Merge commit '92a16d7a9a904d5dd55d012b89ad798f0e4cd0bd' into upstream-merge
[qemu-kvm/amd-iommu.git] / kvm-all.c
blob47f58a610963576e7dca3d3d50365a5d7819e524
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #ifdef KVM_UPSTREAM
46 typedef struct KVMSlot
48 target_phys_addr_t start_addr;
49 ram_addr_t memory_size;
50 ram_addr_t phys_offset;
51 int slot;
52 int flags;
53 } KVMSlot;
55 typedef struct kvm_dirty_log KVMDirtyLog;
57 struct KVMState
59 KVMSlot slots[32];
60 int fd;
61 int vmfd;
62 int coalesced_mmio;
63 #ifdef KVM_CAP_COALESCED_MMIO
64 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
65 #endif
66 int broken_set_mem_region;
67 int migration_log;
68 int vcpu_events;
69 int robust_singlestep;
70 int debugregs;
71 #ifdef KVM_CAP_SET_GUEST_DEBUG
72 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
73 #endif
74 int irqchip_in_kernel;
75 int pit_in_kernel;
78 static KVMState *kvm_state;
80 #endif
82 static KVMSlot *kvm_alloc_slot(KVMState *s)
84 int i;
86 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
87 /* KVM private memory slots */
88 if (i >= 8 && i < 12)
89 continue;
90 if (s->slots[i].memory_size == 0)
91 return &s->slots[i];
94 fprintf(stderr, "%s: no free slot available\n", __func__);
95 abort();
98 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
99 target_phys_addr_t start_addr,
100 target_phys_addr_t end_addr)
102 int i;
104 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
105 KVMSlot *mem = &s->slots[i];
107 if (start_addr == mem->start_addr &&
108 end_addr == mem->start_addr + mem->memory_size) {
109 return mem;
113 return NULL;
117 * Find overlapping slot with lowest start address
119 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
120 target_phys_addr_t start_addr,
121 target_phys_addr_t end_addr)
123 KVMSlot *found = NULL;
124 int i;
126 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
127 KVMSlot *mem = &s->slots[i];
129 if (mem->memory_size == 0 ||
130 (found && found->start_addr < mem->start_addr)) {
131 continue;
134 if (end_addr > mem->start_addr &&
135 start_addr < mem->start_addr + mem->memory_size) {
136 found = mem;
140 return found;
143 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
145 struct kvm_userspace_memory_region mem;
147 mem.slot = slot->slot;
148 mem.guest_phys_addr = slot->start_addr;
149 mem.memory_size = slot->memory_size;
150 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
151 mem.flags = slot->flags;
152 if (s->migration_log) {
153 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
155 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
158 #ifdef KVM_UPSTREAM
159 static void kvm_reset_vcpu(void *opaque)
161 CPUState *env = opaque;
163 kvm_arch_reset_vcpu(env);
165 #endif
167 int kvm_irqchip_in_kernel(void)
169 return kvm_state->irqchip_in_kernel;
172 int kvm_pit_in_kernel(void)
174 return kvm_state->pit_in_kernel;
178 #ifdef KVM_UPSTREAM
179 int kvm_init_vcpu(CPUState *env)
181 KVMState *s = kvm_state;
182 long mmap_size;
183 int ret;
185 DPRINTF("kvm_init_vcpu\n");
187 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
188 if (ret < 0) {
189 DPRINTF("kvm_create_vcpu failed\n");
190 goto err;
193 env->kvm_fd = ret;
194 env->kvm_state = s;
196 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
197 if (mmap_size < 0) {
198 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
199 goto err;
202 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
203 env->kvm_fd, 0);
204 if (env->kvm_run == MAP_FAILED) {
205 ret = -errno;
206 DPRINTF("mmap'ing vcpu state failed\n");
207 goto err;
210 #ifdef KVM_CAP_COALESCED_MMIO
211 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
212 s->coalesced_mmio_ring = (void *) env->kvm_run +
213 s->coalesced_mmio * PAGE_SIZE;
214 #endif
216 ret = kvm_arch_init_vcpu(env);
217 if (ret == 0) {
218 qemu_register_reset(kvm_reset_vcpu, env);
219 kvm_arch_reset_vcpu(env);
221 err:
222 return ret;
224 #endif
227 * dirty pages logging control
229 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
230 ram_addr_t size, int flags, int mask)
232 KVMState *s = kvm_state;
233 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
234 int old_flags;
236 if (mem == NULL) {
237 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
238 TARGET_FMT_plx "\n", __func__, phys_addr,
239 (target_phys_addr_t)(phys_addr + size - 1));
240 return -EINVAL;
243 old_flags = mem->flags;
