Merge commit '632cf034b401cdd01dae253a8b577fe518e37654' into upstream-merge
[qemu-kvm/amd-iommu.git] / target-i386 / kvm.c
blob8584507abef1fc5f71a0a42fdaafbd708668ac3c
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
28 #ifdef KVM_UPSTREAM
29 //#define DEBUG_KVM
31 #ifdef DEBUG_KVM
32 #define dprintf(fmt, ...) \
33 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
34 #else
35 #define dprintf(fmt, ...) \
36 do { } while (0)
37 #endif
39 #define MSR_KVM_WALL_CLOCK 0x11
40 #define MSR_KVM_SYSTEM_TIME 0x12
42 #ifdef KVM_CAP_EXT_CPUID
44 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
46 struct kvm_cpuid2 *cpuid;
47 int r, size;
49 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
50 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
51 cpuid->nent = max;
52 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
53 if (r == 0 && cpuid->nent >= max) {
54 r = -E2BIG;
56 if (r < 0) {
57 if (r == -E2BIG) {
58 qemu_free(cpuid);
59 return NULL;
60 } else {
61 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
62 strerror(-r));
63 exit(1);
66 return cpuid;
69 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
71 struct kvm_cpuid2 *cpuid;
72 int i, max;
73 uint32_t ret = 0;
74 uint32_t cpuid_1_edx;
76 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
77 return -1U;
80 max = 1;
81 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
82 max *= 2;
85 for (i = 0; i < cpuid->nent; ++i) {
86 if (cpuid->entries[i].function == function) {
87 switch (reg) {
88 case R_EAX:
89 ret = cpuid->entries[i].eax;
90 break;
91 case R_EBX:
92 ret = cpuid->entries[i].ebx;
93 break;
94 case R_ECX:
95 ret = cpuid->entries[i].ecx;
96 break;
97 case R_EDX:
98 ret = cpuid->entries[i].edx;
99 if (function == 0x80000001) {
100 /* On Intel, kvm returns cpuid according to the Intel spec,
101 * so add missing bits according to the AMD spec:
103 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
104 ret |= cpuid_1_edx & 0xdfeff7ff;
106 break;
111 qemu_free(cpuid);
113 return ret;
116 #else
118 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
120 return -1U;
123 #endif
125 static void kvm_trim_features(uint32_t *features, uint32_t supported)
127 int i;
128 uint32_t mask;
130 for (i = 0; i < 32; ++i) {
131 mask = 1U << i;
132 if ((*features & mask) && !(supported & mask)) {
133 *features &= ~mask;
138 int kvm_arch_init_vcpu(CPUState *env)
140 struct {
141 struct kvm_cpuid2 cpuid;
142 struct kvm_cpuid_entry2 entries[100];
143 } __attribute__((packed)) cpuid_data;
144 uint32_t limit, i, j, cpuid_i;
145 uint32_t unused;
147 env->mp_state = KVM_MP_STATE_RUNNABLE;
149 kvm_trim_features(&env->cpuid_features,
150 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
152 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
153 kvm_trim_features(&env->cpuid_ext_features,
154 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
155 env->cpuid_ext_features |= i;
157 kvm_trim_features(&env->cpuid_ext2_features,
158 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
159 kvm_trim_features(&env->cpuid_ext3_features,
160 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
162 cpuid_i = 0;
164 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
166 for (i = 0; i <= limit; i++) {
167 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
169 switch (i) {
170 case 2: {
171 /* Keep reading function 2 till all the input is received */
172 int times;
174 c->function = i;
175 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
176 KVM_CPUID_FLAG_STATE_READ_NEXT;
177 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
178 times = c->eax & 0xff;
180 for (j = 1; j < times; ++j) {
181 c = &cpuid_data.entries[cpuid_i++];
182 c->function = i;
183 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
184 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
186 break;
