Make --mem-path memory allocation depend on mmu notifiers
[qemu-kvm/amd-iommu.git] / qemu-doc.texi
blob02298f7d3933ce5b6cbdcb086a2703d526a35c47
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 Beige PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item N800 and N810 tablets (OMAP2420 processor)
91 @item MusicPal (MV88W8618 ARM processor)
92 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 @item Siemens SX1 smartphone (OMAP310 processor)
94 @end itemize
96 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
98 @node Installation
99 @chapter Installation
101 If you want to compile QEMU yourself, see @ref{compilation}.
103 @menu
104 * install_linux::   Linux
105 * install_windows:: Windows
106 * install_mac::     Macintosh
107 @end menu
109 @node install_linux
110 @section Linux
112 If a precompiled package is available for your distribution - you just
113 have to install it. Otherwise, see @ref{compilation}.
115 @node install_windows
116 @section Windows
118 Download the experimental binary installer at
119 @url{http://www.free.oszoo.org/@/download.html}.
121 @node install_mac
122 @section Mac OS X
124 Download the experimental binary installer at
125 @url{http://www.free.oszoo.org/@/download.html}.
127 @node QEMU PC System emulator
128 @chapter QEMU PC System emulator
130 @menu
131 * pcsys_introduction:: Introduction
132 * pcsys_quickstart::   Quick Start
133 * sec_invocation::     Invocation
134 * pcsys_keys::         Keys
135 * pcsys_monitor::      QEMU Monitor
136 * disk_images::        Disk Images
137 * pcsys_network::      Network emulation
138 * direct_linux_boot::  Direct Linux Boot
139 * pcsys_usb::          USB emulation
140 * vnc_security::       VNC security
141 * gdb_usage::          GDB usage
142 * pcsys_os_specific::  Target OS specific information
143 @end menu
145 @node pcsys_introduction
146 @section Introduction
148 @c man begin DESCRIPTION
150 The QEMU PC System emulator simulates the
151 following peripherals:
153 @itemize @minus
154 @item
155 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156 @item
157 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158 extensions (hardware level, including all non standard modes).
159 @item
160 PS/2 mouse and keyboard
161 @item
162 2 PCI IDE interfaces with hard disk and CD-ROM support
163 @item
164 Floppy disk
165 @item
166 PCI/ISA PCI network adapters
167 @item
168 Serial ports
169 @item
170 Creative SoundBlaster 16 sound card
171 @item
172 ENSONIQ AudioPCI ES1370 sound card
173 @item
174 Intel 82801AA AC97 Audio compatible sound card
175 @item
176 Adlib(OPL2) - Yamaha YM3812 compatible chip
177 @item
178 Gravis Ultrasound GF1 sound card
179 @item
180 CS4231A compatible sound card
181 @item
182 PCI UHCI USB controller and a virtual USB hub.
183 @end itemize
185 SMP is supported with up to 255 CPUs.
187 Note that adlib, gus and cs4231a are only available when QEMU was
188 configured with --audio-card-list option containing the name(s) of
189 required card(s).
191 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192 VGA BIOS.
194 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
196 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197 by Tibor "TS" Schütz.
199 CS4231A is the chip used in Windows Sound System and GUSMAX products
201 @c man end
203 @node pcsys_quickstart
204 @section Quick Start
206 Download and uncompress the linux image (@file{linux.img}) and type:
208 @example
209 qemu linux.img
210 @end example
212 Linux should boot and give you a prompt.
214 @node sec_invocation
215 @section Invocation
217 @example
218 @c man begin SYNOPSIS
219 usage: qemu [options] [@var{disk_image}]
220 @c man end
221 @end example
223 @c man begin OPTIONS
224 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
226 General options:
227 @table @option
228 @item -M @var{machine}
229 Select the emulated @var{machine} (@code{-M ?} for list)
231 @item -fda @var{file}
232 @item -fdb @var{file}
233 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
234 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
236 @item -hda @var{file}
237 @item -hdb @var{file}
238 @item -hdc @var{file}
239 @item -hdd @var{file}
240 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
242 @item -cdrom @var{file}
243 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
244 @option{-cdrom} at the same time). You can use the host CD-ROM by
245 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
247 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
249 Define a new drive. Valid options are:
251 @table @code
252 @item file=@var{file}
253 This option defines which disk image (@pxref{disk_images}) to use with
254 this drive. If the filename contains comma, you must double it
255 (for instance, "file=my,,file" to use file "my,file").
256 @item if=@var{interface}
257 This option defines on which type on interface the drive is connected.
258 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
259 @item bus=@var{bus},unit=@var{unit}
260 These options define where is connected the drive by defining the bus number and
261 the unit id.
262 @item index=@var{index}
263 This option defines where is connected the drive by using an index in the list
264 of available connectors of a given interface type.
265 @item media=@var{media}
266 This option defines the type of the media: disk or cdrom.
267 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
268 These options have the same definition as they have in @option{-hdachs}.
269 @item snapshot=@var{snapshot}
270 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
271 @item cache=@var{cache}
272 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
273 @item format=@var{format}
274 Specify which disk @var{format} will be used rather than detecting
275 the format.  Can be used to specifiy format=raw to avoid interpreting
276 an untrusted format header.
277 @item serial=@var{serial}
278 This option specifies the serial number to assign to the device.
279 @item boot=@var{boot}
280 @var{boot} if "on" enables extboot for a given drive so it can be used as a boot drive.
281 @end table
283 By default, writethrough caching is used for all block device.  This means that
284 the host page cache will be used to read and write data but write notification
285 will be sent to the guest only when the data has been reported as written by
286 the storage subsystem.
288 Writeback caching will report data writes as completed as soon as the data is
289 present in the host page cache.  This is safe as long as you trust your host.
290 If your host crashes or loses power, then the guest may experience data
291 corruption.  When using the @option{-snapshot} option, writeback caching is
292 used by default.
294 The host page can be avoided entirely with @option{cache=none}.  This will
295 attempt to do disk IO directly to the guests memory.  QEMU may still perform
296 an internal copy of the data.
298 Some block drivers perform badly with @option{cache=writethrough}, most notably,
299 qcow2.  If performance is more important than correctness,
300 @option{cache=writeback} should be used with qcow2.  By default, if no explicit
301 caching is specified for a qcow2 disk image, @option{cache=writeback} will be
302 used.  For all other disk types, @option{cache=writethrough} is the default.
304 Instead of @option{-cdrom} you can use:
305 @example
306 qemu -drive file=file,index=2,media=cdrom
307 @end example
309 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
310 use:
311 @example
312 qemu -drive file=file,index=0,media=disk
313 qemu -drive file=file,index=1,media=disk
314 qemu -drive file=file,index=2,media=disk
315 qemu -drive file=file,index=3,media=disk
316 @end example
318 You can connect a CDROM to the slave of ide0:
319 @example
320 qemu -drive file=file,if=ide,index=1,media=cdrom
321 @end example
323 If you don't specify the "file=" argument, you define an empty drive:
324 @example
325 qemu -drive if=ide,index=1,media=cdrom
326 @end example
328 You can connect a SCSI disk with unit ID 6 on the bus #0:
329 @example
330 qemu -drive file=file,if=scsi,bus=0,unit=6
331 @end example
333 To boot from a SCSI disk, one would use:
335 @example
336 qemu -drive file=file,if=scsi,boot=on
337 @end example
339 Instead of @option{-fda}, @option{-fdb}, you can use:
340 @example
341 qemu -drive file=file,index=0,if=floppy
342 qemu -drive file=file,index=1,if=floppy
343 @end example
345 By default, @var{interface} is "ide" and @var{index} is automatically
346 incremented:
347 @example
348 qemu -drive file=a -drive file=b"
349 @end example
350 is interpreted like:
351 @example
352 qemu -hda a -hdb b
353 @end example
355 @item -boot [a|c|d|n]
356 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
357 is the default.
359 @item -snapshot
360 Write to temporary files instead of disk image files. In this case,
361 the raw disk image you use is not written back. You can however force
362 the write back by pressing @key{C-a s} (@pxref{disk_images}).
364 @item -no-fd-bootchk
365 Disable boot signature checking for floppy disks in Bochs BIOS. It may
366 be needed to boot from old floppy disks.
368 @item -m @var{megs}
369 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
370 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
371 gigabytes respectively.
373 @item -cpu @var{model}
374 Select CPU model (-cpu ? for list and additional feature selection)
376 @item -smp @var{n}
377 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
378 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
379 to 4.
381 @item -audio-help
383 Will show the audio subsystem help: list of drivers, tunable
384 parameters.
386 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
388 Enable audio and selected sound hardware. Use ? to print all
389 available sound hardware.
391 @example
392 qemu -soundhw sb16,adlib disk.img
393 qemu -soundhw es1370 disk.img
394 qemu -soundhw ac97 disk.img
395 qemu -soundhw all disk.img
396 qemu -soundhw ?
397 @end example
399 Note that Linux's i810_audio OSS kernel (for AC97) module might
400 require manually specifying clocking.
402 @example
403 modprobe i810_audio clocking=48000
404 @end example
406 @item -localtime
407 Set the real time clock to local time (the default is to UTC
408 time). This option is needed to have correct date in MS-DOS or
409 Windows.
411 @item -startdate @var{date}
412 Set the initial date of the real time clock. Valid formats for
413 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
414 @code{2006-06-17}. The default value is @code{now}.
416 @item -pidfile @var{file}
417 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
418 from a script.
420 @item -daemonize
421 Daemonize the QEMU process after initialization.  QEMU will not detach from
422 standard IO until it is ready to receive connections on any of its devices.
423 This option is a useful way for external programs to launch QEMU without having
424 to cope with initialization race conditions.
426 @item -win2k-hack
427 Use it when installing Windows 2000 to avoid a disk full bug. After
428 Windows 2000 is installed, you no longer need this option (this option
429 slows down the IDE transfers).
431 @item -rtc-td-hack
432 Use it if you experience time drift problem in Windows with ACPI HAL.
433 This option will try to figure out how many timer interrupts were not
434 processed by the Windows guest and will re-inject them.
436 @item -option-rom @var{file}
437 Load the contents of @var{file} as an option ROM.
438 This option is useful to load things like EtherBoot.
440 @item -name @var{name}
441 Sets the @var{name} of the guest.
442 This name will be displayed in the SDL window caption.
443 The @var{name} will also be used for the VNC server.
445 @end table
447 Display options:
448 @table @option
450 @item -nographic
452 Normally, QEMU uses SDL to display the VGA output. With this option,
453 you can totally disable graphical output so that QEMU is a simple
454 command line application. The emulated serial port is redirected on
455 the console. Therefore, you can still use QEMU to debug a Linux kernel
456 with a serial console.
458 @item -curses
460 Normally, QEMU uses SDL to display the VGA output.  With this option,
461 QEMU can display the VGA output when in text mode using a 
462 curses/ncurses interface.  Nothing is displayed in graphical mode.
464 @item -no-frame
466 Do not use decorations for SDL windows and start them using the whole
467 available screen space. This makes the using QEMU in a dedicated desktop
468 workspace more convenient.
470 @item -no-quit
472 Disable SDL window close capability.
474 @item -full-screen
475 Start in full screen.
477 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
479 Normally, QEMU uses SDL to display the VGA output.  With this option,
480 you can have QEMU listen on VNC display @var{display} and redirect the VGA
481 display over the VNC session.  It is very useful to enable the usb
482 tablet device when using this option (option @option{-usbdevice
483 tablet}). When using the VNC display, you must use the @option{-k}
484 parameter to set the keyboard layout if you are not using en-us. Valid
485 syntax for the @var{display} is
487 @table @code
489 @item @var{host}:@var{d}
491 TCP connections will only be allowed from @var{host} on display @var{d}.
492 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
493 be omitted in which case the server will accept connections from any host.
