Add pci_ne2000_{save/load} functions, then remove pci_dev NE2000State field
[qemu-kvm/amd-iommu.git] / hw / ne2000.c
blobbdfc9ed260d44636586d39b13eb226f34c10666a
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pci.h"
26 #include "pc.h"
27 #include "net.h"
29 /* debug NE2000 card */
30 //#define DEBUG_NE2000
32 #define MAX_ETH_FRAME_SIZE 1514
34 #define E8390_CMD 0x00 /* The command register (for all pages) */
35 /* Page 0 register offsets. */
36 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
37 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
38 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
39 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
40 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
41 #define EN0_TSR 0x04 /* Transmit status reg RD */
42 #define EN0_TPSR 0x04 /* Transmit starting page WR */
43 #define EN0_NCR 0x05 /* Number of collision reg RD */
44 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
45 #define EN0_FIFO 0x06 /* FIFO RD */
46 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
47 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
48 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
49 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
50 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
51 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
52 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
53 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
54 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
55 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
56 #define EN0_RSR 0x0c /* rx status reg RD */
57 #define EN0_RXCR 0x0c /* RX configuration reg WR */
58 #define EN0_TXCR 0x0d /* TX configuration reg WR */
59 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
60 #define EN0_DCFG 0x0e /* Data configuration reg WR */
61 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
62 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
63 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
65 #define EN1_PHYS 0x11
66 #define EN1_CURPAG 0x17
67 #define EN1_MULT 0x18
69 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
70 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
72 #define EN3_CONFIG0 0x33
73 #define EN3_CONFIG1 0x34
74 #define EN3_CONFIG2 0x35
75 #define EN3_CONFIG3 0x36
77 /* Register accessed at EN_CMD, the 8390 base addr. */
78 #define E8390_STOP 0x01 /* Stop and reset the chip */
79 #define E8390_START 0x02 /* Start the chip, clear reset */
80 #define E8390_TRANS 0x04 /* Transmit a frame */
81 #define E8390_RREAD 0x08 /* Remote read */
82 #define E8390_RWRITE 0x10 /* Remote write */
83 #define E8390_NODMA 0x20 /* Remote DMA */
84 #define E8390_PAGE0 0x00 /* Select page chip registers */
85 #define E8390_PAGE1 0x40 /* using the two high-order bits */
86 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
88 /* Bits in EN0_ISR - Interrupt status register */
89 #define ENISR_RX 0x01 /* Receiver, no error */
90 #define ENISR_TX 0x02 /* Transmitter, no error */
91 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
92 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
93 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
94 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
95 #define ENISR_RDC 0x40 /* remote dma complete */
96 #define ENISR_RESET 0x80 /* Reset completed */
97 #define ENISR_ALL 0x3f /* Interrupts we will enable */
99 /* Bits in received packet status byte and EN0_RSR*/
100 #define ENRSR_RXOK 0x01 /* Received a good packet */
101 #define ENRSR_CRC 0x02 /* CRC error */
102 #define ENRSR_FAE 0x04 /* frame alignment error */