245 flags = (mem->flags & ~mask) | flags;
246 mem->flags = flags;
248 /* If nothing changed effectively, no need to issue ioctl */
249 if (s->migration_log) {
250 flags |= KVM_MEM_LOG_DIRTY_PAGES;
252 if (flags == old_flags) {
253 return 0;
256 return kvm_set_user_memory_region(s, mem);
259 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
261 return kvm_dirty_pages_log_change(phys_addr, size,
262 KVM_MEM_LOG_DIRTY_PAGES,
263 KVM_MEM_LOG_DIRTY_PAGES);
266 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
268 return kvm_dirty_pages_log_change(phys_addr, size,
270 KVM_MEM_LOG_DIRTY_PAGES);
273 static int kvm_set_migration_log(int enable)
275 KVMState *s = kvm_state;
276 KVMSlot *mem;
277 int i, err;
279 s->migration_log = enable;
281 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
282 mem = &s->slots[i];
284 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
285 continue;
287 err = kvm_set_user_memory_region(s, mem);
288 if (err) {
289 return err;
292 return 0;
295 /* get kvm's dirty pages bitmap and update qemu's */
296 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
297 unsigned long *bitmap,
298 unsigned long offset,
299 unsigned long mem_size)
301 unsigned int i, j;
302 unsigned long page_number, addr, addr1, c;
303 ram_addr_t ram_addr;
304 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
305 HOST_LONG_BITS;
308 * bitmap-traveling is faster than memory-traveling (for addr...)
309 * especially when most of the memory is not dirty.
311 for (i = 0; i < len; i++) {
312 if (bitmap[i] != 0) {
313 c = leul_to_cpu(bitmap[i]);
314 do {
315 j = ffsl(c) - 1;
316 c &= ~(1ul << j);
317 page_number = i * HOST_LONG_BITS + j;
318 addr1 = page_number * TARGET_PAGE_SIZE;
319 addr = offset + addr1;
320 ram_addr = cpu_get_physical_page_desc(addr);
321 cpu_physical_memory_set_dirty(ram_addr);
322 } while (c != 0);
325 return 0;
328 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
331 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
332 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
333 * This means all bits are set to dirty.
335 * @start_add: start of logged region.
336 * @end_addr: end of logged region.
338 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
339 target_phys_addr_t end_addr)
341 KVMState *s = kvm_state;
342 unsigned long size, allocated_size = 0;
343 KVMDirtyLog d;
344 KVMSlot *mem;
345 int ret = 0;
347 d.dirty_bitmap = NULL;
348 while (start_addr < end_addr) {
349 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
350 if (mem == NULL) {
351 break;
354 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
355 if (!d.dirty_bitmap) {
356 d.dirty_bitmap = qemu_malloc(size);
357 } else if (size > allocated_size) {
358 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
360 allocated_size = size;
361 memset(d.dirty_bitmap, 0, allocated_size);
363 d.slot = mem->slot;
365 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
366 DPRINTF("ioctl failed %d\n", errno);
367 ret = -1;
368 break;
371 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
372 mem->start_addr, mem->memory_size);
373 start_addr = mem->start_addr + mem->memory_size;
375 qemu_free(d.dirty_bitmap);
377 return ret;
380 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
382 int ret = -ENOSYS;
383 #ifdef KVM_CAP_COALESCED_MMIO
384 KVMState *s = kvm_state;
386 if (s->coalesced_mmio) {
387 struct kvm_coalesced_mmio_zone zone;
389 zone.addr = start;
390 zone.size = size;
392 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
394 #endif
396 return ret;
399 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
401 int ret = -ENOSYS;
402 #ifdef KVM_CAP_COALESCED_MMIO
403 KVMState *s = kvm_state;
405 if (s->coalesced_mmio) {
406 struct kvm_coalesced_mmio_zone zone;
408 zone.addr = start;
409 zone.size = size;
411 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
413 #endif
415 return ret;
418 int kvm_check_extension(KVMState *s, unsigned int extension)
420 int ret;
422 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
423 if (ret < 0) {
424 ret = 0;
427 return ret;
430 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
431 ram_addr_t size,
432 ram_addr_t phys_offset)
434 KVMState *s = kvm_state;
435 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
436 KVMSlot *mem, old;
437 int err;
439 if (start_addr & ~TARGET_PAGE_MASK) {
440 if (flags >= IO_MEM_UNASSIGNED) {