495 @item @code{unix}:@var{path}
497 Connections will be allowed over UNIX domain sockets where @var{path} is the
498 location of a unix socket to listen for connections on.
500 @item none
502 VNC is initialized but not started. The monitor @code{change} command
503 can be used to later start the VNC server.
505 @end table
507 Following the @var{display} value there may be one or more @var{option} flags
508 separated by commas. Valid options are
510 @table @code
512 @item reverse
514 Connect to a listening VNC client via a ``reverse'' connection. The
515 client is specified by the @var{display}. For reverse network
516 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
517 is a TCP port number, not a display number.
519 @item password
521 Require that password based authentication is used for client connections.
522 The password must be set separately using the @code{change} command in the
523 @ref{pcsys_monitor}
525 @item tls
527 Require that client use TLS when communicating with the VNC server. This
528 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
529 attack. It is recommended that this option be combined with either the
530 @var{x509} or @var{x509verify} options.
532 @item x509=@var{/path/to/certificate/dir}
534 Valid if @option{tls} is specified. Require that x509 credentials are used
535 for negotiating the TLS session. The server will send its x509 certificate
536 to the client. It is recommended that a password be set on the VNC server
537 to provide authentication of the client when this is used. The path following
538 this option specifies where the x509 certificates are to be loaded from.
539 See the @ref{vnc_security} section for details on generating certificates.
541 @item x509verify=@var{/path/to/certificate/dir}
543 Valid if @option{tls} is specified. Require that x509 credentials are used
544 for negotiating the TLS session. The server will send its x509 certificate
545 to the client, and request that the client send its own x509 certificate.
546 The server will validate the client's certificate against the CA certificate,
547 and reject clients when validation fails. If the certificate authority is
548 trusted, this is a sufficient authentication mechanism. You may still wish
549 to set a password on the VNC server as a second authentication layer. The
550 path following this option specifies where the x509 certificates are to
551 be loaded from. See the @ref{vnc_security} section for details on generating
552 certificates.
554 @end table
556 @item -k @var{language}
558 Use keyboard layout @var{language} (for example @code{fr} for
559 French). This option is only needed where it is not easy to get raw PC
560 keycodes (e.g. on Macs, with some X11 servers or with a VNC
561 display). You don't normally need to use it on PC/Linux or PC/Windows
562 hosts.
564 The available layouts are:
565 @example
566 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
567 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
568 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
569 @end example
571 The default is @code{en-us}.
573 @end table
575 USB options:
576 @table @option
578 @item -usb
579 Enable the USB driver (will be the default soon)
581 @item -usbdevice @var{devname}
582 Add the USB device @var{devname}. @xref{usb_devices}.
584 @table @code
586 @item mouse
587 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
589 @item tablet
590 Pointer device that uses absolute coordinates (like a touchscreen). This
591 means qemu is able to report the mouse position without having to grab the
592 mouse. Also overrides the PS/2 mouse emulation when activated.
594 @item disk:[format=@var{format}]:file
595 Mass storage device based on file. The optional @var{format} argument
596 will be used rather than detecting the format. Can be used to specifiy
597 format=raw to avoid interpreting an untrusted format header.
599 @item host:bus.addr
600 Pass through the host device identified by bus.addr (Linux only).
602 @item host:vendor_id:product_id
603 Pass through the host device identified by vendor_id:product_id (Linux only).
605 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
606 Serial converter to host character device @var{dev}, see @code{-serial} for the
607 available devices.
609 @item braille
610 Braille device.  This will use BrlAPI to display the braille output on a real
611 or fake device.
613 @item net:options
614 Network adapter that supports CDC ethernet and RNDIS protocols.
616 @end table
618 @end table
620 Network options:
622 @table @option
624 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
625 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
626 = 0 is the default). The NIC is an rtl8139 by default on the PC
627 target. Optionally, the MAC address can be changed to @var{addr}
628 and a @var{name} can be assigned for use in monitor commands. If no
629 @option{-net} option is specified, a single NIC is created.
630 Qemu can emulate several different models of network card.
631 Valid values for @var{type} are
632 @code{i82551}, @code{i82557b}, @code{i82559er},
633 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
634 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
635 Not all devices are supported on all targets.  Use -net nic,model=?
636 for a list of available devices for your target.
638 @item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
639 Use the user mode network stack which requires no administrator
640 privilege to run.  @option{hostname=name} can be used to specify the client
641 hostname reported by the builtin DHCP server.
643 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
644 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
645 the network script @var{file} to configure it and the network script 
646 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
647 automatically provides one. @option{fd}=@var{h} can be used to specify
648 the handle of an already opened host TAP interface. The default network 
649 configure script is @file{/etc/qemu-ifup} and the default network 
650 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
651 or @option{downscript=no} to disable script execution. Example:
653 @example
654 qemu linux.img -net nic -net tap
655 @end example
657 More complicated example (two NICs, each one connected to a TAP device)
658 @example
659 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
660                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
661 @end example
664 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
666 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
667 machine using a TCP socket connection. If @option{listen} is
668 specified, QEMU waits for incoming connections on @var{port}
669 (@var{host} is optional). @option{connect} is used to connect to
670 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
671 specifies an already opened TCP socket.
673 Example:
674 @example
675 # launch a first QEMU instance
676 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
677                -net socket,listen=:1234
678 # connect the VLAN 0 of this instance to the VLAN 0
679 # of the first instance
680 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
681                -net socket,connect=127.0.0.1:1234
682 @end example
684 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
686 Create a VLAN @var{n} shared with another QEMU virtual
687 machines using a UDP multicast socket, effectively making a bus for
688 every QEMU with same multicast address @var{maddr} and @var{port}.
689 NOTES:
690 @enumerate
691 @item
692 Several QEMU can be running on different hosts and share same bus (assuming
693 correct multicast setup for these hosts).
694 @item
695 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
696 @url{http://user-mode-linux.sf.net}.
697 @item
698 Use @option{fd=h} to specify an already opened UDP multicast socket.
699 @end enumerate
701 Example:
702 @example
703 # launch one QEMU instance
704 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
705                -net socket,mcast=230.0.0.1:1234
706 # launch another QEMU instance on same "bus"
707 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
708                -net socket,mcast=230.0.0.1:1234
709 # launch yet another QEMU instance on same "bus"
710 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
711                -net socket,mcast=230.0.0.1:1234
712 @end example
714 Example (User Mode Linux compat.):
715 @example
716 # launch QEMU instance (note mcast address selected
717 # is UML's default)
718 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
719                -net socket,mcast=239.192.168.1:1102
720 # launch UML
721 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
722 @end example
724 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
725 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
726 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
727 and MODE @var{octalmode} to change default ownership and permissions for
728 communication port. This option is available only if QEMU has been compiled
729 with vde support enabled.
731 Example:
732 @example
733 # launch vde switch
734 vde_switch -F -sock /tmp/myswitch
735 # launch QEMU instance
736 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
737 @end example
739 @item -net none
740 Indicate that no network devices should be configured. It is used to
741 override the default configuration (@option{-net nic -net user}) which
742 is activated if no @option{-net} options are provided.
744 @item -tftp @var{dir}
745 When using the user mode network stack, activate a built-in TFTP
746 server. The files in @var{dir} will be exposed as the root of a TFTP server.
747 The TFTP client on the guest must be configured in binary mode (use the command
748 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
749 usual 10.0.2.2.
751 @item -bootp @var{file}
752 When using the user mode network stack, broadcast @var{file} as the BOOTP
753 filename.  In conjunction with @option{-tftp}, this can be used to network boot
754 a guest from a local directory.
756 Example (using pxelinux):
757 @example
758 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
759 @end example
761 @item -smb @var{dir}
762 When using the user mode network stack, activate a built-in SMB
763 server so that Windows OSes can access to the host files in @file{@var{dir}}
764 transparently.
766 In the guest Windows OS, the line:
767 @example
768 10.0.2.4 smbserver
769 @end example
770 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
771 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
773 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
775 Note that a SAMBA server must be installed on the host OS in
776 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
777 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
779 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
781 When using the user mode network stack, redirect incoming TCP or UDP
782 connections to the host port @var{host-port} to the guest
783 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
784 is not specified, its value is 10.0.2.15 (default address given by the
785 built-in DHCP server).
787 For example, to redirect host X11 connection from screen 1 to guest
788 screen 0, use the following:
790 @example
791 # on the host
792 qemu -redir tcp:6001::6000 [...]
793 # this host xterm should open in the guest X11 server
794 xterm -display :1
795 @end example
797 To redirect telnet connections from host port 5555 to telnet port on
798 the guest, use the following:
800 @example
801 # on the host
802 qemu -redir tcp:5555::23 [...]
803 telnet localhost 5555
804 @end example
806 Then when you use on the host @code{telnet localhost 5555}, you
807 connect to the guest telnet server.
809 @end table
811 Bluetooth(R) options:
812 @table @option
814 @item -bt hci[...]
815 Defines the function of the corresponding Bluetooth HCI.  -bt options
816 are matched with the HCIs present in the chosen machine type.  For
817 example when emulating a machine with only one HCI built into it, only
818 the first @code{-bt hci[...]} option is valid and defines the HCI's
819 logic.  The Transport Layer is decided by the machine type.  Currently
820 the machines @code{n800} and @code{n810} have one HCI and all other
821 machines have none.
823 @anchor{bt-hcis}
824 The following three types are recognized:
826 @table @code
827 @item -bt hci,null
828 (default) The corresponding Bluetooth HCI assumes no internal logic
829 and will not respond to any HCI commands or emit events.
831 @item -bt hci,host[:@var{id}]
832 (@code{bluez} only) The corresponding HCI passes commands / events
833 to / from the physical HCI identified by the name @var{id} (default:
834 @code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
835 capable systems like Linux.
837 @item -bt hci[,vlan=@var{n}]
838 Add a virtual, standard HCI that will participate in the Bluetooth
839 scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
840 VLANs, devices inside a bluetooth network @var{n} can only communicate
841 with other devices in the same network (scatternet).
842 @end table
844 @item -bt vhci[,vlan=@var{n}]
845 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
846 to the host bluetooth stack instead of to the emulated target.  This
847 allows the host and target machines to participate in a common scatternet
848 and communicate.  Requires the Linux @code{vhci} driver installed.  Can
849 be used as following:
851 @example
852 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
853 @end example
855 @item -bt device:@var{dev}[,vlan=@var{n}]
856 Emulate a bluetooth device @var{dev} and place it in network @var{n}
857 (default @code{0}).  QEMU can only emulate one type of bluetooth devices
858 currently:
860 @table @code
861 @item keyboard
862 Virtual wireless keyboard implementing the HIDP bluetooth profile.
863 @end table
865 @end table
867 Linux boot specific: When using these options, you can use a given
868 Linux kernel without installing it in the disk image. It can be useful
869 for easier testing of various kernels.
871 @table @option
873 @item -kernel @var{bzImage}
874 Use @var{bzImage} as kernel image.
876 @item -append @var{cmdline}
877 Use @var{cmdline} as kernel command line
879 @item -initrd @var{file}
880 Use @var{file} as initial ram disk.
882 @end table
884 Debug/Expert options:
885 @table @option
887 @item -serial @var{dev}
888 Redirect the virtual serial port to host character device
889 @var{dev}. The default device is @code{vc} in graphical mode and
890 @code{stdio} in non graphical mode.