103 #define ENRSR_FO 0x08 /* FIFO overrun */
104 #define ENRSR_MPA 0x10 /* missed pkt */
105 #define ENRSR_PHY 0x20 /* physical/multicast address */
106 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
107 #define ENRSR_DEF 0x80 /* deferring */
109 /* Transmitted packet status, EN0_TSR. */
110 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
111 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
112 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
113 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
114 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
115 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
116 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
117 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
119 #define NE2000_PMEM_SIZE (32*1024)
120 #define NE2000_PMEM_START (16*1024)
121 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122 #define NE2000_MEM_SIZE NE2000_PMEM_END
124 typedef struct NE2000State {
125 uint8_t cmd;
126 uint32_t start;
127 uint32_t stop;
128 uint8_t boundary;
129 uint8_t tsr;
130 uint8_t tpsr;
131 uint16_t tcnt;
132 uint16_t rcnt;
133 uint32_t rsar;
134 uint8_t rsr;
135 uint8_t rxcr;
136 uint8_t isr;
137 uint8_t dcfg;
138 uint8_t imr;
139 uint8_t phys[6]; /* mac address */
140 uint8_t curpag;
141 uint8_t mult[8]; /* multicast mask array */
142 qemu_irq irq;
143 int isa_io_base;
144 VLANClientState *vc;
145 uint8_t macaddr[6];
146 uint8_t mem[NE2000_MEM_SIZE];
147 } NE2000State;
149 typedef struct PCINE2000State {
150 PCIDevice dev;
151 NE2000State ne2000;
152 } PCINE2000State;
154 static void ne2000_reset(NE2000State *s)
156 int i;
158 s->isr = ENISR_RESET;
159 memcpy(s->mem, s->macaddr, 6);
160 s->mem[14] = 0x57;
161 s->mem[15] = 0x57;
163 /* duplicate prom data */
164 for(i = 15;i >= 0; i--) {
165 s->mem[2 * i] = s->mem[i];
166 s->mem[2 * i + 1] = s->mem[i];
170 static void ne2000_update_irq(NE2000State *s)
172 int isr;
173 isr = (s->isr & s->imr) & 0x7f;
174 #if defined(DEBUG_NE2000)
175 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
176 isr ? 1 : 0, s->isr, s->imr);
177 #endif
178 qemu_set_irq(s->irq, (isr != 0));
181 #define POLYNOMIAL 0x04c11db6
183 /* From FreeBSD */
184 /* XXX: optimize */
185 static int compute_mcast_idx(const uint8_t *ep)
187 uint32_t crc;
188 int carry, i, j;
189 uint8_t b;
191 crc = 0xffffffff;
192 for (i = 0; i < 6; i++) {
193 b = *ep++;
194 for (j = 0; j < 8; j++) {
195 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
196 crc <<= 1;
197 b >>= 1;
198 if (carry)
199 crc = ((crc ^ POLYNOMIAL) | carry);
202 return (crc >> 26);
205 static int ne2000_buffer_full(NE2000State *s)
207 int avail, index, boundary;
209 index = s->curpag << 8;
210 boundary = s->boundary << 8;
211 if (index < boundary)
212 avail = boundary - index;
213 else
214 avail = (s->stop - s->start) - (index - boundary);
215 if (avail < (MAX_ETH_FRAME_SIZE + 4))
216 return 1;
217 return 0;
220 static int ne2000_can_receive(VLANClientState *vc)
222 NE2000State *s = vc->opaque;
224 if (s->cmd & E8390_STOP)
225 return 1;
226 return !ne2000_buffer_full(s);
229 #define MIN_BUF_SIZE 60
231 static ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_)
233 NE2000State *s = vc->opaque;
234 int size = size_;
235 uint8_t *p;
236 unsigned int total_len, next, avail, len, index, mcast_idx;
237 uint8_t buf1[60];
238 static const uint8_t broadcast_macaddr[6] =
239 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
241 #if defined(DEBUG_NE2000)
242 printf("NE2000: received len=%d\n", size);
243 #endif
245 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
246 return -1;
248 /* XXX: check this */
249 if (s->rxcr & 0x10) {