441 if (!kvm_lookup_overlapping_slot(s, start_addr,
442 start_addr + size)) {
443 return;
445 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
446 } else {
447 fprintf(stderr, "Only page-aligned memory slots supported\n");
449 abort();
452 /* KVM does not support read-only slots */
453 phys_offset &= ~IO_MEM_ROM;
455 while (1) {
456 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
457 if (!mem) {
458 break;
461 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
462 (start_addr + size <= mem->start_addr + mem->memory_size) &&
463 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
464 /* The new slot fits into the existing one and comes with
465 * identical parameters - nothing to be done. */
466 return;
469 old = *mem;
471 /* unregister the overlapping slot */
472 mem->memory_size = 0;
473 err = kvm_set_user_memory_region(s, mem);
474 if (err) {
475 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
476 __func__, strerror(-err));
477 abort();
480 /* Workaround for older KVM versions: we can't join slots, even not by
481 * unregistering the previous ones and then registering the larger
482 * slot. We have to maintain the existing fragmentation. Sigh.
484 * This workaround assumes that the new slot starts at the same
485 * address as the first existing one. If not or if some overlapping
486 * slot comes around later, we will fail (not seen in practice so far)
487 * - and actually require a recent KVM version. */
488 if (s->broken_set_mem_region &&
489 old.start_addr == start_addr && old.memory_size < size &&
490 flags < IO_MEM_UNASSIGNED) {
491 mem = kvm_alloc_slot(s);
492 mem->memory_size = old.memory_size;
493 mem->start_addr = old.start_addr;
494 mem->phys_offset = old.phys_offset;
495 mem->flags = 0;
497 err = kvm_set_user_memory_region(s, mem);
498 if (err) {
499 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
500 strerror(-err));
501 abort();
504 start_addr += old.memory_size;
505 phys_offset += old.memory_size;
506 size -= old.memory_size;
507 continue;
510 /* register prefix slot */
511 if (old.start_addr < start_addr) {
512 mem = kvm_alloc_slot(s);
513 mem->memory_size = start_addr - old.start_addr;
514 mem->start_addr = old.start_addr;
515 mem->phys_offset = old.phys_offset;
516 mem->flags = 0;
518 err = kvm_set_user_memory_region(s, mem);
519 if (err) {
520 fprintf(stderr, "%s: error registering prefix slot: %s\n",
521 __func__, strerror(-err));
522 abort();
526 /* register suffix slot */
527 if (old.start_addr + old.memory_size > start_addr + size) {
528 ram_addr_t size_delta;
530 mem = kvm_alloc_slot(s);
531 mem->start_addr = start_addr + size;
532 size_delta = mem->start_addr - old.start_addr;
533 mem->memory_size = old.memory_size - size_delta;
534 mem->phys_offset = old.phys_offset + size_delta;
535 mem->flags = 0;
537 err = kvm_set_user_memory_region(s, mem);
538 if (err) {
539 fprintf(stderr, "%s: error registering suffix slot: %s\n",
540 __func__, strerror(-err));
541 abort();
546 /* in case the KVM bug workaround already "consumed" the new slot */
547 if (!size)
548 return;
550 /* KVM does not need to know about this memory */
551 if (flags >= IO_MEM_UNASSIGNED)
552 return;
554 mem = kvm_alloc_slot(s);
555 mem->memory_size = size;
556 mem->start_addr = start_addr;
557 mem->phys_offset = phys_offset;
558 mem->flags = 0;
560 err = kvm_set_user_memory_region(s, mem);
561 if (err) {
562 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
563 strerror(-err));
564 abort();
568 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
569 target_phys_addr_t start_addr,
570 ram_addr_t size,
571 ram_addr_t phys_offset)
573 kvm_set_phys_mem(start_addr, size, phys_offset);
576 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
577 target_phys_addr_t start_addr,
578 target_phys_addr_t end_addr)
580 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
583 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
584 int enable)
586 return kvm_set_migration_log(enable);
589 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
590 .set_memory = kvm_client_set_memory,
591 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
592 .migration_log = kvm_client_migration_log,
596 void kvm_cpu_register_phys_memory_client(void)
598 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
601 #ifdef KVM_UPSTREAM
603 int kvm_init(int smp_cpus)