892 This option can be used several times to simulate up to 4 serials
893 ports.
895 Use @code{-serial none} to disable all serial ports.
897 Available character devices are:
898 @table @code
899 @item vc[:WxH]
900 Virtual console. Optionally, a width and height can be given in pixel with
901 @example
902 vc:800x600
903 @end example
904 It is also possible to specify width or height in characters:
905 @example
906 vc:80Cx24C
907 @end example
908 @item pty
909 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
910 @item none
911 No device is allocated.
912 @item null
913 void device
914 @item /dev/XXX
915 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
916 parameters are set according to the emulated ones.
917 @item /dev/parport@var{N}
918 [Linux only, parallel port only] Use host parallel port
919 @var{N}. Currently SPP and EPP parallel port features can be used.
920 @item file:@var{filename}
921 Write output to @var{filename}. No character can be read.
922 @item stdio
923 [Unix only] standard input/output
924 @item pipe:@var{filename}
925 name pipe @var{filename}
926 @item COM@var{n}
927 [Windows only] Use host serial port @var{n}
928 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
929 This implements UDP Net Console.
930 When @var{remote_host} or @var{src_ip} are not specified
931 they default to @code{0.0.0.0}.
932 When not using a specified @var{src_port} a random port is automatically chosen.
934 If you just want a simple readonly console you can use @code{netcat} or
935 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
936 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
937 will appear in the netconsole session.
939 If you plan to send characters back via netconsole or you want to stop
940 and start qemu a lot of times, you should have qemu use the same
941 source port each time by using something like @code{-serial
942 udp::4555@@:4556} to qemu. Another approach is to use a patched
943 version of netcat which can listen to a TCP port and send and receive
944 characters via udp.  If you have a patched version of netcat which
945 activates telnet remote echo and single char transfer, then you can
946 use the following options to step up a netcat redirector to allow
947 telnet on port 5555 to access the qemu port.
948 @table @code
949 @item Qemu Options:
950 -serial udp::4555@@:4556
951 @item netcat options:
952 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
953 @item telnet options:
954 localhost 5555
955 @end table
958 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
959 The TCP Net Console has two modes of operation.  It can send the serial
960 I/O to a location or wait for a connection from a location.  By default
961 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
962 the @var{server} option QEMU will wait for a client socket application
963 to connect to the port before continuing, unless the @code{nowait}
964 option was specified.  The @code{nodelay} option disables the Nagle buffering
965 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
966 one TCP connection at a time is accepted. You can use @code{telnet} to
967 connect to the corresponding character device.
968 @table @code
969 @item Example to send tcp console to 192.168.0.2 port 4444
970 -serial tcp:192.168.0.2:4444
971 @item Example to listen and wait on port 4444 for connection
972 -serial tcp::4444,server
973 @item Example to not wait and listen on ip 192.168.0.100 port 4444
974 -serial tcp:192.168.0.100:4444,server,nowait
975 @end table
977 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
978 The telnet protocol is used instead of raw tcp sockets.  The options
979 work the same as if you had specified @code{-serial tcp}.  The
980 difference is that the port acts like a telnet server or client using
981 telnet option negotiation.  This will also allow you to send the
982 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
983 sequence.  Typically in unix telnet you do it with Control-] and then
984 type "send break" followed by pressing the enter key.
986 @item unix:@var{path}[,server][,nowait]
987 A unix domain socket is used instead of a tcp socket.  The option works the
988 same as if you had specified @code{-serial tcp} except the unix domain socket
989 @var{path} is used for connections.
991 @item mon:@var{dev_string}
992 This is a special option to allow the monitor to be multiplexed onto
993 another serial port.  The monitor is accessed with key sequence of
994 @key{Control-a} and then pressing @key{c}. See monitor access
995 @ref{pcsys_keys} in the -nographic section for more keys.
996 @var{dev_string} should be any one of the serial devices specified
997 above.  An example to multiplex the monitor onto a telnet server
998 listening on port 4444 would be:
999 @table @code
1000 @item -serial mon:telnet::4444,server,nowait
1001 @end table
1003 @item braille
1004 Braille device.  This will use BrlAPI to display the braille output on a real
1005 or fake device.
1007 @end table
1009 @item -parallel @var{dev}
1010 Redirect the virtual parallel port to host device @var{dev} (same
1011 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1012 be used to use hardware devices connected on the corresponding host
1013 parallel port.
1015 This option can be used several times to simulate up to 3 parallel
1016 ports.
1018 Use @code{-parallel none} to disable all parallel ports.
1020 @item -monitor @var{dev}
1021 Redirect the monitor to host device @var{dev} (same devices as the
1022 serial port).
1023 The default device is @code{vc} in graphical mode and @code{stdio} in
1024 non graphical mode.
1026 @item -echr numeric_ascii_value
1027 Change the escape character used for switching to the monitor when using
1028 monitor and serial sharing.  The default is @code{0x01} when using the
1029 @code{-nographic} option.  @code{0x01} is equal to pressing
1030 @code{Control-a}.  You can select a different character from the ascii
1031 control keys where 1 through 26 map to Control-a through Control-z.  For
1032 instance you could use the either of the following to change the escape
1033 character to Control-t.
1034 @table @code
1035 @item -echr 0x14
1036 @item -echr 20
1037 @end table
1039 @item -s
1040 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1041 @item -p @var{port}
1042 Change gdb connection port.  @var{port} can be either a decimal number
1043 to specify a TCP port, or a host device (same devices as the serial port).
1044 @item -S
1045 Do not start CPU at startup (you must type 'c' in the monitor).
1046 @item -d
1047 Output log in /tmp/qemu.log
1048 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1049 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1050 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1051 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1052 all those parameters. This option is useful for old MS-DOS disk
1053 images.
1055 @item -L path
1056 Set the directory for the BIOS, VGA BIOS and keymaps.
1058 @item -vga @var{type}
1059 Select type of VGA card to emulate. Valid values for @var{type} are
1060 @table @code
1061 @item cirrus
1062 Cirrus Logic GD5446 Video card. All Windows versions starting from
1063 Windows 95 should recognize and use this graphic card. For optimal
1064 performances, use 16 bit color depth in the guest and the host OS.
1065 (This one is the default)
1066 @item std
1067 Standard VGA card with Bochs VBE extensions.  If your guest OS
1068 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1069 to use high resolution modes (>= 1280x1024x16) then you should use
1070 this option.
1071 @item vmware
1072 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1073 recent XFree86/XOrg server or Windows guest with a driver for this
1074 card.
1075 @end table
1077 @item -no-acpi
1078 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1079 it if your guest OS complains about ACPI problems (PC target machine
1080 only).
1082 @item -no-reboot
1083 Exit instead of rebooting.
1085 @item -no-shutdown
1086 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1087 This allows for instance switching to monitor to commit changes to the
1088 disk image.
1090 @item -loadvm file
1091 Start right away with a saved state (@code{loadvm} in monitor)
1093 @item -semihosting
1094 Enable semihosting syscall emulation (ARM and M68K target machines only).
1096 On ARM this implements the "Angel" interface.
1097 On M68K this implements the "ColdFire GDB" interface used by libgloss.
1099 Note that this allows guest direct access to the host filesystem,
1100 so should only be used with trusted guest OS.
1102 @item -icount [N|auto]
1103 Enable virtual instruction counter.  The virtual cpu will execute one
1104 instruction every 2^N ns of virtual time.  If @code{auto} is specified
1105 then the virtual cpu speed will be automatically adjusted to keep virtual
1106 time within a few seconds of real time.
1108 Note that while this option can give deterministic behavior, it does not
1109 provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1110 order cores with complex cache hierarchies.  The number of instructions
1111 executed often has little or no correlation with actual performance.
1112 @end table
1114 @c man end
1116 @node pcsys_keys
1117 @section Keys
1119 @c man begin OPTIONS
1121 During the graphical emulation, you can use the following keys:
1122 @table @key
1123 @item Ctrl-Alt-f
1124 Toggle full screen
1126 @item Ctrl-Alt-n
1127 Switch to virtual console 'n'. Standard console mappings are:
1128 @table @emph
1129 @item 1
1130 Target system display
1131 @item 2
1132 Monitor
1133 @item 3
1134 Serial port
1135 @end table
1137 @item Ctrl-Alt
1138 Toggle mouse and keyboard grab.
1139 @end table
1141 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1142 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1144 During emulation, if you are using the @option{-nographic} option, use
1145 @key{Ctrl-a h} to get terminal commands:
1147 @table @key
1148 @item Ctrl-a h
1149 Print this help
1150 @item Ctrl-a x
1151 Exit emulator
1152 @item Ctrl-a s
1153 Save disk data back to file (if -snapshot)
1154 @item Ctrl-a t
1155 toggle console timestamps
1156 @item Ctrl-a b
1157 Send break (magic sysrq in Linux)
1158 @item Ctrl-a c
1159 Switch between console and monitor
1160 @item Ctrl-a Ctrl-a
1161 Send Ctrl-a
1162 @end table
1163 @c man end
1165 @ignore
1167 @c man begin SEEALSO
1168 The HTML documentation of QEMU for more precise information and Linux
1169 user mode emulator invocation.
1170 @c man end
1172 @c man begin AUTHOR
1173 Fabrice Bellard
1174 @c man end
1176 @end ignore
1178 @node pcsys_monitor
1179 @section QEMU Monitor
1181 The QEMU monitor is used to give complex commands to the QEMU
1182 emulator. You can use it to:
1184 @itemize @minus
1186 @item
1187 Remove or insert removable media images
1188 (such as CD-ROM or floppies).
1190 @item
1191 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1192 from a disk file.
1194 @item Inspect the VM state without an external debugger.
1196 @end itemize
1198 @subsection Commands
1200 The following commands are available:
1202 @table @option
1204 @item help or ? [@var{cmd}]
1205 Show the help for all commands or just for command @var{cmd}.
1207 @item commit
1208 Commit changes to the disk images (if -snapshot is used).
1210 @item info @var{subcommand}
1211 Show various information about the system state.
1213 @table @option
1214 @item info network
1215 show the various VLANs and the associated devices
1216 @item info block
1217 show the block devices
1218 @item info registers
1219 show the cpu registers
1220 @item info history
1221 show the command line history
1222 @item info pci
1223 show emulated PCI device
1224 @item info usb
1225 show USB devices plugged on the virtual USB hub
1226 @item info usbhost
1227 show all USB host devices
1228 @item info capture
1229 show information about active capturing
1230 @item info snapshots
1231 show list of VM snapshots
1232 @item info mice
1233 show which guest mouse is receiving events
1234 @end table
1236 @item q or quit
1237 Quit the emulator.
1239 @item eject [-f] @var{device}
1240 Eject a removable medium (use -f to force it).
1242 @item change @var{device} @var{setting}
1244 Change the configuration of a device.
1246 @table @option
1247 @item change @var{diskdevice} @var{filename}
1248 Change the medium for a removable disk device to point to @var{filename}. eg
1250 @example
1251 (qemu) change ide1-cd0 /path/to/some.iso
1252 @end example
1254 @item change vnc @var{display},@var{options}
1255 Change the configuration of the VNC server. The valid syntax for @var{display}
1256 and @var{options} are described at @ref{sec_invocation}. eg
1258 @example
1259 (qemu) change vnc localhost:1
1260 @end example
1262 @item change vnc password [@var{password}]
1264 Change the password associated with the VNC server. If the new password is not
1265 supplied, the monitor will prompt for it to be entered. VNC passwords are only
1266 significant up to 8 letters. eg
1268 @example
1269 (qemu) change vnc password
1270 Password: ********
1271 @end example
1273 @end table
1275 @item screendump @var{filename}
1276 Save screen into PPM image @var{filename}.
1278 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1279 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1280 with optional scroll axis @var{dz}.