250 /* promiscuous: receive all */
251 } else {
252 if (!memcmp(buf, broadcast_macaddr, 6)) {
253 /* broadcast address */
254 if (!(s->rxcr & 0x04))
255 return size;
256 } else if (buf[0] & 0x01) {
257 /* multicast */
258 if (!(s->rxcr & 0x08))
259 return size;
260 mcast_idx = compute_mcast_idx(buf);
261 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
262 return size;
263 } else if (s->mem[0] == buf[0] &&
264 s->mem[2] == buf[1] &&
265 s->mem[4] == buf[2] &&
266 s->mem[6] == buf[3] &&
267 s->mem[8] == buf[4] &&
268 s->mem[10] == buf[5]) {
269 /* match */
270 } else {
271 return size;
276 /* if too small buffer, then expand it */
277 if (size < MIN_BUF_SIZE) {
278 memcpy(buf1, buf, size);
279 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
280 buf = buf1;
281 size = MIN_BUF_SIZE;
284 index = s->curpag << 8;
285 /* 4 bytes for header */
286 total_len = size + 4;
287 /* address for next packet (4 bytes for CRC) */
288 next = index + ((total_len + 4 + 255) & ~0xff);
289 if (next >= s->stop)
290 next -= (s->stop - s->start);
291 /* prepare packet header */
292 p = s->mem + index;
293 s->rsr = ENRSR_RXOK; /* receive status */
294 /* XXX: check this */
295 if (buf[0] & 0x01)
296 s->rsr |= ENRSR_PHY;
297 p[0] = s->rsr;
298 p[1] = next >> 8;
299 p[2] = total_len;
300 p[3] = total_len >> 8;
301 index += 4;
303 /* write packet data */
304 while (size > 0) {
305 if (index <= s->stop)
306 avail = s->stop - index;
307 else
308 avail = 0;
309 len = size;
310 if (len > avail)
311 len = avail;
312 memcpy(s->mem + index, buf, len);
313 buf += len;
314 index += len;
315 if (index == s->stop)
316 index = s->start;
317 size -= len;
319 s->curpag = next >> 8;
321 /* now we can signal we have received something */
322 s->isr |= ENISR_RX;
323 ne2000_update_irq(s);
325 return size_;
328 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
330 NE2000State *s = opaque;
331 int offset, page, index;
333 addr &= 0xf;
334 #ifdef DEBUG_NE2000
335 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
336 #endif
337 if (addr == E8390_CMD) {
338 /* control register */
339 s->cmd = val;
340 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
341 s->isr &= ~ENISR_RESET;
342 /* test specific case: zero length transfer */
343 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
344 s->rcnt == 0) {
345 s->isr |= ENISR_RDC;
346 ne2000_update_irq(s);
348 if (val & E8390_TRANS) {
349 index = (s->tpsr << 8);
350 /* XXX: next 2 lines are a hack to make netware 3.11 work */
351 if (index >= NE2000_PMEM_END)
352 index -= NE2000_PMEM_SIZE;
353 /* fail safe: check range on the transmitted length */
354 if (index + s->tcnt <= NE2000_PMEM_END) {
355 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
357 /* signal end of transfer */
358 s->tsr = ENTSR_PTX;
359 s->isr |= ENISR_TX;
360 s->cmd &= ~E8390_TRANS;
361 ne2000_update_irq(s);
364 } else {
365 page = s->cmd >> 6;
366 offset = addr | (page << 4);
367 switch(offset) {
368 case EN0_STARTPG:
369 s->start = val << 8;
370 break;
371 case EN0_STOPPG:
372 s->stop = val << 8;
373 break;
374 case EN0_BOUNDARY:
375 s->boundary = val;
376 break;
377 case EN0_IMR:
378 s->imr = val;
379 ne2000_update_irq(s);
380 break;
381 case EN0_TPSR:
382 s->tpsr = val;
383 break;
384 case EN0_TCNTLO:
385 s->tcnt = (s->tcnt & 0xff00) | val;
386 break;
387 case EN0_TCNTHI:
388 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
389 break;
390 case EN0_RSARLO:
391 s->rsar = (s->rsar & 0xff00) | val;
392 break;
393 case EN0_RSARHI:
394 s->rsar = (s->rsar & 0x00ff) | (val << 8);
395 break;
396 case EN0_RCNTLO:
397 s->rcnt = (s->rcnt & 0xff00) | val;
398 break;
399 case EN0_RCNTHI:
400 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
401 break;
402 case EN0_RXCR:
403 s->rxcr = val;
404 break;
405 case EN0_DCFG:
406 s->dcfg = val;
407 break;
408 case EN0_ISR:
409 s->isr &= ~(val & 0x7f);
410 ne2000_update_irq(s);
411 break;
412 case EN1_PHYS ... EN1_PHYS + 5:
413 s->phys[offset - EN1_PHYS] = val;
414 break;
415 case EN1_CURPAG:
416 s->curpag = val;
417 break;
418 case EN1_MULT ... EN1_MULT + 7:
419 s->mult[offset - EN1_MULT] = val;
420 break;
425 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
427 NE2000State *s = opaque;
428 int offset, page, ret;
430 addr &= 0xf;
431 if (addr == E8390_CMD) {
432 ret = s->cmd;
433 } else {
434 page = s->cmd >> 6;
435 offset = addr | (page << 4);
436 switch(offset) {
437 case EN0_TSR:
438 ret = s->tsr;
439 break;
440 case EN0_BOUNDARY:
441 ret = s->boundary;
442 break;
443 case EN0_ISR:
444 ret = s->isr;
445 break;
446 case EN0_RSARLO:
447 ret = s->rsar & 0x00ff;
448 break;
449 case EN0_RSARHI:
450 ret = s->rsar >> 8;
451 break;
452 case EN1_PHYS ... EN1_PHYS + 5:
453 ret = s->phys[offset - EN1_PHYS];
454 break;
455 case EN1_CURPAG:
456 ret = s->curpag;
457 break;
458 case EN1_MULT ... EN1_MULT + 7:
459 ret = s->mult[offset - EN1_MULT];
460 break;
461 case EN0_RSR:
462 ret = s->rsr;
463 break;
464 case EN2_STARTPG:
465 ret = s->start >> 8;
466 break;
467 case EN2_STOPPG:
468 ret = s->stop >> 8;
469 break;
470 case EN0_RTL8029ID0:
471 ret = 0x50;
472 break;
473 case EN0_RTL8029ID1:
474 ret = 0x43;
475 break;
476 case EN3_CONFIG0:
477 ret = 0; /* 10baseT media */
478 break;
479 case EN3_CONFIG2:
480 ret = 0x40; /* 10baseT active */
481 break;
482 case EN3_CONFIG3:
483 ret = 0x40; /* Full duplex */
484 break;
485 default:
486 ret = 0x00;
487 break;
490 #ifdef DEBUG_NE2000
491 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
492 #endif
493 return ret;
496 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
497 uint32_t val)
499 if (addr < 32 ||
500 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
501 s->mem[addr] = val;
505 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
506 uint32_t val)
508 addr &= ~1; /* XXX: check exact behaviour if not even */
509 if (addr < 32 ||
510 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
511 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
515 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
516 uint32_t val)
518 addr &= ~1; /* XXX: check exact behaviour if not even */
519 if (addr < 32 ||
520 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
525 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
527 if (addr < 32 ||
528 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
529 return s->mem[addr];
530 } else {
531 return 0xff;
535 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
537 addr &= ~1; /* XXX: check exact behaviour if not even */
538 if (addr < 32 ||
539 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
540 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
541 } else {
542 return 0xffff;
546 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
548 addr &= ~1; /* XXX: check exact behaviour if not even */
549 if (addr < 32 ||
550 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
551 return le32_to_cpupu((uint32_t *)(s->mem + addr));
552 } else {
553 return 0xffffffff;
557 static inline void ne2000_dma_update(NE2000State *s, int len)
559 s->rsar += len;
560 /* wrap */
561 /* XXX: check what to do if rsar > stop */
562 if (s->rsar == s->stop)
563 s->rsar = s->start;
565 if (s->rcnt <= len) {
566 s->rcnt = 0;
567 /* signal end of transfer */
568 s->isr |= ENISR_RDC;
569 ne2000_update_irq(s);
570 } else {