605 static const char upgrade_note[] =
606 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
607 "(see http://sourceforge.net/projects/kvm).\n";
608 KVMState *s;
609 int ret;
610 int i;
612 s = qemu_mallocz(sizeof(KVMState));
614 #ifdef KVM_CAP_SET_GUEST_DEBUG
615 QTAILQ_INIT(&s->kvm_sw_breakpoints);
616 #endif
617 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
618 s->slots[i].slot = i;
620 s->vmfd = -1;
621 s->fd = qemu_open("/dev/kvm", O_RDWR);
622 if (s->fd == -1) {
623 fprintf(stderr, "Could not access KVM kernel module: %m\n");
624 ret = -errno;
625 goto err;
628 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
629 if (ret < KVM_API_VERSION) {
630 if (ret > 0)
631 ret = -EINVAL;
632 fprintf(stderr, "kvm version too old\n");
633 goto err;
636 if (ret > KVM_API_VERSION) {
637 ret = -EINVAL;
638 fprintf(stderr, "kvm version not supported\n");
639 goto err;
642 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
643 if (s->vmfd < 0) {
644 #ifdef TARGET_S390X
645 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
646 "your host kernel command line\n");
647 #endif
648 goto err;
651 /* initially, KVM allocated its own memory and we had to jump through
652 * hooks to make phys_ram_base point to this. Modern versions of KVM
653 * just use a user allocated buffer so we can use regular pages
654 * unmodified. Make sure we have a sufficiently modern version of KVM.
656 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
657 ret = -EINVAL;
658 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
659 upgrade_note);
660 goto err;
663 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
664 * destroyed properly. Since we rely on this capability, refuse to work
665 * with any kernel without this capability. */
666 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
667 ret = -EINVAL;
669 fprintf(stderr,
670 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
671 upgrade_note);
672 goto err;
675 s->coalesced_mmio = 0;
676 #ifdef KVM_CAP_COALESCED_MMIO
677 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
678 s->coalesced_mmio_ring = NULL;
679 #endif
681 s->broken_set_mem_region = 1;
682 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
683 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
684 if (ret > 0) {
685 s->broken_set_mem_region = 0;
687 #endif
689 s->vcpu_events = 0;
690 #ifdef KVM_CAP_VCPU_EVENTS
691 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
692 #endif
694 s->robust_singlestep = 0;
695 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
696 s->robust_singlestep =
697 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
698 #endif
700 s->debugregs = 0;
701 #ifdef KVM_CAP_DEBUGREGS
702 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
703 #endif
705 ret = kvm_arch_init(s, smp_cpus);
706 if (ret < 0)
707 goto err;
709 kvm_state = s;
710 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
712 return 0;
714 err:
715 if (s) {
716 if (s->vmfd != -1)
717 close(s->vmfd);
718 if (s->fd != -1)
719 close(s->fd);
721 qemu_free(s);
723 return ret;
725 #endif
727 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
728 uint32_t count)
730 int i;
731 uint8_t *ptr = data;
733 for (i = 0; i < count; i++) {
734 if (direction == KVM_EXIT_IO_IN) {
735 switch (size) {
736 case 1:
737 stb_p(ptr, cpu_inb(port));
738 break;
739 case 2:
740 stw_p(ptr, cpu_inw(port));
741 break;
742 case 4:
743 stl_p(ptr, cpu_inl(port));
744 break;
746 } else {
747 switch (size) {
748 case 1:
749 cpu_outb(port, ldub_p(ptr));
750 break;
751 case 2:
752 cpu_outw(port, lduw_p(ptr));
753 break;
754 case 4:
755 cpu_outl(port, ldl_p(ptr));
756 break;
760 ptr += size;
763 return 1;
766 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
767 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
770 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
771 int i;
773 fprintf(stderr, "KVM internal error. Suberror: %d\n",
774 run->internal.suberror);
776 for (i = 0; i < run->internal.ndata; ++i) {
777 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
778 i, (uint64_t)run->internal.data[i]);
781 cpu_dump_state(env, stderr, fprintf, 0);
782 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
783 fprintf(stderr, "emulation failure\n");
784 if (!kvm_arch_stop_on_emulation_error(env))
785 return;
787 /* FIXME: Should trigger a qmp message to let management know
788 * something went wrong.