1282 @item mouse_button @var{val}
1283 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1285 @item mouse_set @var{index}
1286 Set which mouse device receives events at given @var{index}, index
1287 can be obtained with
1288 @example
1289 info mice
1290 @end example
1292 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1293 Capture audio into @var{filename}. Using sample rate @var{frequency}
1294 bits per sample @var{bits} and number of channels @var{channels}.
1296 Defaults:
1297 @itemize @minus
1298 @item Sample rate = 44100 Hz - CD quality
1299 @item Bits = 16
1300 @item Number of channels = 2 - Stereo
1301 @end itemize
1303 @item stopcapture @var{index}
1304 Stop capture with a given @var{index}, index can be obtained with
1305 @example
1306 info capture
1307 @end example
1309 @item log @var{item1}[,...]
1310 Activate logging of the specified items to @file{/tmp/qemu.log}.
1312 @item savevm [@var{tag}|@var{id}]
1313 Create a snapshot of the whole virtual machine. If @var{tag} is
1314 provided, it is used as human readable identifier. If there is already
1315 a snapshot with the same tag or ID, it is replaced. More info at
1316 @ref{vm_snapshots}.
1318 @item loadvm @var{tag}|@var{id}
1319 Set the whole virtual machine to the snapshot identified by the tag
1320 @var{tag} or the unique snapshot ID @var{id}.
1322 @item delvm @var{tag}|@var{id}
1323 Delete the snapshot identified by @var{tag} or @var{id}.
1325 @item stop
1326 Stop emulation.
1328 @item c or cont
1329 Resume emulation.
1331 @item gdbserver [@var{port}]
1332 Start gdbserver session (default @var{port}=1234)
1334 @item x/fmt @var{addr}
1335 Virtual memory dump starting at @var{addr}.
1337 @item xp /@var{fmt} @var{addr}
1338 Physical memory dump starting at @var{addr}.
1340 @var{fmt} is a format which tells the command how to format the
1341 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1343 @table @var
1344 @item count
1345 is the number of items to be dumped.
1347 @item format
1348 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1349 c (char) or i (asm instruction).
1351 @item size
1352 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1353 @code{h} or @code{w} can be specified with the @code{i} format to
1354 respectively select 16 or 32 bit code instruction size.
1356 @end table
1358 Examples:
1359 @itemize
1360 @item
1361 Dump 10 instructions at the current instruction pointer:
1362 @example
1363 (qemu) x/10i $eip
1364 0x90107063:  ret
1365 0x90107064:  sti
1366 0x90107065:  lea    0x0(%esi,1),%esi
1367 0x90107069:  lea    0x0(%edi,1),%edi
1368 0x90107070:  ret
1369 0x90107071:  jmp    0x90107080
1370 0x90107073:  nop
1371 0x90107074:  nop
1372 0x90107075:  nop
1373 0x90107076:  nop
1374 @end example
1376 @item
1377 Dump 80 16 bit values at the start of the video memory.
1378 @smallexample
1379 (qemu) xp/80hx 0xb8000
1380 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1381 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1382 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1383 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1384 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1385 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1386 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1387 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1388 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1389 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1390 @end smallexample
1391 @end itemize
1393 @item p or print/@var{fmt} @var{expr}
1395 Print expression value. Only the @var{format} part of @var{fmt} is
1396 used.
1398 @item sendkey @var{keys}
1400 Send @var{keys} to the emulator. @var{keys} could be the name of the
1401 key or @code{#} followed by the raw value in either decimal or hexadecimal
1402 format. Use @code{-} to press several keys simultaneously. Example:
1403 @example
1404 sendkey ctrl-alt-f1
1405 @end example
1407 This command is useful to send keys that your graphical user interface
1408 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1410 @item system_reset
1412 Reset the system.
1414 @item boot_set @var{bootdevicelist}
1416 Define new values for the boot device list. Those values will override
1417 the values specified on the command line through the @code{-boot} option.
1419 The values that can be specified here depend on the machine type, but are
1420 the same that can be specified in the @code{-boot} command line option.
1422 @item usb_add @var{devname}
1424 Add the USB device @var{devname}.  For details of available devices see
1425 @ref{usb_devices}
1427 @item usb_del @var{devname}
1429 Remove the USB device @var{devname} from the QEMU virtual USB
1430 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1431 command @code{info usb} to see the devices you can remove.
1433 @end table
1435 @subsection Integer expressions
1437 The monitor understands integers expressions for every integer
1438 argument. You can use register names to get the value of specifics
1439 CPU registers by prefixing them with @emph{$}.
1441 @node disk_images
1442 @section Disk Images
1444 Since version 0.6.1, QEMU supports many disk image formats, including
1445 growable disk images (their size increase as non empty sectors are
1446 written), compressed and encrypted disk images. Version 0.8.3 added
1447 the new qcow2 disk image format which is essential to support VM
1448 snapshots.
1450 @menu
1451 * disk_images_quickstart::    Quick start for disk image creation
1452 * disk_images_snapshot_mode:: Snapshot mode
1453 * vm_snapshots::              VM snapshots
1454 * qemu_img_invocation::       qemu-img Invocation
1455 * qemu_nbd_invocation::       qemu-nbd Invocation
1456 * host_drives::               Using host drives
1457 * disk_images_fat_images::    Virtual FAT disk images
1458 * disk_images_nbd::           NBD access
1459 @end menu
1461 @node disk_images_quickstart
1462 @subsection Quick start for disk image creation
1464 You can create a disk image with the command:
1465 @example
1466 qemu-img create myimage.img mysize
1467 @end example
1468 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1469 size in kilobytes. You can add an @code{M} suffix to give the size in
1470 megabytes and a @code{G} suffix for gigabytes.
1472 See @ref{qemu_img_invocation} for more information.
1474 @node disk_images_snapshot_mode
1475 @subsection Snapshot mode
1477 If you use the option @option{-snapshot}, all disk images are
1478 considered as read only. When sectors in written, they are written in
1479 a temporary file created in @file{/tmp}. You can however force the
1480 write back to the raw disk images by using the @code{commit} monitor
1481 command (or @key{C-a s} in the serial console).
1483 @node vm_snapshots
1484 @subsection VM snapshots
1486 VM snapshots are snapshots of the complete virtual machine including
1487 CPU state, RAM, device state and the content of all the writable
1488 disks. In order to use VM snapshots, you must have at least one non
1489 removable and writable block device using the @code{qcow2} disk image
1490 format. Normally this device is the first virtual hard drive.
1492 Use the monitor command @code{savevm} to create a new VM snapshot or
1493 replace an existing one. A human readable name can be assigned to each
1494 snapshot in addition to its numerical ID.
1496 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1497 a VM snapshot. @code{info snapshots} lists the available snapshots
1498 with their associated information:
1500 @example
1501 (qemu) info snapshots
1502 Snapshot devices: hda
1503 Snapshot list (from hda):
1504 ID        TAG                 VM SIZE                DATE       VM CLOCK
1505 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1506 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1507 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1508 @end example
1510 A VM snapshot is made of a VM state info (its size is shown in
1511 @code{info snapshots}) and a snapshot of every writable disk image.
1512 The VM state info is stored in the first @code{qcow2} non removable
1513 and writable block device. The disk image snapshots are stored in
1514 every disk image. The size of a snapshot in a disk image is difficult
1515 to evaluate and is not shown by @code{info snapshots} because the
1516 associated disk sectors are shared among all the snapshots to save
1517 disk space (otherwise each snapshot would need a full copy of all the
1518 disk images).
1520 When using the (unrelated) @code{-snapshot} option
1521 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1522 but they are deleted as soon as you exit QEMU.
1524 VM snapshots currently have the following known limitations:
1525 @itemize
1526 @item
1527 They cannot cope with removable devices if they are removed or
1528 inserted after a snapshot is done.
1529 @item
1530 A few device drivers still have incomplete snapshot support so their
1531 state is not saved or restored properly (in particular USB).
1532 @end itemize
1534 @node qemu_img_invocation
1535 @subsection @code{qemu-img} Invocation
1537 @include qemu-img.texi
1539 @node qemu_nbd_invocation
1540 @subsection @code{qemu-nbd} Invocation
1542 @include qemu-nbd.texi
1544 @node host_drives
1545 @subsection Using host drives
1547 In addition to disk image files, QEMU can directly access host
1548 devices. We describe here the usage for QEMU version >= 0.8.3.
1550 @subsubsection Linux
1552 On Linux, you can directly use the host device filename instead of a
1553 disk image filename provided you have enough privileges to access
1554 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1555 @file{/dev/fd0} for the floppy.
1557 @table @code
1558 @item CD
1559 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1560 specific code to detect CDROM insertion or removal. CDROM ejection by
1561 the guest OS is supported. Currently only data CDs are supported.
1562 @item Floppy
1563 You can specify a floppy device even if no floppy is loaded. Floppy
1564 removal is currently not detected accurately (if you change floppy
1565 without doing floppy access while the floppy is not loaded, the guest
1566 OS will think that the same floppy is loaded).
1567 @item Hard disks
1568 Hard disks can be used. Normally you must specify the whole disk
1569 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1570 see it as a partitioned disk. WARNING: unless you know what you do, it
1571 is better to only make READ-ONLY accesses to the hard disk otherwise
1572 you may corrupt your host data (use the @option{-snapshot} command
1573 line option or modify the device permissions accordingly).
1574 @end table
1576 @subsubsection Windows
1578 @table @code
1579 @item CD
1580 The preferred syntax is the drive letter (e.g. @file{d:}). The
1581 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1582 supported as an alias to the first CDROM drive.
1584 Currently there is no specific code to handle removable media, so it
1585 is better to use the @code{change} or @code{eject} monitor commands to
1586 change or eject media.
1587 @item Hard disks
1588 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1589 where @var{N} is the drive number (0 is the first hard disk).
1591 WARNING: unless you know what you do, it is better to only make
1592 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1593 host data (use the @option{-snapshot} command line so that the
1594 modifications are written in a temporary file).
1595 @end table
1598 @subsubsection Mac OS X
1600 @file{/dev/cdrom} is an alias to the first CDROM.
1602 Currently there is no specific code to handle removable media, so it
1603 is better to use the @code{change} or @code{eject} monitor commands to
1604 change or eject media.
1606 @node disk_images_fat_images
1607 @subsection Virtual FAT disk images
1609 QEMU can automatically create a virtual FAT disk image from a
1610 directory tree. In order to use it, just type:
1612 @example
1613 qemu linux.img -hdb fat:/my_directory
1614 @end example
1616 Then you access access to all the files in the @file{/my_directory}
1617 directory without having to copy them in a disk image or to export
1618 them via SAMBA or NFS. The default access is @emph{read-only}.
1620 Floppies can be emulated with the @code{:floppy:} option:
1622 @example
1623 qemu linux.img -fda fat:floppy:/my_directory
1624 @end example
1626 A read/write support is available for testing (beta stage) with the
1627 @code{:rw:} option:
1629 @example
1630 qemu linux.img -fda fat:floppy:rw:/my_directory
1631 @end example
1633 What you should @emph{never} do:
1634 @itemize
1635 @item use non-ASCII filenames ;
1636 @item use "-snapshot" together with ":rw:" ;
1637 @item expect it to work when loadvm'ing ;
1638 @item write to the FAT directory on the host system while accessing it with the guest system.