188 case 4:
189 case 0xb:
190 case 0xd:
191 for (j = 0; ; j++) {
192 c->function = i;
193 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
194 c->index = j;
195 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
197 if (i == 4 && c->eax == 0)
198 break;
199 if (i == 0xb && !(c->ecx & 0xff00))
200 break;
201 if (i == 0xd && c->eax == 0)
202 break;
204 c = &cpuid_data.entries[cpuid_i++];
206 break;
207 default:
208 c->function = i;
209 c->flags = 0;
210 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
211 break;
214 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
216 for (i = 0x80000000; i <= limit; i++) {
217 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
219 c->function = i;
220 c->flags = 0;
221 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
224 cpuid_data.cpuid.nent = cpuid_i;
226 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
229 void kvm_arch_reset_vcpu(CPUState *env)
231 env->interrupt_injected = -1;
232 env->nmi_injected = 0;
233 env->nmi_pending = 0;
236 static int kvm_has_msr_star(CPUState *env)
238 static int has_msr_star;
239 int ret;
241 /* first time */
242 if (has_msr_star == 0) {
243 struct kvm_msr_list msr_list, *kvm_msr_list;
245 has_msr_star = -1;
247 /* Obtain MSR list from KVM. These are the MSRs that we must
248 * save/restore */
249 msr_list.nmsrs = 0;
250 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
251 if (ret < 0 && ret != -E2BIG) {
252 return 0;
254 /* Old kernel modules had a bug and could write beyond the provided
255 memory. Allocate at least a safe amount of 1K. */
256 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
257 msr_list.nmsrs *
258 sizeof(msr_list.indices[0])));
260 kvm_msr_list->nmsrs = msr_list.nmsrs;
261 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
262 if (ret >= 0) {
263 int i;
265 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
266 if (kvm_msr_list->indices[i] == MSR_STAR) {
267 has_msr_star = 1;
268 break;
273 free(kvm_msr_list);
276 if (has_msr_star == 1)
277 return 1;
278 return 0;
281 int kvm_arch_init(KVMState *s, int smp_cpus)
283 int ret;
285 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
286 * directly. In order to use vm86 mode, a TSS is needed. Since this
287 * must be part of guest physical memory, we need to allocate it. Older
288 * versions of KVM just assumed that it would be at the end of physical
289 * memory but that doesn't work with more than 4GB of memory. We simply
290 * refuse to work with those older versions of KVM. */
291 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
292 if (ret <= 0) {
293 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
294 return ret;
297 /* this address is 3 pages before the bios, and the bios should present
298 * as unavaible memory. FIXME, need to ensure the e820 map deals with
299 * this?
301 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
304 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
306 lhs->selector = rhs->selector;
307 lhs->base = rhs->base;
308 lhs->limit = rhs->limit;
309 lhs->type = 3;
310 lhs->present = 1;
311 lhs->dpl = 3;
312 lhs->db = 0;
313 lhs->s = 1;
314 lhs->l = 0;
315 lhs->g = 0;
316 lhs->avl = 0;
317 lhs->unusable = 0;
320 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
322 unsigned flags = rhs->flags;
323 lhs->selector = rhs->selector;
324 lhs->base = rhs->base;
325 lhs->limit = rhs->limit;
326 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
327 lhs->present = (flags & DESC_P_MASK) != 0;
328 lhs->dpl = rhs->selector & 3;
329 lhs->db = (flags >> DESC_B_SHIFT) & 1;
330 lhs->s = (flags & DESC_S_MASK) != 0;
331 lhs->l = (flags >> DESC_L_SHIFT) & 1;
332 lhs->g = (flags & DESC_G_MASK) != 0;
333 lhs->avl = (flags & DESC_AVL_MASK) != 0;
334 lhs->unusable = 0;
337 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