790 vm_stop(0);
792 #endif
794 void kvm_flush_coalesced_mmio_buffer(void)
796 #ifdef KVM_CAP_COALESCED_MMIO
797 KVMState *s = kvm_state;
798 if (s->coalesced_mmio_ring) {
799 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
800 while (ring->first != ring->last) {
801 struct kvm_coalesced_mmio *ent;
803 ent = &ring->coalesced_mmio[ring->first];
805 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
806 smp_wmb();
807 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
810 #endif
813 #ifdef KVM_UPSTREAM
815 static void do_kvm_cpu_synchronize_state(void *_env)
817 CPUState *env = _env;
819 if (!env->kvm_vcpu_dirty) {
820 kvm_arch_get_registers(env);
821 env->kvm_vcpu_dirty = 1;
825 void kvm_cpu_synchronize_state(CPUState *env)
827 if (!env->kvm_vcpu_dirty)
828 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
831 void kvm_cpu_synchronize_post_reset(CPUState *env)
833 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
834 env->kvm_vcpu_dirty = 0;
837 void kvm_cpu_synchronize_post_init(CPUState *env)
839 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
840 env->kvm_vcpu_dirty = 0;
843 int kvm_cpu_exec(CPUState *env)
845 struct kvm_run *run = env->kvm_run;
846 int ret;
848 DPRINTF("kvm_cpu_exec()\n");
850 do {
851 #ifndef CONFIG_IOTHREAD
852 if (env->exit_request) {
853 DPRINTF("interrupt exit requested\n");
854 ret = 0;
855 break;
857 #endif
859 if (kvm_arch_process_irqchip_events(env)) {
860 ret = 0;
861 break;
864 if (env->kvm_vcpu_dirty) {
865 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
866 env->kvm_vcpu_dirty = 0;
869 kvm_arch_pre_run(env, run);
870 cpu_single_env = NULL;
871 qemu_mutex_unlock_iothread();
872 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
873 qemu_mutex_lock_iothread();
874 cpu_single_env = env;
875 kvm_arch_post_run(env, run);
877 if (ret == -EINTR || ret == -EAGAIN) {
878 cpu_exit(env);
879 DPRINTF("io window exit\n");
880 ret = 0;
881 break;
884 if (ret < 0) {
885 DPRINTF("kvm run failed %s\n", strerror(-ret));
886 abort();
889 kvm_flush_coalesced_mmio_buffer();
891 ret = 0; /* exit loop */
892 switch (run->exit_reason) {
893 case KVM_EXIT_IO:
894 DPRINTF("handle_io\n");
895 ret = kvm_handle_io(run->io.port,
896 (uint8_t *)run + run->io.data_offset,
897 run->io.direction,
898 run->io.size,
899 run->io.count);
900 break;
901 case KVM_EXIT_MMIO:
902 DPRINTF("handle_mmio\n");
903 cpu_physical_memory_rw(run->mmio.phys_addr,
904 run->mmio.data,
905 run->mmio.len,
906 run->mmio.is_write);
907 ret = 1;
908 break;
909 case KVM_EXIT_IRQ_WINDOW_OPEN:
910 DPRINTF("irq_window_open\n");
911 break;
912 case KVM_EXIT_SHUTDOWN:
913 DPRINTF("shutdown\n");
914 qemu_system_reset_request();
915 ret = 1;
916 break;
917 case KVM_EXIT_UNKNOWN:
918 DPRINTF("kvm_exit_unknown\n");
919 break;
920 case KVM_EXIT_FAIL_ENTRY:
921 DPRINTF("kvm_exit_fail_entry\n");
922 break;
923 case KVM_EXIT_EXCEPTION:
924 DPRINTF("kvm_exit_exception\n");
925 break;
926 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
927 case KVM_EXIT_INTERNAL_ERROR:
928 kvm_handle_internal_error(env, run);
929 break;
930 #endif
931 case KVM_EXIT_DEBUG:
932 DPRINTF("kvm_exit_debug\n");
933 #ifdef KVM_CAP_SET_GUEST_DEBUG
934 if (kvm_arch_debug(&run->debug.arch)) {
935 gdb_set_stop_cpu(env);
936 vm_stop(EXCP_DEBUG);
937 env->exception_index = EXCP_DEBUG;
938 return 0;
940 /* re-enter, this exception was guest-internal */
941 ret = 1;
942 #endif /* KVM_CAP_SET_GUEST_DEBUG */
943 break;
944 default:
945 DPRINTF("kvm_arch_handle_exit\n");
946 ret = kvm_arch_handle_exit(env, run);
947 break;
949 } while (ret > 0);