1639 @end itemize
1641 @node disk_images_nbd
1642 @subsection NBD access
1644 QEMU can access directly to block device exported using the Network Block Device
1645 protocol.
1647 @example
1648 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1649 @end example
1651 If the NBD server is located on the same host, you can use an unix socket instead
1652 of an inet socket:
1654 @example
1655 qemu linux.img -hdb nbd:unix:/tmp/my_socket
1656 @end example
1658 In this case, the block device must be exported using qemu-nbd:
1660 @example
1661 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1662 @end example
1664 The use of qemu-nbd allows to share a disk between several guests:
1665 @example
1666 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1667 @end example
1669 and then you can use it with two guests:
1670 @example
1671 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1672 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1673 @end example
1675 @node pcsys_network
1676 @section Network emulation
1678 QEMU can simulate several network cards (PCI or ISA cards on the PC
1679 target) and can connect them to an arbitrary number of Virtual Local
1680 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1681 VLAN. VLAN can be connected between separate instances of QEMU to
1682 simulate large networks. For simpler usage, a non privileged user mode
1683 network stack can replace the TAP device to have a basic network
1684 connection.
1686 @subsection VLANs
1688 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1689 connection between several network devices. These devices can be for
1690 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1691 (TAP devices).
1693 @subsection Using TAP network interfaces
1695 This is the standard way to connect QEMU to a real network. QEMU adds
1696 a virtual network device on your host (called @code{tapN}), and you
1697 can then configure it as if it was a real ethernet card.
1699 @subsubsection Linux host
1701 As an example, you can download the @file{linux-test-xxx.tar.gz}
1702 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1703 configure properly @code{sudo} so that the command @code{ifconfig}
1704 contained in @file{qemu-ifup} can be executed as root. You must verify
1705 that your host kernel supports the TAP network interfaces: the
1706 device @file{/dev/net/tun} must be present.
1708 See @ref{sec_invocation} to have examples of command lines using the
1709 TAP network interfaces.
1711 @subsubsection Windows host
1713 There is a virtual ethernet driver for Windows 2000/XP systems, called
1714 TAP-Win32. But it is not included in standard QEMU for Windows,
1715 so you will need to get it separately. It is part of OpenVPN package,
1716 so download OpenVPN from : @url{http://openvpn.net/}.
1718 @subsection Using the user mode network stack
1720 By using the option @option{-net user} (default configuration if no
1721 @option{-net} option is specified), QEMU uses a completely user mode
1722 network stack (you don't need root privilege to use the virtual
1723 network). The virtual network configuration is the following:
1725 @example
1727          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1728                            |          (10.0.2.2)
1729                            |
1730                            ---->  DNS server (10.0.2.3)
1731                            |
1732                            ---->  SMB server (10.0.2.4)
1733 @end example
1735 The QEMU VM behaves as if it was behind a firewall which blocks all
1736 incoming connections. You can use a DHCP client to automatically
1737 configure the network in the QEMU VM. The DHCP server assign addresses
1738 to the hosts starting from 10.0.2.15.
1740 In order to check that the user mode network is working, you can ping
1741 the address 10.0.2.2 and verify that you got an address in the range
1742 10.0.2.x from the QEMU virtual DHCP server.
1744 Note that @code{ping} is not supported reliably to the internet as it
1745 would require root privileges. It means you can only ping the local
1746 router (10.0.2.2).
1748 When using the built-in TFTP server, the router is also the TFTP
1749 server.
1751 When using the @option{-redir} option, TCP or UDP connections can be
1752 redirected from the host to the guest. It allows for example to
1753 redirect X11, telnet or SSH connections.
1755 @subsection Connecting VLANs between QEMU instances
1757 Using the @option{-net socket} option, it is possible to make VLANs
1758 that span several QEMU instances. See @ref{sec_invocation} to have a
1759 basic example.
1761 @node direct_linux_boot
1762 @section Direct Linux Boot
1764 This section explains how to launch a Linux kernel inside QEMU without
1765 having to make a full bootable image. It is very useful for fast Linux
1766 kernel testing.
1768 The syntax is:
1769 @example
1770 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1771 @end example
1773 Use @option{-kernel} to provide the Linux kernel image and
1774 @option{-append} to give the kernel command line arguments. The
1775 @option{-initrd} option can be used to provide an INITRD image.
1777 When using the direct Linux boot, a disk image for the first hard disk
1778 @file{hda} is required because its boot sector is used to launch the
1779 Linux kernel.
1781 If you do not need graphical output, you can disable it and redirect
1782 the virtual serial port and the QEMU monitor to the console with the
1783 @option{-nographic} option. The typical command line is:
1784 @example
1785 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1786      -append "root=/dev/hda console=ttyS0" -nographic
1787 @end example
1789 Use @key{Ctrl-a c} to switch between the serial console and the
1790 monitor (@pxref{pcsys_keys}).
1792 @node pcsys_usb
1793 @section USB emulation
1795 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1796 virtual USB devices or real host USB devices (experimental, works only
1797 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1798 as necessary to connect multiple USB devices.
1800 @menu
1801 * usb_devices::
1802 * host_usb_devices::
1803 @end menu
1804 @node usb_devices
1805 @subsection Connecting USB devices
1807 USB devices can be connected with the @option{-usbdevice} commandline option
1808 or the @code{usb_add} monitor command.  Available devices are:
1810 @table @code
1811 @item mouse
1812 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1813 @item tablet
1814 Pointer device that uses absolute coordinates (like a touchscreen).
1815 This means qemu is able to report the mouse position without having
1816 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1817 @item disk:@var{file}
1818 Mass storage device based on @var{file} (@pxref{disk_images})
1819 @item host:@var{bus.addr}
1820 Pass through the host device identified by @var{bus.addr}
1821 (Linux only)
1822 @item host:@var{vendor_id:product_id}
1823 Pass through the host device identified by @var{vendor_id:product_id}
1824 (Linux only)
1825 @item wacom-tablet
1826 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1827 above but it can be used with the tslib library because in addition to touch
1828 coordinates it reports touch pressure.
1829 @item keyboard
1830 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1831 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1832 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1833 device @var{dev}. The available character devices are the same as for the
1834 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1835 used to override the default 0403:6001. For instance, 
1836 @example
1837 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1838 @end example
1839 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1840 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1841 @item braille
1842 Braille device.  This will use BrlAPI to display the braille output on a real
1843 or fake device.
1844 @item net:@var{options}
1845 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1846 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1847 For instance, user-mode networking can be used with
1848 @example
1849 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1850 @end example
1851 Currently this cannot be used in machines that support PCI NICs.
1852 @item bt[:@var{hci-type}]
1853 Bluetooth dongle whose type is specified in the same format as with
1854 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1855 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1856 This USB device implements the USB Transport Layer of HCI.  Example
1857 usage:
1858 @example
1859 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1860 @end example
1861 @end table
1863 @node host_usb_devices
1864 @subsection Using host USB devices on a Linux host
1866 WARNING: this is an experimental feature. QEMU will slow down when
1867 using it. USB devices requiring real time streaming (i.e. USB Video
1868 Cameras) are not supported yet.
1870 @enumerate
1871 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1872 is actually using the USB device. A simple way to do that is simply to
1873 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1874 to @file{mydriver.o.disabled}.
1876 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1877 @example
1878 ls /proc/bus/usb
1879 001  devices  drivers
1880 @end example
1882 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1883 @example
1884 chown -R myuid /proc/bus/usb
1885 @end example
1887 @item Launch QEMU and do in the monitor:
1888 @example
1889 info usbhost
1890   Device 1.2, speed 480 Mb/s
1891     Class 00: USB device 1234:5678, USB DISK
1892 @end example
1893 You should see the list of the devices you can use (Never try to use
1894 hubs, it won't work).
1896 @item Add the device in QEMU by using:
1897 @example
1898 usb_add host:1234:5678
1899 @end example
1901 Normally the guest OS should report that a new USB device is
1902 plugged. You can use the option @option{-usbdevice} to do the same.
1904 @item Now you can try to use the host USB device in QEMU.
1906 @end enumerate
1908 When relaunching QEMU, you may have to unplug and plug again the USB
1909 device to make it work again (this is a bug).
1911 @node vnc_security
1912 @section VNC security
1914 The VNC server capability provides access to the graphical console
1915 of the guest VM across the network. This has a number of security
1916 considerations depending on the deployment scenarios.
1918 @menu
1919 * vnc_sec_none::
1920 * vnc_sec_password::
1921 * vnc_sec_certificate::
1922 * vnc_sec_certificate_verify::
1923 * vnc_sec_certificate_pw::
1924 * vnc_generate_cert::
1925 @end menu
1926 @node vnc_sec_none
1927 @subsection Without passwords
1929 The simplest VNC server setup does not include any form of authentication.
1930 For this setup it is recommended to restrict it to listen on a UNIX domain
1931 socket only. For example
1933 @example
1934 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1935 @end example
1937 This ensures that only users on local box with read/write access to that
1938 path can access the VNC server. To securely access the VNC server from a
1939 remote machine, a combination of netcat+ssh can be used to provide a secure
1940 tunnel.
1942 @node vnc_sec_password
1943 @subsection With passwords
1945 The VNC protocol has limited support for password based authentication. Since
1946 the protocol limits passwords to 8 characters it should not be considered
1947 to provide high security. The password can be fairly easily brute-forced by
1948 a client making repeat connections. For this reason, a VNC server using password
1949 authentication should be restricted to only listen on the loopback interface
1950 or UNIX domain sockets. Password authentication is requested with the @code{password}
1951 option, and then once QEMU is running the password is set with the monitor. Until
1952 the monitor is used to set the password all clients will be rejected.
1954 @example
1955 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1956 (qemu) change vnc password
1957 Password: ********
1958 (qemu)
1959 @end example
1961 @node vnc_sec_certificate
1962 @subsection With x509 certificates
1964 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1965 TLS for encryption of the session, and x509 certificates for authentication.
1966 The use of x509 certificates is strongly recommended, because TLS on its
1967 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1968 support provides a secure session, but no authentication. This allows any
1969 client to connect, and provides an encrypted session.
1971 @example
1972 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1973 @end example
1975 In the above example @code{/etc/pki/qemu} should contain at least three files,
1976 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1977 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1978 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1979 only be readable by the user owning it.
1981 @node vnc_sec_certificate_verify
1982 @subsection With x509 certificates and client verification
1984 Certificates can also provide a means to authenticate the client connecting.
1985 The server will request that the client provide a certificate, which it will
1986 then validate against the CA certificate. This is a good choice if deploying
1987 in an environment with a private internal certificate authority.
1989 @example
1990 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1991 @end example
1994 @node vnc_sec_certificate_pw
1995 @subsection With x509 certificates, client verification and passwords
1997 Finally, the previous method can be combined with VNC password authentication
1998 to provide two layers of authentication for clients.
2000 @example
2001 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2002 (qemu) change vnc password
2003 Password: ********
2004 (qemu)
2005 @end example
2007 @node vnc_generate_cert
2008 @subsection Generating certificates for VNC
2010 The GNU TLS packages provides a command called @code{certtool} which can
2011 be used to generate certificates and keys in PEM format. At a minimum it
2012 is neccessary to setup a certificate authority, and issue certificates to
2013 each server. If using certificates for authentication, then each client
2014 will also need to be issued a certificate. The recommendation is for the
2015 server to keep its certificates in either @code{/etc/pki/qemu} or for
2016 unprivileged users in @code{$HOME/.pki/qemu}.