339 lhs->selector = rhs->selector;
340 lhs->base = rhs->base;
341 lhs->limit = rhs->limit;
342 lhs->flags =
343 (rhs->type << DESC_TYPE_SHIFT)
344 | (rhs->present * DESC_P_MASK)
345 | (rhs->dpl << DESC_DPL_SHIFT)
346 | (rhs->db << DESC_B_SHIFT)
347 | (rhs->s * DESC_S_MASK)
348 | (rhs->l << DESC_L_SHIFT)
349 | (rhs->g * DESC_G_MASK)
350 | (rhs->avl * DESC_AVL_MASK);
353 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
355 if (set)
356 *kvm_reg = *qemu_reg;
357 else
358 *qemu_reg = *kvm_reg;
361 static int kvm_getput_regs(CPUState *env, int set)
363 struct kvm_regs regs;
364 int ret = 0;
366 if (!set) {
367 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
368 if (ret < 0)
369 return ret;
372 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
373 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
374 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
375 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
376 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
377 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
378 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
379 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
380 #ifdef TARGET_X86_64
381 kvm_getput_reg(&regs.r8, &env->regs[8], set);
382 kvm_getput_reg(&regs.r9, &env->regs[9], set);
383 kvm_getput_reg(&regs.r10, &env->regs[10], set);
384 kvm_getput_reg(&regs.r11, &env->regs[11], set);
385 kvm_getput_reg(&regs.r12, &env->regs[12], set);
386 kvm_getput_reg(&regs.r13, &env->regs[13], set);
387 kvm_getput_reg(&regs.r14, &env->regs[14], set);
388 kvm_getput_reg(&regs.r15, &env->regs[15], set);
389 #endif
391 kvm_getput_reg(&regs.rflags, &env->eflags, set);
392 kvm_getput_reg(&regs.rip, &env->eip, set);
394 if (set)
395 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
397 return ret;
400 static int kvm_put_fpu(CPUState *env)
402 struct kvm_fpu fpu;
403 int i;
405 memset(&fpu, 0, sizeof fpu);
406 fpu.fsw = env->fpus & ~(7 << 11);
407 fpu.fsw |= (env->fpstt & 7) << 11;
408 fpu.fcw = env->fpuc;
409 for (i = 0; i < 8; ++i)
410 fpu.ftwx |= (!env->fptags[i]) << i;
411 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
412 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
413 fpu.mxcsr = env->mxcsr;
415 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
418 static int kvm_put_sregs(CPUState *env)
420 struct kvm_sregs sregs;
422 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
423 if (env->interrupt_injected >= 0) {
424 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
425 (uint64_t)1 << (env->interrupt_injected % 64);
428 if ((env->eflags & VM_MASK)) {
429 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
430 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
431 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
432 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
433 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
434 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
435 } else {
436 set_seg(&sregs.cs, &env->segs[R_CS]);
437 set_seg(&sregs.ds, &env->segs[R_DS]);
438 set_seg(&sregs.es, &env->segs[R_ES]);
439 set_seg(&sregs.fs, &env->segs[R_FS]);
440 set_seg(&sregs.gs, &env->segs[R_GS]);
441 set_seg(&sregs.ss, &env->segs[R_SS]);
443 if (env->cr[0] & CR0_PE_MASK) {
444 /* force ss cpl to cs cpl */
445 sregs.ss.selector = (sregs.ss.selector & ~3) |
446 (sregs.cs.selector & 3);
447 sregs.ss.dpl = sregs.ss.selector & 3;
451 set_seg(&sregs.tr, &env->tr);
452 set_seg(&sregs.ldt, &env->ldt);
454 sregs.idt.limit = env->idt.limit;
455 sregs.idt.base = env->idt.base;
456 sregs.gdt.limit = env->gdt.limit;
457 sregs.gdt.base = env->gdt.base;
459 sregs.cr0 = env->cr[0];
460 sregs.cr2 = env->cr[2];
461 sregs.cr3 = env->cr[3];
462 sregs.cr4 = env->cr[4];
464 sregs.cr8 = cpu_get_apic_tpr(env);
465 sregs.apic_base = cpu_get_apic_base(env);
