
615 break;
619 get_seg(&env->segs[R_CS], &sregs.cs);
620 get_seg(&env->segs[R_DS], &sregs.ds);
621 get_seg(&env->segs[R_ES], &sregs.es);
622 get_seg(&env->segs[R_FS], &sregs.fs);
623 get_seg(&env->segs[R_GS], &sregs.gs);
624 get_seg(&env->segs[R_SS], &sregs.ss);
626 get_seg(&env->tr, &sregs.tr);
627 get_seg(&env->ldt, &sregs.ldt);
629 env->idt.limit = sregs.idt.limit;
630 env->idt.base = sregs.idt.base;
631 env->gdt.limit = sregs.gdt.limit;
632 env->gdt.base = sregs.gdt.base;
634 env->cr[0] = sregs.cr0;
635 env->cr[2] = sregs.cr2;
636 env->cr[3] = sregs.cr3;
637 env->cr[4] = sregs.cr4;
639 cpu_set_apic_base(env, sregs.apic_base);
641 env->efer = sregs.efer;
642 //cpu_set_apic_tpr(env, sregs.cr8);
644 #define HFLAG_COPY_MASK ~( \
645 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
646 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
647 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
648 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
652 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
653 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
654 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
655 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
656 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
657 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
658 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
660 if (env->efer & MSR_EFER_LMA) {
661 hflags |= HF_LMA_MASK;
664 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
665 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
666 } else {
667 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
668 (DESC_B_SHIFT - HF_CS32_SHIFT);
669 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
670 (DESC_B_SHIFT - HF_SS32_SHIFT);
671 if (!(env->cr[0] & CR0_PE_MASK) ||
672 (env->eflags & VM_MASK) ||
673 !(hflags & HF_CS32_MASK)) {
674 hflags |= HF_ADDSEG_MASK;
675 } else {
676 hflags |= ((env->segs[R_DS].base |
677 env->segs[R_ES].base |
678 env->segs[R_SS].base) != 0) <<
679 HF_ADDSEG_SHIFT;
682 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
684 return 0;
687 static int kvm_get_msrs(CPUState *env)
689 struct {
690 struct kvm_msrs info;
691 struct kvm_msr_entry entries[100];
692 } msr_data;
693 struct kvm_msr_entry *msrs = msr_data.entries;
694 int ret, i, n;
696 n = 0;
697 msrs[n++].index = MSR_IA32_SYSENTER_CS;
698 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
699 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
700 if (kvm_has_msr_star(env))
701 msrs[n++].index = MSR_STAR;
702 msrs[n++].index = MSR_IA32_TSC;
703 msrs[n++].index = MSR_VM_HSAVE_PA;
704 #ifdef TARGET_X86_64
705 /* FIXME lm_capable_kernel */
706 msrs[n++].index = MSR_CSTAR;
707 msrs[n++].index = MSR_KERNELGSBASE;
708 msrs[n++].index = MSR_FMASK;
709 msrs[n++].index = MSR_LSTAR;
710 #endif
711 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
712 msrs[n++].index = MSR_KVM_WALL_CLOCK;
714 msr_data.info.nmsrs = n;
715 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
716 if (ret < 0)
717 return ret;
719 for (i = 0; i < ret; i++) {
720 switch (msrs[i].index) {
721 case MSR_IA32_SYSENTER_CS:
722 env->sysenter_cs = msrs[i].data;
723 break;
724 case MSR_IA32_SYSENTER_ESP:
725 env->sysenter_esp = msrs[i].data;
726 break;
727 case MSR_IA32_SYSENTER_EIP:
728 env->sysenter_eip = msrs[i].data;
729 break;
730 case MSR_STAR:
731 env->star = msrs[i].data;
732 break;
733 #ifdef TARGET_X86_64
734 case MSR_CSTAR:
735 env->cstar = msrs[i].data;
736 break;
737 case MSR_KERNELGSBASE:
738 env->kernelgsbase = msrs[i].data;
739 break;
740 case MSR_FMASK:
741 env->fmask = msrs[i].data;
742 break;
743 case MSR_LSTAR:
744 env->lstar = msrs[i].data;
745 break;
746 #endif
747 case MSR_IA32_TSC:
748 env->tsc = msrs[i].data;
749 break;
750 case MSR_KVM_SYSTEM_TIME:
751 env->system_time_msr = msrs[i].data;
752 break;
753 case MSR_KVM_WALL_CLOCK:
754 env->wall_clock_msr = msrs[i].data;
755 break;
756 case MSR_VM_HSAVE_PA:
757 env->vm_hsave = msrs[i].data;
758 break;
762 return 0;
765 static int kvm_put_mp_state(CPUState *env)
767 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
769 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
772 static int kvm_get_mp_state(CPUState *env)
774 struct kvm_mp_state mp_state;
775 int ret;
777 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