2018 @menu
2019 * vnc_generate_ca::
2020 * vnc_generate_server::
2021 * vnc_generate_client::
2022 @end menu
2023 @node vnc_generate_ca
2024 @subsubsection Setup the Certificate Authority
2026 This step only needs to be performed once per organization / organizational
2027 unit. First the CA needs a private key. This key must be kept VERY secret
2028 and secure. If this key is compromised the entire trust chain of the certificates
2029 issued with it is lost.
2031 @example
2032 # certtool --generate-privkey > ca-key.pem
2033 @end example
2035 A CA needs to have a public certificate. For simplicity it can be a self-signed
2036 certificate, or one issue by a commercial certificate issuing authority. To
2037 generate a self-signed certificate requires one core piece of information, the
2038 name of the organization.
2040 @example
2041 # cat > ca.info <<EOF
2042 cn = Name of your organization
2044 cert_signing_key
2046 # certtool --generate-self-signed \
2047            --load-privkey ca-key.pem
2048            --template ca.info \
2049            --outfile ca-cert.pem
2050 @end example
2052 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2053 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2055 @node vnc_generate_server
2056 @subsubsection Issuing server certificates
2058 Each server (or host) needs to be issued with a key and certificate. When connecting
2059 the certificate is sent to the client which validates it against the CA certificate.
2060 The core piece of information for a server certificate is the hostname. This should
2061 be the fully qualified hostname that the client will connect with, since the client
2062 will typically also verify the hostname in the certificate. On the host holding the
2063 secure CA private key:
2065 @example
2066 # cat > server.info <<EOF
2067 organization = Name  of your organization
2068 cn = server.foo.example.com
2069 tls_www_server
2070 encryption_key
2071 signing_key
2073 # certtool --generate-privkey > server-key.pem
2074 # certtool --generate-certificate \
2075            --load-ca-certificate ca-cert.pem \
2076            --load-ca-privkey ca-key.pem \
2077            --load-privkey server server-key.pem \
2078            --template server.info \
2079            --outfile server-cert.pem
2080 @end example
2082 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2083 to the server for which they were generated. The @code{server-key.pem} is security
2084 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2086 @node vnc_generate_client
2087 @subsubsection Issuing client certificates
2089 If the QEMU VNC server is to use the @code{x509verify} option to validate client
2090 certificates as its authentication mechanism, each client also needs to be issued
2091 a certificate. The client certificate contains enough metadata to uniquely identify
2092 the client, typically organization, state, city, building, etc. On the host holding
2093 the secure CA private key:
2095 @example
2096 # cat > client.info <<EOF
2097 country = GB
2098 state = London
2099 locality = London
2100 organiazation = Name of your organization
2101 cn = client.foo.example.com
2102 tls_www_client
2103 encryption_key
2104 signing_key
2106 # certtool --generate-privkey > client-key.pem
2107 # certtool --generate-certificate \
2108            --load-ca-certificate ca-cert.pem \
2109            --load-ca-privkey ca-key.pem \
2110            --load-privkey client-key.pem \
2111            --template client.info \
2112            --outfile client-cert.pem
2113 @end example
2115 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2116 copied to the client for which they were generated.
2118 @node gdb_usage
2119 @section GDB usage
2121 QEMU has a primitive support to work with gdb, so that you can do
2122 'Ctrl-C' while the virtual machine is running and inspect its state.
2124 In order to use gdb, launch qemu with the '-s' option. It will wait for a
2125 gdb connection:
2126 @example
2127 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2128        -append "root=/dev/hda"
2129 Connected to host network interface: tun0
2130 Waiting gdb connection on port 1234
2131 @end example
2133 Then launch gdb on the 'vmlinux' executable:
2134 @example
2135 > gdb vmlinux
2136 @end example
2138 In gdb, connect to QEMU:
2139 @example
2140 (gdb) target remote localhost:1234
2141 @end example
2143 Then you can use gdb normally. For example, type 'c' to launch the kernel:
2144 @example
2145 (gdb) c
2146 @end example
2148 Here are some useful tips in order to use gdb on system code:
2150 @enumerate
2151 @item
2152 Use @code{info reg} to display all the CPU registers.
2153 @item
2154 Use @code{x/10i $eip} to display the code at the PC position.
2155 @item
2156 Use @code{set architecture i8086} to dump 16 bit code. Then use
2157 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
2158 @end enumerate
2160 Advanced debugging options:
2162 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2163 @table @code
2164 @item maintenance packet qqemu.sstepbits
2166 This will display the MASK bits used to control the single stepping IE:
2167 @example
2168 (gdb) maintenance packet qqemu.sstepbits
2169 sending: "qqemu.sstepbits"
2170 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2171 @end example
2172 @item maintenance packet qqemu.sstep
2174 This will display the current value of the mask used when single stepping IE:
2175 @example
2176 (gdb) maintenance packet qqemu.sstep
2177 sending: "qqemu.sstep"
2178 received: "0x7"
2179 @end example
2180 @item maintenance packet Qqemu.sstep=HEX_VALUE
2182 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2183 @example
2184 (gdb) maintenance packet Qqemu.sstep=0x5
2185 sending: "qemu.sstep=0x5"
2186 received: "OK"
2187 @end example
2188 @end table
2190 @node pcsys_os_specific
2191 @section Target OS specific information
2193 @subsection Linux
2195 To have access to SVGA graphic modes under X11, use the @code{vesa} or
2196 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2197 color depth in the guest and the host OS.
2199 When using a 2.6 guest Linux kernel, you should add the option
2200 @code{clock=pit} on the kernel command line because the 2.6 Linux
2201 kernels make very strict real time clock checks by default that QEMU
2202 cannot simulate exactly.
2204 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2205 not activated because QEMU is slower with this patch. The QEMU
2206 Accelerator Module is also much slower in this case. Earlier Fedora
2207 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2208 patch by default. Newer kernels don't have it.
2210 @subsection Windows
2212 If you have a slow host, using Windows 95 is better as it gives the
2213 best speed. Windows 2000 is also a good choice.
2215 @subsubsection SVGA graphic modes support
2217 QEMU emulates a Cirrus Logic GD5446 Video
2218 card. All Windows versions starting from Windows 95 should recognize
2219 and use this graphic card. For optimal performances, use 16 bit color
2220 depth in the guest and the host OS.
2222 If you are using Windows XP as guest OS and if you want to use high
2223 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2224 1280x1024x16), then you should use the VESA VBE virtual graphic card
2225 (option @option{-std-vga}).
2227 @subsubsection CPU usage reduction
2229 Windows 9x does not correctly use the CPU HLT
2230 instruction. The result is that it takes host CPU cycles even when
2231 idle. You can install the utility from
2232 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2233 problem. Note that no such tool is needed for NT, 2000 or XP.
2235 @subsubsection Windows 2000 disk full problem
2237 Windows 2000 has a bug which gives a disk full problem during its
2238 installation. When installing it, use the @option{-win2k-hack} QEMU
2239 option to enable a specific workaround. After Windows 2000 is
2240 installed, you no longer need this option (this option slows down the
2241 IDE transfers).
2243 @subsubsection Windows 2000 shutdown
2245 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2246 can. It comes from the fact that Windows 2000 does not automatically
2247 use the APM driver provided by the BIOS.
2249 In order to correct that, do the following (thanks to Struan
2250 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2251 Add/Troubleshoot a device => Add a new device & Next => No, select the
2252 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2253 (again) a few times. Now the driver is installed and Windows 2000 now
2254 correctly instructs QEMU to shutdown at the appropriate moment.
2256 @subsubsection Share a directory between Unix and Windows
2258 See @ref{sec_invocation} about the help of the option @option{-smb}.
2260 @subsubsection Windows XP security problem
2262 Some releases of Windows XP install correctly but give a security
2263 error when booting:
2264 @example
2265 A problem is preventing Windows from accurately checking the
2266 license for this computer. Error code: 0x800703e6.
2267 @end example
2269 The workaround is to install a service pack for XP after a boot in safe
2270 mode. Then reboot, and the problem should go away. Since there is no
2271 network while in safe mode, its recommended to download the full
2272 installation of SP1 or SP2 and transfer that via an ISO or using the
2273 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2275 @subsection MS-DOS and FreeDOS
2277 @subsubsection CPU usage reduction
2279 DOS does not correctly use the CPU HLT instruction. The result is that
2280 it takes host CPU cycles even when idle. You can install the utility
2281 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2282 problem.
2284 @node QEMU System emulator for non PC targets
2285 @chapter QEMU System emulator for non PC targets
2287 QEMU is a generic emulator and it emulates many non PC
2288 machines. Most of the options are similar to the PC emulator. The
2289 differences are mentioned in the following sections.
2291 @menu
2292 * QEMU PowerPC System emulator::
2293 * Sparc32 System emulator::
2294 * Sparc64 System emulator::
2295 * MIPS System emulator::
2296 * ARM System emulator::
2297 * ColdFire System emulator::
2298 @end menu
2300 @node QEMU PowerPC System emulator
2301 @section QEMU PowerPC System emulator
2303 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2304 or PowerMac PowerPC system.
2306 QEMU emulates the following PowerMac peripherals:
2308 @itemize @minus
2309 @item
2310 UniNorth PCI Bridge
2311 @item
2312 PCI VGA compatible card with VESA Bochs Extensions
2313 @item
2314 2 PMAC IDE interfaces with hard disk and CD-ROM support
2315 @item
2316 NE2000 PCI adapters
2317 @item
2318 Non Volatile RAM
2319 @item
2320 VIA-CUDA with ADB keyboard and mouse.
2321 @end itemize
2323 QEMU emulates the following PREP peripherals:
2325 @itemize @minus
2326 @item
2327 PCI Bridge
2328 @item
2329 PCI VGA compatible card with VESA Bochs Extensions
2330 @item
2331 2 IDE interfaces with hard disk and CD-ROM support
2332 @item
2333 Floppy disk
2334 @item
2335 NE2000 network adapters
2336 @item
2337 Serial port
2338 @item
2339 PREP Non Volatile RAM
2340 @item
2341 PC compatible keyboard and mouse.
2342 @end itemize
2344 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2345 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2347 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2348 for the g3beige PowerMac machine. OpenBIOS is a free (GPL v2) portable
2349 firmware implementation. The goal is to implement a 100% IEEE
2350 1275-1994 (referred to as Open Firmware) compliant firmware.
2352 @c man begin OPTIONS
2354 The following options are specific to the PowerPC emulation:
2356 @table @option
2358 @item -g WxH[xDEPTH]
2360 Set the initial VGA graphic mode. The default is 800x600x15.
2362 @item -prom-env string
2364 Set OpenBIOS variables in NVRAM, for example:
2366 @example
2367 qemu-system-ppc -prom-env 'auto-boot?=false' \
2368  -prom-env 'boot-device=hd:2,\yaboot' \
2369  -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2370 @end example
2372 These variables are not used by Open Hack'Ware.
2374 @end table
2376 @c man end
2379 More information is available at
2380 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2382 @node Sparc32 System emulator
2383 @section Sparc32 System emulator
2385 Use the executable @file{qemu-system-sparc} to simulate the following
2386 Sun4m architecture machines:
2387 @itemize @minus
2388 @item
2389 SPARCstation 4
2390 @item
2391 SPARCstation 5
2392 @item
2393 SPARCstation 10
2394 @item
2395 SPARCstation 20
2396 @item
2397 SPARCserver 600MP
2398 @item
2399 SPARCstation LX
2400 @item
2401 SPARCstation Voyager
2402 @item
2403 SPARCclassic
2404 @item
2405 SPARCbook
2406 @end itemize
2408 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2409 but Linux limits the number of usable CPUs to 4.