467 sregs.efer = env->efer;
469 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
472 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
473 uint32_t index, uint64_t value)
475 entry->index = index;
476 entry->data = value;
479 static int kvm_put_msrs(CPUState *env)
481 struct {
482 struct kvm_msrs info;
483 struct kvm_msr_entry entries[100];
484 } msr_data;
485 struct kvm_msr_entry *msrs = msr_data.entries;
486 int n = 0;
488 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
489 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
490 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
491 if (kvm_has_msr_star(env))
492 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
493 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
494 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
495 #ifdef TARGET_X86_64
496 /* FIXME if lm capable */
497 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
498 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
499 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
500 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
501 #endif
502 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
503 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
505 msr_data.info.nmsrs = n;
507 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
512 static int kvm_get_fpu(CPUState *env)
514 struct kvm_fpu fpu;
515 int i, ret;
517 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
518 if (ret < 0)
519 return ret;
521 env->fpstt = (fpu.fsw >> 11) & 7;
522 env->fpus = fpu.fsw;
523 env->fpuc = fpu.fcw;
524 for (i = 0; i < 8; ++i)
525 env->fptags[i] = !((fpu.ftwx >> i) & 1);
526 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
527 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
528 env->mxcsr = fpu.mxcsr;
530 return 0;
533 static int kvm_get_sregs(CPUState *env)
535 struct kvm_sregs sregs;
536 uint32_t hflags;
537 int bit, i, ret;
539 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
540 if (ret < 0)
541 return ret;
543 /* There can only be one pending IRQ set in the bitmap at a time, so try
544 to find it and save its number instead (-1 for none). */
545 env->interrupt_injected = -1;
546 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
547 if (sregs.interrupt_bitmap[i]) {
548 bit = ctz64(sregs.interrupt_bitmap[i]);
549 env->interrupt_injected = i * 64 + bit;
550 break;
554 get_seg(&env->segs[R_CS], &sregs.cs);
555 get_seg(&env->segs[R_DS], &sregs.ds);
556 get_seg(&env->segs[R_ES], &sregs.es);
557 get_seg(&env->segs[R_FS], &sregs.fs);
558 get_seg(&env->segs[R_GS], &sregs.gs);
559 get_seg(&env->segs[R_SS], &sregs.ss);
561 get_seg(&env->tr, &sregs.tr);
562 get_seg(&env->ldt, &sregs.ldt);
564 env->idt.limit = sregs.idt.limit;
565 env->idt.base = sregs.idt.base;
566 env->gdt.limit = sregs.gdt.limit;
567 env->gdt.base = sregs.gdt.base;
569 env->cr[0] = sregs.cr0;
570 env->cr[2] = sregs.cr2;
571 env->cr[3] = sregs.cr3;
572 env->cr[4] = sregs.cr4;
574 cpu_set_apic_base(env, sregs.apic_base);
576 env->efer = sregs.efer;
577 //cpu_set_apic_tpr(env, sregs.cr8);
579 #define HFLAG_COPY_MASK ~( \
580 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
581 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
582 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
583 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
587 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
588 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
589 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
590 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
591 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
592 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
593 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
595 if (env->efer & MSR_EFER_LMA) {
596 hflags |= HF_LMA_MASK;
