remove unused kvm_dirty_bitmap array
[qemu-kvm/amd-iommu.git] / kvm-all.c
blob87b7f1e8466e7e573e3100c14c7587774bba3e83
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
33 #ifdef KVM_UPSTREAM
35 //#define DEBUG_KVM
37 #ifdef DEBUG_KVM
38 #define DPRINTF(fmt, ...) \
39 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF(fmt, ...) \
42 do { } while (0)
43 #endif
45 typedef struct KVMSlot
47 target_phys_addr_t start_addr;
48 ram_addr_t memory_size;
49 ram_addr_t phys_offset;
50 int slot;
51 int flags;
52 } KVMSlot;
54 typedef struct kvm_dirty_log KVMDirtyLog;
56 struct KVMState
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 #ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64 #endif
65 int broken_set_mem_region;
66 int migration_log;
67 int vcpu_events;
68 int robust_singlestep;
69 int debugregs;
70 #ifdef KVM_CAP_SET_GUEST_DEBUG
71 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
72 #endif
73 int irqchip_in_kernel;
74 int pit_in_kernel;
77 static KVMState *kvm_state;
79 static KVMSlot *kvm_alloc_slot(KVMState *s)
81 int i;
83 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
84 /* KVM private memory slots */
85 if (i >= 8 && i < 12)
86 continue;
87 if (s->slots[i].memory_size == 0)
88 return &s->slots[i];
91 fprintf(stderr, "%s: no free slot available\n", __func__);
92 abort();
95 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
96 target_phys_addr_t start_addr,
97 target_phys_addr_t end_addr)
99 int i;
101 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
102 KVMSlot *mem = &s->slots[i];
104 if (start_addr == mem->start_addr &&
105 end_addr == mem->start_addr + mem->memory_size) {
106 return mem;
110 return NULL;
114 * Find overlapping slot with lowest start address
116 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
117 target_phys_addr_t start_addr,
118 target_phys_addr_t end_addr)
120 KVMSlot *found = NULL;
121 int i;
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 KVMSlot *mem = &s->slots[i];
126 if (mem->memory_size == 0 ||
127 (found && found->start_addr < mem->start_addr)) {
128 continue;
131 if (end_addr > mem->start_addr &&
132 start_addr < mem->start_addr + mem->memory_size) {
133 found = mem;
137 return found;
140 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
142 struct kvm_userspace_memory_region mem;
144 mem.slot = slot->slot;
145 mem.guest_phys_addr = slot->start_addr;
146 mem.memory_size = slot->memory_size;
147 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
148 mem.flags = slot->flags;
149 if (s->migration_log) {
150 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
152 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
155 static void kvm_reset_vcpu(void *opaque)
157 CPUState *env = opaque;
159 kvm_arch_reset_vcpu(env);
161 #endif
163 int kvm_irqchip_in_kernel(void)
165 return kvm_state->irqchip_in_kernel;
168 int kvm_pit_in_kernel(void)
170 return kvm_state->pit_in_kernel;
174 #ifdef KVM_UPSTREAM
175 int kvm_init_vcpu(CPUState *env)
177 KVMState *s = kvm_state;
178 long mmap_size;
179 int ret;
181 DPRINTF("kvm_init_vcpu\n");
183 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
184 if (ret < 0) {
185 DPRINTF("kvm_create_vcpu failed\n");
186 goto err;
189 env->kvm_fd = ret;
190 env->kvm_state = s;
192 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
193 if (mmap_size < 0) {
194 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
195 goto err;
198 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
199 env->kvm_fd, 0);
200 if (env->kvm_run == MAP_FAILED) {
201 ret = -errno;
202 DPRINTF("mmap'ing vcpu state failed\n");
203 goto err;
206 #ifdef KVM_CAP_COALESCED_MMIO
207 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
208 s->coalesced_mmio_ring = (void *) env->kvm_run +
209 s->coalesced_mmio * PAGE_SIZE;
210 #endif
212 ret = kvm_arch_init_vcpu(env);
213 if (ret == 0) {
214 qemu_register_reset(kvm_reset_vcpu, env);
215 kvm_arch_reset_vcpu(env);
217 err:
218 return ret;
222 * dirty pages logging control
224 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
225 ram_addr_t size, int flags, int mask)
227 KVMState *s = kvm_state;
228 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
229 int old_flags;
231 if (mem == NULL) {
232 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
233 TARGET_FMT_plx "\n", __func__, phys_addr,
234 (target_phys_addr_t)(phys_addr + size - 1));
235 return -EINVAL;
238 old_flags = mem->flags;
240 flags = (mem->flags & ~mask) | flags;
241 mem->flags = flags;
243 /* If nothing changed effectively, no need to issue ioctl */
244 if (s->migration_log) {
245 flags |= KVM_MEM_LOG_DIRTY_PAGES;
247 if (flags == old_flags) {
248 return 0;
251 return kvm_set_user_memory_region(s, mem);
254 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
256 return kvm_dirty_pages_log_change(phys_addr, size,
257 KVM_MEM_LOG_DIRTY_PAGES,
258 KVM_MEM_LOG_DIRTY_PAGES);
261 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
263 return kvm_dirty_pages_log_change(phys_addr, size,
265 KVM_MEM_LOG_DIRTY_PAGES);
268 static int kvm_set_migration_log(int enable)
270 KVMState *s = kvm_state;
271 KVMSlot *mem;
272 int i, err;
274 s->migration_log = enable;
276 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
277 mem = &s->slots[i];
279 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
280 continue;
282 err = kvm_set_user_memory_region(s, mem);
283 if (err) {
284 return err;
287 return 0;
290 /* get kvm's dirty pages bitmap and update qemu's */
291 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
292 unsigned long *bitmap,
293 unsigned long offset,
294 unsigned long mem_size)
296 unsigned int i, j;
297 unsigned long page_number, addr, addr1, c;
298 ram_addr_t ram_addr;
299 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
300 HOST_LONG_BITS;
303 * bitmap-traveling is faster than memory-traveling (for addr...)