571 s->rcnt -= len;
575 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
577 NE2000State *s = opaque;
579 #ifdef DEBUG_NE2000
580 printf("NE2000: asic write val=0x%04x\n", val);
581 #endif
582 if (s->rcnt == 0)
583 return;
584 if (s->dcfg & 0x01) {
585 /* 16 bit access */
586 ne2000_mem_writew(s, s->rsar, val);
587 ne2000_dma_update(s, 2);
588 } else {
589 /* 8 bit access */
590 ne2000_mem_writeb(s, s->rsar, val);
591 ne2000_dma_update(s, 1);
595 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
597 NE2000State *s = opaque;
598 int ret;
600 if (s->dcfg & 0x01) {
601 /* 16 bit access */
602 ret = ne2000_mem_readw(s, s->rsar);
603 ne2000_dma_update(s, 2);
604 } else {
605 /* 8 bit access */
606 ret = ne2000_mem_readb(s, s->rsar);
607 ne2000_dma_update(s, 1);
609 #ifdef DEBUG_NE2000
610 printf("NE2000: asic read val=0x%04x\n", ret);
611 #endif
612 return ret;
615 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
617 NE2000State *s = opaque;
619 #ifdef DEBUG_NE2000
620 printf("NE2000: asic writel val=0x%04x\n", val);
621 #endif
622 if (s->rcnt == 0)
623 return;
624 /* 32 bit access */
625 ne2000_mem_writel(s, s->rsar, val);
626 ne2000_dma_update(s, 4);
629 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
631 NE2000State *s = opaque;
632 int ret;
634 /* 32 bit access */
635 ret = ne2000_mem_readl(s, s->rsar);
636 ne2000_dma_update(s, 4);
637 #ifdef DEBUG_NE2000
638 printf("NE2000: asic readl val=0x%04x\n", ret);
639 #endif
640 return ret;
643 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
645 /* nothing to do (end of reset pulse) */
648 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
650 NE2000State *s = opaque;
651 ne2000_reset(s);
652 return 0;
655 static void ne2000_save(QEMUFile* f, void* opaque)
657 NE2000State* s = opaque;
658 uint32_t tmp;
660 qemu_put_8s(f, &s->rxcr);
662 qemu_put_8s(f, &s->cmd);
663 qemu_put_be32s(f, &s->start);
664 qemu_put_be32s(f, &s->stop);
665 qemu_put_8s(f, &s->boundary);
666 qemu_put_8s(f, &s->tsr);
667 qemu_put_8s(f, &s->tpsr);
668 qemu_put_be16s(f, &s->tcnt);
669 qemu_put_be16s(f, &s->rcnt);
670 qemu_put_be32s(f, &s->rsar);
671 qemu_put_8s(f, &s->rsr);
672 qemu_put_8s(f, &s->isr);
673 qemu_put_8s(f, &s->dcfg);
674 qemu_put_8s(f, &s->imr);
675 qemu_put_buffer(f, s->phys, 6);
676 qemu_put_8s(f, &s->curpag);
677 qemu_put_buffer(f, s->mult, 8);
678 tmp = 0;
679 qemu_put_be32s(f, &tmp); /* ignored, was irq */
680 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
683 static int ne2000_load(QEMUFile* f, void* opaque, int version_id)
685 NE2000State* s = opaque;
686 uint32_t tmp;
688 if (version_id > 3)
689 return -EINVAL;
691 if (version_id >= 2) {
692 qemu_get_8s(f, &s->rxcr);
693 } else {
694 s->rxcr = 0x0c;
697 qemu_get_8s(f, &s->cmd);
698 qemu_get_be32s(f, &s->start);
699 qemu_get_be32s(f, &s->stop);
700 qemu_get_8s(f, &s->boundary);
701 qemu_get_8s(f, &s->tsr);
702 qemu_get_8s(f, &s->tpsr);
703 qemu_get_be16s(f, &s->tcnt);
704 qemu_get_be16s(f, &s->rcnt);
705 qemu_get_be32s(f, &s->rsar);
706 qemu_get_8s(f, &s->rsr);
707 qemu_get_8s(f, &s->isr);
708 qemu_get_8s(f, &s->dcfg);
709 qemu_get_8s(f, &s->imr);
710 qemu_get_buffer(f, s->phys, 6);
711 qemu_get_8s(f, &s->curpag);
712 qemu_get_buffer(f, s->mult, 8);
713 qemu_get_be32s(f, &tmp); /* ignored */
714 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
716 return 0;
719 static void pci_ne2000_save(QEMUFile* f, void* opaque)
721 PCINE2000State* s = opaque;
723 pci_device_save(&s->dev, f);
724 ne2000_save(f, &s->ne2000);
727 static int pci_ne2000_load(QEMUFile* f, void* opaque, int version_id)
729 PCINE2000State* s = opaque;
730 int ret;
732 if (version_id > 3)