599 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
600 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
601 } else {
602 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
603 (DESC_B_SHIFT - HF_CS32_SHIFT);
604 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
605 (DESC_B_SHIFT - HF_SS32_SHIFT);
606 if (!(env->cr[0] & CR0_PE_MASK) ||
607 (env->eflags & VM_MASK) ||
608 !(hflags & HF_CS32_MASK)) {
609 hflags |= HF_ADDSEG_MASK;
610 } else {
611 hflags |= ((env->segs[R_DS].base |
612 env->segs[R_ES].base |
613 env->segs[R_SS].base) != 0) <<
614 HF_ADDSEG_SHIFT;
617 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
619 return 0;
622 static int kvm_get_msrs(CPUState *env)
624 struct {
625 struct kvm_msrs info;
626 struct kvm_msr_entry entries[100];
627 } msr_data;
628 struct kvm_msr_entry *msrs = msr_data.entries;
629 int ret, i, n;
631 n = 0;
632 msrs[n++].index = MSR_IA32_SYSENTER_CS;
633 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
634 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
635 if (kvm_has_msr_star(env))
636 msrs[n++].index = MSR_STAR;
637 msrs[n++].index = MSR_IA32_TSC;
638 msrs[n++].index = MSR_VM_HSAVE_PA;
639 #ifdef TARGET_X86_64
640 /* FIXME lm_capable_kernel */
641 msrs[n++].index = MSR_CSTAR;
642 msrs[n++].index = MSR_KERNELGSBASE;
643 msrs[n++].index = MSR_FMASK;
644 msrs[n++].index = MSR_LSTAR;
645 #endif
646 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
647 msrs[n++].index = MSR_KVM_WALL_CLOCK;
649 msr_data.info.nmsrs = n;
650 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
651 if (ret < 0)
652 return ret;
654 for (i = 0; i < ret; i++) {
655 switch (msrs[i].index) {
656 case MSR_IA32_SYSENTER_CS:
657 env->sysenter_cs = msrs[i].data;
658 break;
659 case MSR_IA32_SYSENTER_ESP:
660 env->sysenter_esp = msrs[i].data;
661 break;
662 case MSR_IA32_SYSENTER_EIP:
663 env->sysenter_eip = msrs[i].data;
664 break;
665 case MSR_STAR:
666 env->star = msrs[i].data;
667 break;
668 #ifdef TARGET_X86_64
669 case MSR_CSTAR:
670 env->cstar = msrs[i].data;
671 break;
672 case MSR_KERNELGSBASE:
673 env->kernelgsbase = msrs[i].data;
674 break;
675 case MSR_FMASK:
676 env->fmask = msrs[i].data;
677 break;
678 case MSR_LSTAR:
679 env->lstar = msrs[i].data;
680 break;
681 #endif
682 case MSR_IA32_TSC:
683 env->tsc = msrs[i].data;
684 break;
685 case MSR_KVM_SYSTEM_TIME:
686 env->system_time_msr = msrs[i].data;
687 break;
688 case MSR_KVM_WALL_CLOCK:
689 env->wall_clock_msr = msrs[i].data;
690 break;
691 case MSR_VM_HSAVE_PA:
692 env->vm_hsave = msrs[i].data;
693 break;
697 return 0;
700 static int kvm_put_mp_state(CPUState *env)
702 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
704 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
707 static int kvm_get_mp_state(CPUState *env)
709 struct kvm_mp_state mp_state;
710 int ret;
712 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
713 if (ret < 0) {
714 return ret;
716 env->mp_state = mp_state.mp_state;
717 return 0;
720 static int kvm_put_vcpu_events(CPUState *env)
722 #ifdef KVM_CAP_VCPU_EVENTS
723 struct kvm_vcpu_events events;
725 if (!kvm_has_vcpu_events()) {
726 return 0;
729 events.exception.injected = (env->exception_injected >= 0);
730 events.exception.nr = env->exception_injected;
731 events.exception.has_error_code = env->has_error_code;
732 events.exception.error_code = env->error_code;
734 events.interrupt.injected = (env->interrupt_injected >= 0);
735 events.interrupt.nr = env->interrupt_injected;
736 events.interrupt.soft = env->soft_interrupt;
738 events.nmi.injected = env->nmi_injected;
739 events.nmi.pending = env->nmi_pending;
740 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
742 events.sipi_vector = env->sipi_vector;
744 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
745 #else
746 return 0;