778 if (ret < 0) {
779 return ret;
781 env->mp_state = mp_state.mp_state;
782 return 0;
784 #endif
786 int kvm_put_vcpu_events(CPUState *env)
788 #ifdef KVM_CAP_VCPU_EVENTS
789 struct kvm_vcpu_events events;
791 if (!kvm_has_vcpu_events()) {
792 return 0;
795 events.exception.injected = (env->exception_injected >= 0);
796 events.exception.nr = env->exception_injected;
797 events.exception.has_error_code = env->has_error_code;
798 events.exception.error_code = env->error_code;
800 events.interrupt.injected = (env->interrupt_injected >= 0);
801 events.interrupt.nr = env->interrupt_injected;
802 events.interrupt.soft = env->soft_interrupt;
804 events.nmi.injected = env->nmi_injected;
805 events.nmi.pending = env->nmi_pending;
806 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
808 events.sipi_vector = env->sipi_vector;
810 events.flags =
811 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
813 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
814 #else
815 return 0;
816 #endif
819 int kvm_get_vcpu_events(CPUState *env)
821 #ifdef KVM_CAP_VCPU_EVENTS
822 struct kvm_vcpu_events events;
823 int ret;
825 if (!kvm_has_vcpu_events()) {
826 return 0;
829 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
830 if (ret < 0) {
831 return ret;
833 env->exception_injected =
834 events.exception.injected ? events.exception.nr : -1;
835 env->has_error_code = events.exception.has_error_code;
836 env->error_code = events.exception.error_code;
838 env->interrupt_injected =
839 events.interrupt.injected ? events.interrupt.nr : -1;
840 env->soft_interrupt = events.interrupt.soft;
842 env->nmi_injected = events.nmi.injected;
843 env->nmi_pending = events.nmi.pending;
844 if (events.nmi.masked) {
845 env->hflags2 |= HF2_NMI_MASK;
846 } else {
847 env->hflags2 &= ~HF2_NMI_MASK;
850 env->sipi_vector = events.sipi_vector;
851 #endif
853 return 0;
856 #ifdef KVM_UPSTREAM
857 int kvm_arch_put_registers(CPUState *env)
859 int ret;
861 ret = kvm_getput_regs(env, 1);
862 if (ret < 0)
863 return ret;
865 ret = kvm_put_fpu(env);
866 if (ret < 0)
867 return ret;
869 ret = kvm_put_sregs(env);
870 if (ret < 0)
871 return ret;
873 ret = kvm_put_msrs(env);
874 if (ret < 0)
875 return ret;
877 ret = kvm_put_mp_state(env);
878 if (ret < 0)
879 return ret;
881 ret = kvm_put_vcpu_events(env);
882 if (ret < 0)
883 return ret;
885 return 0;
888 int kvm_arch_get_registers(CPUState *env)
890 int ret;
892 ret = kvm_getput_regs(env, 0);
893 if (ret < 0)
894 return ret;
896 ret = kvm_get_fpu(env);
897 if (ret < 0)
898 return ret;
900 ret = kvm_get_sregs(env);
901 if (ret < 0)
902 return ret;
904 ret = kvm_get_msrs(env);
905 if (ret < 0)
906 return ret;
908 ret = kvm_get_mp_state(env);
909 if (ret < 0)
910 return ret;
912 ret = kvm_get_vcpu_events(env);
913 if (ret < 0)
914 return ret;
916 return 0;
919 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
921 /* Try to inject an interrupt if the guest can accept it */
922 if (run->ready_for_interrupt_injection &&
923 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
924 (env->eflags & IF_MASK)) {
925 int irq;
927 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
928 irq = cpu_get_pic_interrupt(env);
929 if (irq >= 0) {
930 struct kvm_interrupt intr;
931 intr.irq = irq;
932 /* FIXME: errors */
933 dprintf("injected interrupt %d\n", irq);
934 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
938 /* If we have an interrupt but the guest is not ready to receive an
939 * interrupt, request an interrupt window exit. This will
940 * cause a return to userspace as soon as the guest is ready to
941 * receive interrupts. */
942 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
943 run->request_interrupt_window = 1;
944 else
945 run->request_interrupt_window = 0;
947 dprintf("setting tpr\n");
948 run->cr8 = cpu_get_apic_tpr(env);
950 return 0;
952 #endif
954 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
956 if (run->if_flag)
957 env->eflags |= IF_MASK;
958 else
959 env->eflags &= ~IF_MASK;
961 cpu_set_apic_tpr(env, run->cr8);
962 cpu_set_apic_base(env, run->apic_base);
964 return 0;
967 #ifdef KVM_UPSTREAM
968 static int kvm_handle_halt(CPUState *env)
970 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
971 (env->eflags & IF_MASK)) &&
972 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
973 env->halted = 1;