733 return -EINVAL;
735 if (version_id >= 3) {
736 ret = pci_device_load(&s->dev, f);
737 if (ret < 0)
738 return ret;
741 return ne2000_load(f, &s->ne2000, version_id);
744 static void isa_ne2000_cleanup(VLANClientState *vc)
746 NE2000State *s = vc->opaque;
748 unregister_savevm("ne2000", s);
750 isa_unassign_ioport(s->isa_io_base, 16);
751 isa_unassign_ioport(s->isa_io_base + 0x10, 2);
752 isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
754 qemu_free(s);
757 void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
759 NE2000State *s;
761 qemu_check_nic_model(nd, "ne2k_isa");
763 s = qemu_mallocz(sizeof(NE2000State));
765 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
766 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
768 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
769 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
770 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
771 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
773 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
774 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
775 s->isa_io_base = base;
776 s->irq = irq;
777 memcpy(s->macaddr, nd->macaddr, 6);
779 ne2000_reset(s);
781 s->vc = nd->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
782 ne2000_can_receive, ne2000_receive,
783 NULL, isa_ne2000_cleanup, s);
785 qemu_format_nic_info_str(s->vc, s->macaddr);
787 register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
790 /***********************************************************/
791 /* PCI NE2000 definitions */
793 static void ne2000_map(PCIDevice *pci_dev, int region_num,
794 uint32_t addr, uint32_t size, int type)
796 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
797 NE2000State *s = &d->ne2000;
799 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
800 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
802 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
803 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
804 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
805 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
806 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
807 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
809 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
810 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
813 static void ne2000_cleanup(VLANClientState *vc)
815 NE2000State *s = vc->opaque;
817 unregister_savevm("ne2000", s);
820 static int pci_ne2000_init(PCIDevice *pci_dev)
822 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
823 NE2000State *s;
824 uint8_t *pci_conf;
826 pci_conf = d->dev.config;
827 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
828 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
829 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
830 pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
831 pci_conf[0x3d] = 1; // interrupt pin 0
833 pci_register_bar(&d->dev, 0, 0x100,
834 PCI_ADDRESS_SPACE_IO, ne2000_map);
835 s = &d->ne2000;
836 s->irq = d->dev.irq[0];
837 qdev_get_macaddr(&d->dev.qdev, s->macaddr);
838 ne2000_reset(s);
839 s->vc = qdev_get_vlan_client(&d->dev.qdev,
840 ne2000_can_receive, ne2000_receive, NULL,
841 ne2000_cleanup, s);
843 qemu_format_nic_info_str(s->vc, s->macaddr);
845 register_savevm("ne2000", -1, 3, pci_ne2000_save, pci_ne2000_load, d);
846 return 0;
849 static PCIDeviceInfo ne2000_info = {
850 .qdev.name = "ne2k_pci",
851 .qdev.size = sizeof(PCINE2000State),
852 .init = pci_ne2000_init,
855 static void ne2000_register_devices(void)
857 pci_qdev_register(&ne2000_info);
860 device_init(ne2000_register_devices)