951 if (env->exit_request) {
952 env->exit_request = 0;
953 env->exception_index = EXCP_INTERRUPT;
956 return ret;
959 #endif
960 int kvm_ioctl(KVMState *s, int type, ...)
962 int ret;
963 void *arg;
964 va_list ap;
966 va_start(ap, type);
967 arg = va_arg(ap, void *);
968 va_end(ap);
970 ret = ioctl(s->fd, type, arg);
971 if (ret == -1)
972 ret = -errno;
974 return ret;
977 int kvm_vm_ioctl(KVMState *s, int type, ...)
979 int ret;
980 void *arg;
981 va_list ap;
983 va_start(ap, type);
984 arg = va_arg(ap, void *);
985 va_end(ap);
987 ret = ioctl(s->vmfd, type, arg);
988 if (ret == -1)
989 ret = -errno;
991 return ret;
994 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
996 int ret;
997 void *arg;
998 va_list ap;
1000 va_start(ap, type);
1001 arg = va_arg(ap, void *);
1002 va_end(ap);
1004 ret = ioctl(env->kvm_fd, type, arg);
1005 if (ret == -1)
1006 ret = -errno;
1008 return ret;
1011 int kvm_has_sync_mmu(void)
1013 #ifdef KVM_CAP_SYNC_MMU
1014 KVMState *s = kvm_state;
1016 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1017 #else
1018 return 0;
1019 #endif
1022 int kvm_has_vcpu_events(void)
1024 return kvm_state->vcpu_events;
1027 int kvm_has_robust_singlestep(void)
1029 return kvm_state->robust_singlestep;
1032 int kvm_has_debugregs(void)
1034 return kvm_state->debugregs;
1037 void kvm_setup_guest_memory(void *start, size_t size)
1039 if (!kvm_has_sync_mmu()) {
1040 #ifdef MADV_DONTFORK
1041 int ret = madvise(start, size, MADV_DONTFORK);
1043 if (ret) {
1044 perror("madvice");
1045 exit(1);
1047 #else
1048 fprintf(stderr,
1049 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1050 exit(1);
1051 #endif
1055 #ifdef KVM_CAP_SET_GUEST_DEBUG
1057 #ifdef KVM_UPSTREAM
1058 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
1060 #ifdef CONFIG_IOTHREAD
1061 if (env != cpu_single_env) {
1062 abort();
1064 #endif
1065 func(data);
1067 #else /* !KVM_UPSTREAM */
1068 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data);
1069 #endif /* !KVM_UPSTREAM */
1071 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1072 target_ulong pc)
1074 struct kvm_sw_breakpoint *bp;
1076 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1077 if (bp->pc == pc)
1078 return bp;
1080 return NULL;
1083 int kvm_sw_breakpoints_active(CPUState *env)
1085 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1088 struct kvm_set_guest_debug_data {
1089 struct kvm_guest_debug dbg;
1090 CPUState *env;
1091 int err;
1094 static void kvm_invoke_set_guest_debug(void *data)
1096 struct kvm_set_guest_debug_data *dbg_data = data;
1097 CPUState *env = dbg_data->env;
1099 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1102 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1104 struct kvm_set_guest_debug_data data;
1106 data.dbg.control = reinject_trap;
1108 if (env->singlestep_enabled) {
1109 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1111 kvm_arch_update_guest_debug(env, &data.dbg);
1112 data.env = env;
1114 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1115 return data.err;
1118 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1119 target_ulong len, int type)
1121 struct kvm_sw_breakpoint *bp;
1122 CPUState *env;
1123 int err;
1125 if (type == GDB_BREAKPOINT_SW) {
1126 bp = kvm_find_sw_breakpoint(current_env, addr);
1127 if (bp) {
1128 bp->use_count++;
1129 return 0;
1132 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1133 if (!bp)
1134 return -ENOMEM;
1136 bp->pc = addr;
1137 bp->use_count = 1;
1138 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1139 if (err) {
1140 free(bp);
1141 return err;