747 #endif
750 static int kvm_get_vcpu_events(CPUState *env)
752 #ifdef KVM_CAP_VCPU_EVENTS
753 struct kvm_vcpu_events events;
754 int ret;
756 if (!kvm_has_vcpu_events()) {
757 return 0;
760 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
761 if (ret < 0) {
762 return ret;
764 env->exception_injected =
765 events.exception.injected ? events.exception.nr : -1;
766 env->has_error_code = events.exception.has_error_code;
767 env->error_code = events.exception.error_code;
769 env->interrupt_injected =
770 events.interrupt.injected ? events.interrupt.nr : -1;
771 env->soft_interrupt = events.interrupt.soft;
773 env->nmi_injected = events.nmi.injected;
774 env->nmi_pending = events.nmi.pending;
775 if (events.nmi.masked) {
776 env->hflags2 |= HF2_NMI_MASK;
777 } else {
778 env->hflags2 &= ~HF2_NMI_MASK;
781 env->sipi_vector = events.sipi_vector;
782 #endif
784 return 0;
787 int kvm_arch_put_registers(CPUState *env)
789 int ret;
791 ret = kvm_getput_regs(env, 1);
792 if (ret < 0)
793 return ret;
795 ret = kvm_put_fpu(env);
796 if (ret < 0)
797 return ret;
799 ret = kvm_put_sregs(env);
800 if (ret < 0)
801 return ret;
803 ret = kvm_put_msrs(env);
804 if (ret < 0)
805 return ret;
807 ret = kvm_put_mp_state(env);
808 if (ret < 0)
809 return ret;
811 ret = kvm_put_vcpu_events(env);
812 if (ret < 0)
813 return ret;
815 return 0;
818 int kvm_arch_get_registers(CPUState *env)
820 int ret;
822 ret = kvm_getput_regs(env, 0);
823 if (ret < 0)
824 return ret;
826 ret = kvm_get_fpu(env);
827 if (ret < 0)
828 return ret;
830 ret = kvm_get_sregs(env);
831 if (ret < 0)
832 return ret;
834 ret = kvm_get_msrs(env);
835 if (ret < 0)
836 return ret;
838 ret = kvm_get_mp_state(env);
839 if (ret < 0)
840 return ret;
842 ret = kvm_get_vcpu_events(env);
843 if (ret < 0)
844 return ret;
846 return 0;
849 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
851 /* Try to inject an interrupt if the guest can accept it */
852 if (run->ready_for_interrupt_injection &&
853 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
854 (env->eflags & IF_MASK)) {
855 int irq;
857 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
858 irq = cpu_get_pic_interrupt(env);
859 if (irq >= 0) {
860 struct kvm_interrupt intr;
861 intr.irq = irq;
862 /* FIXME: errors */
863 dprintf("injected interrupt %d\n", irq);
864 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
868 /* If we have an interrupt but the guest is not ready to receive an
869 * interrupt, request an interrupt window exit. This will
870 * cause a return to userspace as soon as the guest is ready to
871 * receive interrupts. */
872 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
873 run->request_interrupt_window = 1;
874 else
875 run->request_interrupt_window = 0;
877 dprintf("setting tpr\n");
878 run->cr8 = cpu_get_apic_tpr(env);
880 return 0;
882 #endif
884 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
886 if (run->if_flag)
887 env->eflags |= IF_MASK;
888 else
889 env->eflags &= ~IF_MASK;
891 cpu_set_apic_tpr(env, run->cr8);
892 cpu_set_apic_base(env, run->apic_base);
894 return 0;
897 #ifdef KVM_UPSTREAM
898 static int kvm_handle_halt(CPUState *env)
900 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
901 (env->eflags & IF_MASK)) &&
902 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
903 env->halted = 1;
904 env->exception_index = EXCP_HLT;
905 return 0;
908 return 1;
911 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
913 int ret = 0;
915 switch (run->exit_reason) {
916 case KVM_EXIT_HLT:
917 dprintf("handle_hlt\n");
918 ret = kvm_handle_halt(env);
919 break;
922 return ret;
925 #ifdef KVM_CAP_SET_GUEST_DEBUG
926 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
928 static const uint8_t int3 = 0xcc;
930 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