974 env->exception_index = EXCP_HLT;
975 return 0;
978 return 1;
981 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
983 int ret = 0;
985 switch (run->exit_reason) {
986 case KVM_EXIT_HLT:
987 dprintf("handle_hlt\n");
988 ret = kvm_handle_halt(env);
989 break;
992 return ret;
995 #ifdef KVM_CAP_SET_GUEST_DEBUG
996 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
998 static const uint8_t int3 = 0xcc;
1000 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1001 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1002 return -EINVAL;
1003 return 0;
1006 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1008 uint8_t int3;
1010 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1011 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1012 return -EINVAL;
1013 return 0;
1016 static struct {
1017 target_ulong addr;
1018 int len;
1019 int type;
1020 } hw_breakpoint[4];
1022 static int nb_hw_breakpoint;
1024 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1026 int n;
1028 for (n = 0; n < nb_hw_breakpoint; n++)
1029 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1030 (hw_breakpoint[n].len == len || len == -1))
1031 return n;
1032 return -1;
1035 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1036 target_ulong len, int type)
1038 switch (type) {
1039 case GDB_BREAKPOINT_HW:
1040 len = 1;
1041 break;
1042 case GDB_WATCHPOINT_WRITE:
1043 case GDB_WATCHPOINT_ACCESS:
1044 switch (len) {
1045 case 1:
1046 break;
1047 case 2:
1048 case 4:
1049 case 8:
1050 if (addr & (len - 1))
1051 return -EINVAL;
1052 break;
1053 default:
1054 return -EINVAL;
1056 break;
1057 default:
1058 return -ENOSYS;
1061 if (nb_hw_breakpoint == 4)
1062 return -ENOBUFS;
1064 if (find_hw_breakpoint(addr, len, type) >= 0)
1065 return -EEXIST;
1067 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1068 hw_breakpoint[nb_hw_breakpoint].len = len;
1069 hw_breakpoint[nb_hw_breakpoint].type = type;
1070 nb_hw_breakpoint++;
1072 return 0;
1075 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1076 target_ulong len, int type)
1078 int n;
1080 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1081 if (n < 0)
1082 return -ENOENT;
1084 nb_hw_breakpoint--;
1085 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1087 return 0;
1090 void kvm_arch_remove_all_hw_breakpoints(void)
1092 nb_hw_breakpoint = 0;
1095 static CPUWatchpoint hw_watchpoint;
1097 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1099 int handle = 0;
1100 int n;
1102 if (arch_info->exception == 1) {
1103 if (arch_info->dr6 & (1 << 14)) {
1104 if (cpu_single_env->singlestep_enabled)
1105 handle = 1;
1106 } else {
1107 for (n = 0; n < 4; n++)
1108 if (arch_info->dr6 & (1 << n))
1109 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1110 case 0x0:
1111 handle = 1;
1112 break;
1113 case 0x1:
1114 handle = 1;
1115 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1116 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1117 hw_watchpoint.flags = BP_MEM_WRITE;
1118 break;
1119 case 0x3:
1120 handle = 1;
1121 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1122 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1123 hw_watchpoint.flags = BP_MEM_ACCESS;
1124 break;
1127 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1128 handle = 1;
1130 if (!handle)
1131 kvm_update_guest_debug(cpu_single_env,
1132 (arch_info->exception == 1) ?
1133 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1135 return handle;
1138 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1140 const uint8_t type_code[] = {
1141 [GDB_BREAKPOINT_HW] = 0x0,
1142 [GDB_WATCHPOINT_WRITE] = 0x1,
1143 [GDB_WATCHPOINT_ACCESS] = 0x3
1145 const uint8_t len_code[] = {
1146 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1148 int n;
1150 if (kvm_sw_breakpoints_active(env))
1151 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1153 if (nb_hw_breakpoint > 0) {
1154 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1155 dbg->arch.debugreg[7] = 0x0600;
1156 for (n = 0; n < nb_hw_breakpoint; n++) {
1157 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1158 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1159 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1160 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1164 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1165 #endif
1167 #include "qemu-kvm-x86.c"