2411 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2412 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2413 emulators are not usable yet.
2415 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2417 @itemize @minus
2418 @item
2419 IOMMU or IO-UNITs
2420 @item
2421 TCX Frame buffer
2422 @item
2423 Lance (Am7990) Ethernet
2424 @item
2425 Non Volatile RAM M48T02/M48T08
2426 @item
2427 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2428 and power/reset logic
2429 @item
2430 ESP SCSI controller with hard disk and CD-ROM support
2431 @item
2432 Floppy drive (not on SS-600MP)
2433 @item
2434 CS4231 sound device (only on SS-5, not working yet)
2435 @end itemize
2437 The number of peripherals is fixed in the architecture.  Maximum
2438 memory size depends on the machine type, for SS-5 it is 256MB and for
2439 others 2047MB.
2441 Since version 0.8.2, QEMU uses OpenBIOS
2442 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2443 firmware implementation. The goal is to implement a 100% IEEE
2444 1275-1994 (referred to as Open Firmware) compliant firmware.
2446 A sample Linux 2.6 series kernel and ram disk image are available on
2447 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2448 some kernel versions work. Please note that currently Solaris kernels
2449 don't work probably due to interface issues between OpenBIOS and
2450 Solaris.
2452 @c man begin OPTIONS
2454 The following options are specific to the Sparc32 emulation:
2456 @table @option
2458 @item -g WxHx[xDEPTH]
2460 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2461 the only other possible mode is 1024x768x24.
2463 @item -prom-env string
2465 Set OpenBIOS variables in NVRAM, for example:
2467 @example
2468 qemu-system-sparc -prom-env 'auto-boot?=false' \
2469  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2470 @end example
2472 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2474 Set the emulated machine type. Default is SS-5.
2476 @end table
2478 @c man end
2480 @node Sparc64 System emulator
2481 @section Sparc64 System emulator
2483 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2484 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2485 Niagara (T1) machine. The emulator is not usable for anything yet, but
2486 it can launch some kernels.
2488 QEMU emulates the following peripherals:
2490 @itemize @minus
2491 @item
2492 UltraSparc IIi APB PCI Bridge
2493 @item
2494 PCI VGA compatible card with VESA Bochs Extensions
2495 @item
2496 PS/2 mouse and keyboard
2497 @item
2498 Non Volatile RAM M48T59
2499 @item
2500 PC-compatible serial ports
2501 @item
2502 2 PCI IDE interfaces with hard disk and CD-ROM support
2503 @item
2504 Floppy disk
2505 @end itemize
2507 @c man begin OPTIONS
2509 The following options are specific to the Sparc64 emulation:
2511 @table @option
2513 @item -prom-env string
2515 Set OpenBIOS variables in NVRAM, for example:
2517 @example
2518 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2519 @end example
2521 @item -M [sun4u|sun4v|Niagara]
2523 Set the emulated machine type. The default is sun4u.
2525 @end table
2527 @c man end
2529 @node MIPS System emulator
2530 @section MIPS System emulator
2532 Four executables cover simulation of 32 and 64-bit MIPS systems in
2533 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2534 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2535 Five different machine types are emulated:
2537 @itemize @minus
2538 @item
2539 A generic ISA PC-like machine "mips"
2540 @item
2541 The MIPS Malta prototype board "malta"
2542 @item
2543 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2544 @item
2545 MIPS emulator pseudo board "mipssim"
2546 @item
2547 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2548 @end itemize
2550 The generic emulation is supported by Debian 'Etch' and is able to
2551 install Debian into a virtual disk image. The following devices are
2552 emulated:
2554 @itemize @minus
2555 @item
2556 A range of MIPS CPUs, default is the 24Kf
2557 @item
2558 PC style serial port
2559 @item
2560 PC style IDE disk
2561 @item
2562 NE2000 network card
2563 @end itemize
2565 The Malta emulation supports the following devices:
2567 @itemize @minus
2568 @item
2569 Core board with MIPS 24Kf CPU and Galileo system controller
2570 @item
2571 PIIX4 PCI/USB/SMbus controller
2572 @item
2573 The Multi-I/O chip's serial device
2574 @item
2575 PCnet32 PCI network card
2576 @item
2577 Malta FPGA serial device
2578 @item
2579 Cirrus VGA graphics card
2580 @end itemize
2582 The ACER Pica emulation supports:
2584 @itemize @minus
2585 @item
2586 MIPS R4000 CPU
2587 @item
2588 PC-style IRQ and DMA controllers
2589 @item
2590 PC Keyboard
2591 @item
2592 IDE controller
2593 @end itemize
2595 The mipssim pseudo board emulation provides an environment similiar
2596 to what the proprietary MIPS emulator uses for running Linux.
2597 It supports:
2599 @itemize @minus
2600 @item
2601 A range of MIPS CPUs, default is the 24Kf
2602 @item
2603 PC style serial port
2604 @item
2605 MIPSnet network emulation
2606 @end itemize
2608 The MIPS Magnum R4000 emulation supports:
2610 @itemize @minus
2611 @item
2612 MIPS R4000 CPU
2613 @item
2614 PC-style IRQ controller
2615 @item
2616 PC Keyboard
2617 @item
2618 SCSI controller
2619 @item
2620 G364 framebuffer
2621 @end itemize
2624 @node ARM System emulator
2625 @section ARM System emulator
2627 Use the executable @file{qemu-system-arm} to simulate a ARM
2628 machine. The ARM Integrator/CP board is emulated with the following
2629 devices:
2631 @itemize @minus
2632 @item
2633 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2634 @item
2635 Two PL011 UARTs
2636 @item
2637 SMC 91c111 Ethernet adapter
2638 @item
2639 PL110 LCD controller
2640 @item
2641 PL050 KMI with PS/2 keyboard and mouse.
2642 @item
2643 PL181 MultiMedia Card Interface with SD card.
2644 @end itemize
2646 The ARM Versatile baseboard is emulated with the following devices:
2648 @itemize @minus
2649 @item
2650 ARM926E, ARM1136 or Cortex-A8 CPU
2651 @item
2652 PL190 Vectored Interrupt Controller
2653 @item
2654 Four PL011 UARTs
2655 @item
2656 SMC 91c111 Ethernet adapter
2657 @item
2658 PL110 LCD controller
2659 @item
2660 PL050 KMI with PS/2 keyboard and mouse.
2661 @item
2662 PCI host bridge.  Note the emulated PCI bridge only provides access to
2663 PCI memory space.  It does not provide access to PCI IO space.
2664 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2665 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2666 mapped control registers.
2667 @item
2668 PCI OHCI USB controller.
2669 @item
2670 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2671 @item
2672 PL181 MultiMedia Card Interface with SD card.
2673 @end itemize
2675 The ARM RealView Emulation baseboard is emulated with the following devices:
2677 @itemize @minus
2678 @item
2679 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2680 @item
2681 ARM AMBA Generic/Distributed Interrupt Controller
2682 @item
2683 Four PL011 UARTs
2684 @item
2685 SMC 91c111 Ethernet adapter
2686 @item
2687 PL110 LCD controller
2688 @item
2689 PL050 KMI with PS/2 keyboard and mouse
2690 @item
2691 PCI host bridge
2692 @item
2693 PCI OHCI USB controller
2694 @item
2695 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2696 @item
2697 PL181 MultiMedia Card Interface with SD card.
2698 @end itemize
2700 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2701 and "Terrier") emulation includes the following peripherals:
2703 @itemize @minus
2704 @item
2705 Intel PXA270 System-on-chip (ARM V5TE core)
2706 @item
2707 NAND Flash memory
2708 @item
2709 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2710 @item
2711 On-chip OHCI USB controller
2712 @item
2713 On-chip LCD controller
2714 @item
2715 On-chip Real Time Clock
2716 @item
2717 TI ADS7846 touchscreen controller on SSP bus
2718 @item
2719 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2720 @item
2721 GPIO-connected keyboard controller and LEDs
2722 @item
2723 Secure Digital card connected to PXA MMC/SD host
2724 @item
2725 Three on-chip UARTs
2726 @item
2727 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2728 @end itemize
2730 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2731 following elements:
2733 @itemize @minus
2734 @item
2735 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2736 @item
2737 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2738 @item
2739 On-chip LCD controller
2740 @item
2741 On-chip Real Time Clock
2742 @item
2743 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2744 CODEC, connected through MicroWire and I@math{^2}S busses
2745 @item
2746 GPIO-connected matrix keypad
2747 @item
2748 Secure Digital card connected to OMAP MMC/SD host
2749 @item
2750 Three on-chip UARTs
2751 @end itemize
2753 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2754 emulation supports the following elements:
2756 @itemize @minus
2757 @item
2758 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2759 @item
2760 RAM and non-volatile OneNAND Flash memories
2761 @item
2762 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2763 display controller and a LS041y3 MIPI DBI-C controller
2764 @item
2765 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2766 driven through SPI bus
2767 @item
2768 National Semiconductor LM8323-controlled qwerty keyboard driven
2769 through I@math{^2}C bus
2770 @item
2771 Secure Digital card connected to OMAP MMC/SD host
2772 @item
2773 Three OMAP on-chip UARTs and on-chip STI debugging console
2774 @item
2775 A Bluetooth(R) transciever and HCI connected to an UART
2776 @item
2777 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2778 TUSB6010 chip - only USB host mode is supported
2779 @item
2780 TI TMP105 temperature sensor driven through I@math{^2}C bus
2781 @item
2782 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2783 @item
2784 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2785 through CBUS
2786 @end itemize
2788 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2789 devices:
2791 @itemize @minus
2792 @item
2793 Cortex-M3 CPU core.
2794 @item
2795 64k Flash and 8k SRAM.
2796 @item
2797 Timers, UARTs, ADC and I@math{^2}C interface.
2798 @item
2799 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2800 @end itemize
2802 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2803 devices:
2805 @itemize @minus
2806 @item
2807 Cortex-M3 CPU core.
2808 @item
2809 256k Flash and 64k SRAM.
2810 @item
2811 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2812 @item
2813 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2814 @end itemize
2816 The Freecom MusicPal internet radio emulation includes the following
2817 elements:
2819 @itemize @minus
2820 @item
2821 Marvell MV88W8618 ARM core.
2822 @item
2823 32 MB RAM, 256 KB SRAM, 8 MB flash.
2824 @item
2825 Up to 2 16550 UARTs
2826 @item
2827 MV88W8xx8 Ethernet controller
2828 @item
2829 MV88W8618 audio controller, WM8750 CODEC and mixer
2830 @item
2831 128×64 display with brightness control
2832 @item
2833 2 buttons, 2 navigation wheels with button function
2834 @end itemize
2836 The Siemens SX1 models v1 and v2 (default) basic emulation.
2837 The emulaton includes the following elements:
2839 @itemize @minus
2840 @item
2841 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2842 @item
2843 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2845 1 Flash of 16MB and 1 Flash of 8MB
2847 1 Flash of 32MB
2848 @item
2849 On-chip LCD controller
2850 @item
2851 On-chip Real Time Clock
2852 @item
2853 Secure Digital card connected to OMAP MMC/SD host
2854 @item
2855 Three on-chip UARTs
2856 @end itemize
2858 A Linux 2.6 test image is available on the QEMU web site. More
2859 information is available in the QEMU mailing-list archive.