931 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
932 return -EINVAL;
933 return 0;
936 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
938 uint8_t int3;
940 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
941 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
942 return -EINVAL;
943 return 0;
946 static struct {
947 target_ulong addr;
948 int len;
949 int type;
950 } hw_breakpoint[4];
952 static int nb_hw_breakpoint;
954 static int find_hw_breakpoint(target_ulong addr, int len, int type)
956 int n;
958 for (n = 0; n < nb_hw_breakpoint; n++)
959 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
960 (hw_breakpoint[n].len == len || len == -1))
961 return n;
962 return -1;
965 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
966 target_ulong len, int type)
968 switch (type) {
969 case GDB_BREAKPOINT_HW:
970 len = 1;
971 break;
972 case GDB_WATCHPOINT_WRITE:
973 case GDB_WATCHPOINT_ACCESS:
974 switch (len) {
975 case 1:
976 break;
977 case 2:
978 case 4:
979 case 8:
980 if (addr & (len - 1))
981 return -EINVAL;
982 break;
983 default:
984 return -EINVAL;
986 break;
987 default:
988 return -ENOSYS;
991 if (nb_hw_breakpoint == 4)
992 return -ENOBUFS;
994 if (find_hw_breakpoint(addr, len, type) >= 0)
995 return -EEXIST;
997 hw_breakpoint[nb_hw_breakpoint].addr = addr;
998 hw_breakpoint[nb_hw_breakpoint].len = len;
999 hw_breakpoint[nb_hw_breakpoint].type = type;
1000 nb_hw_breakpoint++;
1002 return 0;
1005 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1006 target_ulong len, int type)
1008 int n;
1010 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1011 if (n < 0)
1012 return -ENOENT;
1014 nb_hw_breakpoint--;
1015 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1017 return 0;
1020 void kvm_arch_remove_all_hw_breakpoints(void)
1022 nb_hw_breakpoint = 0;
1025 static CPUWatchpoint hw_watchpoint;
1027 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1029 int handle = 0;
1030 int n;
1032 if (arch_info->exception == 1) {
1033 if (arch_info->dr6 & (1 << 14)) {
1034 if (cpu_single_env->singlestep_enabled)
1035 handle = 1;
1036 } else {
1037 for (n = 0; n < 4; n++)
1038 if (arch_info->dr6 & (1 << n))
1039 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1040 case 0x0:
1041 handle = 1;
1042 break;
1043 case 0x1:
1044 handle = 1;
1045 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1046 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1047 hw_watchpoint.flags = BP_MEM_WRITE;
1048 break;
1049 case 0x3:
1050 handle = 1;
1051 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1052 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1053 hw_watchpoint.flags = BP_MEM_ACCESS;
1054 break;
1057 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1058 handle = 1;
1060 if (!handle)
1061 kvm_update_guest_debug(cpu_single_env,
1062 (arch_info->exception == 1) ?
1063 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1065 return handle;
1068 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1070 const uint8_t type_code[] = {
1071 [GDB_BREAKPOINT_HW] = 0x0,
1072 [GDB_WATCHPOINT_WRITE] = 0x1,
1073 [GDB_WATCHPOINT_ACCESS] = 0x3
1075 const uint8_t len_code[] = {
1076 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1078 int n;
1080 if (kvm_sw_breakpoints_active(env))
1081 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1083 if (nb_hw_breakpoint > 0) {
1084 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1085 dbg->arch.debugreg[7] = 0x0600;
1086 for (n = 0; n < nb_hw_breakpoint; n++) {
1087 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1088 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1089 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1090 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1094 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1095 #endif
1097 #include "qemu-kvm-x86.c"