1144 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1145 bp, entry);
1146 } else {
1147 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1148 if (err)
1149 return err;
1152 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1153 err = kvm_update_guest_debug(env, 0);
1154 if (err)
1155 return err;
1157 return 0;
1160 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1161 target_ulong len, int type)
1163 struct kvm_sw_breakpoint *bp;
1164 CPUState *env;
1165 int err;
1167 if (type == GDB_BREAKPOINT_SW) {
1168 bp = kvm_find_sw_breakpoint(current_env, addr);
1169 if (!bp)
1170 return -ENOENT;
1172 if (bp->use_count > 1) {
1173 bp->use_count--;
1174 return 0;
1177 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1178 if (err)
1179 return err;
1181 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1182 qemu_free(bp);
1183 } else {
1184 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1185 if (err)
1186 return err;
1189 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1190 err = kvm_update_guest_debug(env, 0);
1191 if (err)
1192 return err;
1194 return 0;
1197 void kvm_remove_all_breakpoints(CPUState *current_env)
1199 struct kvm_sw_breakpoint *bp, *next;
1200 KVMState *s = current_env->kvm_state;
1201 CPUState *env;
1203 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1204 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1205 /* Try harder to find a CPU that currently sees the breakpoint. */
1206 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1207 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1208 break;
1212 kvm_arch_remove_all_hw_breakpoints();
1214 for (env = first_cpu; env != NULL; env = env->next_cpu)
1215 kvm_update_guest_debug(env, 0);
1218 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1220 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1222 return -EINVAL;
1225 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1226 target_ulong len, int type)
1228 return -EINVAL;
1231 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1232 target_ulong len, int type)
1234 return -EINVAL;
1237 void kvm_remove_all_breakpoints(CPUState *current_env)
1240 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1242 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1244 struct kvm_signal_mask *sigmask;
1245 int r;
1247 if (!sigset)
1248 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1250 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1252 sigmask->len = 8;
1253 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1254 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1255 free(sigmask);
1257 return r;
1260 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1262 #ifdef KVM_IOEVENTFD
1263 struct kvm_ioeventfd kick = {
1264 .datamatch = val,
1265 .addr = addr,
1266 .len = 2,
1267 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1268 .fd = fd,
1270 int r;
1271 if (!kvm_enabled())
1272 return -ENOSYS;
1273 if (!assign)
1274 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1275 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1276 if (r < 0)
1277 return r;
1278 return 0;
1279 #else
1280 return -ENOSYS;
1281 #endif
1284 #if defined(KVM_IRQFD)
1285 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1287 struct kvm_irqfd irqfd = {
1288 .fd = fd,
1289 .gsi = gsi,
1290 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1292 int r;
1293 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1294 return -ENOSYS;
1296 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1297 if (r < 0)
1298 return r;
1299 return 0;
1301 #endif
1303 #undef PAGE_SIZE
1304 #include "qemu-kvm.c"