2861 @node ColdFire System emulator
2862 @section ColdFire System emulator
2864 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2865 The emulator is able to boot a uClinux kernel.
2867 The M5208EVB emulation includes the following devices:
2869 @itemize @minus
2870 @item
2871 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2872 @item
2873 Three Two on-chip UARTs.
2874 @item
2875 Fast Ethernet Controller (FEC)
2876 @end itemize
2878 The AN5206 emulation includes the following devices:
2880 @itemize @minus
2881 @item
2882 MCF5206 ColdFire V2 Microprocessor.
2883 @item
2884 Two on-chip UARTs.
2885 @end itemize
2887 @node QEMU User space emulator
2888 @chapter QEMU User space emulator
2890 @menu
2891 * Supported Operating Systems ::
2892 * Linux User space emulator::
2893 * Mac OS X/Darwin User space emulator ::
2894 * BSD User space emulator ::
2895 @end menu
2897 @node Supported Operating Systems
2898 @section Supported Operating Systems
2900 The following OS are supported in user space emulation:
2902 @itemize @minus
2903 @item
2904 Linux (referred as qemu-linux-user)
2905 @item
2906 Mac OS X/Darwin (referred as qemu-darwin-user)
2907 @item
2908 BSD (referred as qemu-bsd-user)
2909 @end itemize
2911 @node Linux User space emulator
2912 @section Linux User space emulator
2914 @menu
2915 * Quick Start::
2916 * Wine launch::
2917 * Command line options::
2918 * Other binaries::
2919 @end menu
2921 @node Quick Start
2922 @subsection Quick Start
2924 In order to launch a Linux process, QEMU needs the process executable
2925 itself and all the target (x86) dynamic libraries used by it.
2927 @itemize
2929 @item On x86, you can just try to launch any process by using the native
2930 libraries:
2932 @example
2933 qemu-i386 -L / /bin/ls
2934 @end example
2936 @code{-L /} tells that the x86 dynamic linker must be searched with a
2937 @file{/} prefix.
2939 @item Since QEMU is also a linux process, you can launch qemu with
2940 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2942 @example
2943 qemu-i386 -L / qemu-i386 -L / /bin/ls
2944 @end example
2946 @item On non x86 CPUs, you need first to download at least an x86 glibc
2947 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2948 @code{LD_LIBRARY_PATH} is not set:
2950 @example
2951 unset LD_LIBRARY_PATH
2952 @end example
2954 Then you can launch the precompiled @file{ls} x86 executable:
2956 @example
2957 qemu-i386 tests/i386/ls
2958 @end example
2959 You can look at @file{qemu-binfmt-conf.sh} so that
2960 QEMU is automatically launched by the Linux kernel when you try to
2961 launch x86 executables. It requires the @code{binfmt_misc} module in the
2962 Linux kernel.
2964 @item The x86 version of QEMU is also included. You can try weird things such as:
2965 @example
2966 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2967           /usr/local/qemu-i386/bin/ls-i386
2968 @end example
2970 @end itemize
2972 @node Wine launch
2973 @subsection Wine launch
2975 @itemize
2977 @item Ensure that you have a working QEMU with the x86 glibc
2978 distribution (see previous section). In order to verify it, you must be
2979 able to do:
2981 @example
2982 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2983 @end example
2985 @item Download the binary x86 Wine install
2986 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2988 @item Configure Wine on your account. Look at the provided script
2989 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2990 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2992 @item Then you can try the example @file{putty.exe}:
2994 @example
2995 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2996           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2997 @end example
2999 @end itemize
3001 @node Command line options
3002 @subsection Command line options
3004 @example
3005 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3006 @end example
3008 @table @option
3009 @item -h
3010 Print the help
3011 @item -L path
3012 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3013 @item -s size
3014 Set the x86 stack size in bytes (default=524288)
3015 @item -cpu model
3016 Select CPU model (-cpu ? for list and additional feature selection)
3017 @end table
3019 Debug options:
3021 @table @option
3022 @item -d
3023 Activate log (logfile=/tmp/qemu.log)
3024 @item -p pagesize
3025 Act as if the host page size was 'pagesize' bytes
3026 @item -g port
3027 Wait gdb connection to port
3028 @end table
3030 Environment variables:
3032 @table @env
3033 @item QEMU_STRACE
3034 Print system calls and arguments similar to the 'strace' program
3035 (NOTE: the actual 'strace' program will not work because the user
3036 space emulator hasn't implemented ptrace).  At the moment this is
3037 incomplete.  All system calls that don't have a specific argument
3038 format are printed with information for six arguments.  Many
3039 flag-style arguments don't have decoders and will show up as numbers.
3040 @end table
3042 @node Other binaries
3043 @subsection Other binaries
3045 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3046 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3047 configurations), and arm-uclinux bFLT format binaries.
3049 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
3050 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3051 coldfire uClinux bFLT format binaries.
3053 The binary format is detected automatically.
3055 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3057 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3058 (Sparc64 CPU, 32 bit ABI).
3060 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3061 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3063 @node Mac OS X/Darwin User space emulator
3064 @section Mac OS X/Darwin User space emulator
3066 @menu
3067 * Mac OS X/Darwin Status::
3068 * Mac OS X/Darwin Quick Start::
3069 * Mac OS X/Darwin Command line options::
3070 @end menu
3072 @node Mac OS X/Darwin Status
3073 @subsection Mac OS X/Darwin Status
3075 @itemize @minus
3076 @item
3077 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3078 @item
3079 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3080 @item
3081 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3082 @item
3083 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3084 @end itemize
3086 [1] If you're host commpage can be executed by qemu.
3088 @node Mac OS X/Darwin Quick Start
3089 @subsection Quick Start
3091 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3092 itself and all the target dynamic libraries used by it. If you don't have the FAT
3093 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3094 CD or compile them by hand.
3096 @itemize
3098 @item On x86, you can just try to launch any process by using the native
3099 libraries:
3101 @example
3102 qemu-i386 /bin/ls
3103 @end example
3105 or to run the ppc version of the executable:
3107 @example
3108 qemu-ppc /bin/ls
3109 @end example
3111 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3112 are installed:
3114 @example
3115 qemu-i386 -L /opt/x86_root/ /bin/ls
3116 @end example
3118 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3119 @file{/opt/x86_root/usr/bin/dyld}.
3121 @end itemize
3123 @node Mac OS X/Darwin Command line options
3124 @subsection Command line options
3126 @example
3127 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3128 @end example
3130 @table @option
3131 @item -h
3132 Print the help
3133 @item -L path
3134 Set the library root path (default=/)
3135 @item -s size
3136 Set the stack size in bytes (default=524288)
3137 @end table
3139 Debug options:
3141 @table @option
3142 @item -d
3143 Activate log (logfile=/tmp/qemu.log)
3144 @item -p pagesize
3145 Act as if the host page size was 'pagesize' bytes
3146 @end table
3148 @node BSD User space emulator
3149 @section BSD User space emulator
3151 @menu
3152 * BSD Status::
3153 * BSD Quick Start::
3154 * BSD Command line options::
3155 @end menu
3157 @node BSD Status
3158 @subsection BSD Status
3160 @itemize @minus
3161 @item
3162 target Sparc64 on Sparc64: Some trivial programs work.
3163 @end itemize
3165 @node BSD Quick Start
3166 @subsection Quick Start
3168 In order to launch a BSD process, QEMU needs the process executable
3169 itself and all the target dynamic libraries used by it.
3171 @itemize
3173 @item On Sparc64, you can just try to launch any process by using the native
3174 libraries:
3176 @example
3177 qemu-sparc64 /bin/ls
3178 @end example
3180 @end itemize
3182 @node BSD Command line options
3183 @subsection Command line options
3185 @example
3186 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3187 @end example
3189 @table @option
3190 @item -h
3191 Print the help
3192 @item -L path
3193 Set the library root path (default=/)
3194 @item -s size
3195 Set the stack size in bytes (default=524288)
3196 @item -bsd type
3197 Set the type of the emulated BSD Operating system. Valid values are
3198 FreeBSD, NetBSD and OpenBSD (default).
3199 @end table
3201 Debug options:
3203 @table @option
3204 @item -d
3205 Activate log (logfile=/tmp/qemu.log)
3206 @item -p pagesize
3207 Act as if the host page size was 'pagesize' bytes
3208 @end table
3210 @node compilation
3211 @chapter Compilation from the sources
3213 @menu
3214 * Linux/Unix::
3215 * Windows::
3216 * Cross compilation for Windows with Linux::
3217 * Mac OS X::
3218 @end menu
3220 @node Linux/Unix
3221 @section Linux/Unix
3223 @subsection Compilation
3225 First you must decompress the sources:
3226 @example
3227 cd /tmp
3228 tar zxvf qemu-x.y.z.tar.gz
3229 cd qemu-x.y.z
3230 @end example
3232 Then you configure QEMU and build it (usually no options are needed):
3233 @example
3234 ./configure
3235 make
3236 @end example
3238 Then type as root user:
3239 @example
3240 make install
3241 @end example
3242 to install QEMU in @file{/usr/local}.
3244 @subsection GCC version
3246 In order to compile QEMU successfully, it is very important that you
3247 have the right tools. The most important one is gcc. On most hosts and
3248 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3249 Linux distribution includes a gcc 4.x compiler, you can usually
3250 install an older version (it is invoked by @code{gcc32} or
3251 @code{gcc34}). The QEMU configure script automatically probes for
3252 these older versions so that usually you don't have to do anything.
3254 @node Windows
3255 @section Windows
3257 @itemize
3258 @item Install the current versions of MSYS and MinGW from
3259 @url{http://www.mingw.org/}. You can find detailed installation
3260 instructions in the download section and the FAQ.
3262 @item Download
3263 the MinGW development library of SDL 1.2.x
3264 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3265 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
3266 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3267 directory. Edit the @file{sdl-config} script so that it gives the
3268 correct SDL directory when invoked.
3270 @item Extract the current version of QEMU.
3272 @item Start the MSYS shell (file @file{msys.bat}).
3274 @item Change to the QEMU directory. Launch @file{./configure} and
3275 @file{make}.  If you have problems using SDL, verify that
3276 @file{sdl-config} can be launched from the MSYS command line.
3278 @item You can install QEMU in @file{Program Files/Qemu} by typing
3279 @file{make install}. Don't forget to copy @file{SDL.dll} in
3280 @file{Program Files/Qemu}.
3282 @end itemize
3284 @node Cross compilation for Windows with Linux
3285 @section Cross compilation for Windows with Linux
3287 @itemize
3288 @item
3289 Install the MinGW cross compilation tools available at
3290 @url{http://www.mingw.org/}.
3292 @item
3293 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3294 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3295 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3296 the QEMU configuration script.
3298 @item
3299 Configure QEMU for Windows cross compilation:
3300 @example
3301 ./configure --enable-mingw32
3302 @end example
3303 If necessary, you can change the cross-prefix according to the prefix
3304 chosen for the MinGW tools with --cross-prefix. You can also use
3305 --prefix to set the Win32 install path.
3307 @item You can install QEMU in the installation directory by typing
3308 @file{make install}. Don't forget to copy @file{SDL.dll} in the
3309 installation directory.
3311 @end itemize
3313 Note: Currently, Wine does not seem able to launch
3314 QEMU for Win32.
3316 @node Mac OS X
3317 @section Mac OS X
3319 The Mac OS X patches are not fully merged in QEMU, so you should look
3320 at the QEMU mailing list archive to have all the necessary
3321 information.
3323 @node Index
3324 @chapter Index
3325 @printindex cp
3327 @bye