304 * especially when most of the memory is not dirty.
306 for (i = 0; i < len; i++) {
307 if (bitmap[i] != 0) {
308 c = leul_to_cpu(bitmap[i]);
309 do {
310 j = ffsl(c) - 1;
311 c &= ~(1ul << j);
312 page_number = i * HOST_LONG_BITS + j;
313 addr1 = page_number * TARGET_PAGE_SIZE;
314 addr = offset + addr1;
315 ram_addr = cpu_get_physical_page_desc(addr);
316 cpu_physical_memory_set_dirty(ram_addr);
317 } while (c != 0);
320 return 0;
323 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
326 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
327 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
328 * This means all bits are set to dirty.
330 * @start_add: start of logged region.
331 * @end_addr: end of logged region.
333 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
334 target_phys_addr_t end_addr)
336 KVMState *s = kvm_state;
337 unsigned long size, allocated_size = 0;
338 KVMDirtyLog d;
339 KVMSlot *mem;
340 int ret = 0;
342 d.dirty_bitmap = NULL;
343 while (start_addr < end_addr) {
344 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
345 if (mem == NULL) {
346 break;
349 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
350 if (!d.dirty_bitmap) {
351 d.dirty_bitmap = qemu_malloc(size);
352 } else if (size > allocated_size) {
353 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
355 allocated_size = size;
356 memset(d.dirty_bitmap, 0, allocated_size);
358 d.slot = mem->slot;
360 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
361 DPRINTF("ioctl failed %d\n", errno);
362 ret = -1;
363 break;
366 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
367 mem->start_addr, mem->memory_size);
368 start_addr = mem->start_addr + mem->memory_size;
370 qemu_free(d.dirty_bitmap);
372 return ret;
374 #endif
376 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
378 int ret = -ENOSYS;
379 #ifdef KVM_CAP_COALESCED_MMIO
380 KVMState *s = kvm_state;
382 if (s->coalesced_mmio) {
383 struct kvm_coalesced_mmio_zone zone;
385 zone.addr = start;
386 zone.size = size;
388 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
390 #endif
392 return ret;
395 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
397 int ret = -ENOSYS;
398 #ifdef KVM_CAP_COALESCED_MMIO
399 KVMState *s = kvm_state;
401 if (s->coalesced_mmio) {
402 struct kvm_coalesced_mmio_zone zone;
404 zone.addr = start;
405 zone.size = size;
407 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
409 #endif
411 return ret;
414 int kvm_check_extension(KVMState *s, unsigned int extension)
416 int ret;
418 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
419 if (ret < 0) {
420 ret = 0;
423 return ret;
425 #ifdef KVM_UPSTREAM
427 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
428 ram_addr_t size,
429 ram_addr_t phys_offset)
431 KVMState *s = kvm_state;
432 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
433 KVMSlot *mem, old;
434 int err;
436 if (start_addr & ~TARGET_PAGE_MASK) {
437 if (flags >= IO_MEM_UNASSIGNED) {
438 if (!kvm_lookup_overlapping_slot(s, start_addr,
439 start_addr + size)) {
440 return;
442 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
443 } else {
444 fprintf(stderr, "Only page-aligned memory slots supported\n");
446 abort();
449 /* KVM does not support read-only slots */
450 phys_offset &= ~IO_MEM_ROM;
452 while (1) {
453 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
454 if (!mem) {
455 break;
458 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
459 (start_addr + size <= mem->start_addr + mem->memory_size) &&
460 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
461 /* The new slot fits into the existing one and comes with
462 * identical parameters - nothing to be done. */
463 return;
466 old = *mem;
468 /* unregister the overlapping slot */
469 mem->memory_size = 0;
470 err = kvm_set_user_memory_region(s, mem);
471 if (err) {
472 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
473 __func__, strerror(-err));
474 abort();
477 /* Workaround for older KVM versions: we can't join slots, even not by
478 * unregistering the previous ones and then registering the larger
479 * slot. We have to maintain the existing fragmentation. Sigh.
481 * This workaround assumes that the new slot starts at the same
482 * address as the first existing one. If not or if some overlapping
483 * slot comes around later, we will fail (not seen in practice so far)
484 * - and actually require a recent KVM version. */
485 if (s->broken_set_mem_region &&
486 old.start_addr == start_addr && old.memory_size < size &&
487 flags < IO_MEM_UNASSIGNED) {
488 mem = kvm_alloc_slot(s);
489 mem->memory_size = old.memory_size;
490 mem->start_addr = old.start_addr;
491 mem->phys_offset = old.phys_offset;
492 mem->flags = 0;
494 err = kvm_set_user_memory_region(s, mem);
495 if (err) {
496 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
497 strerror(-err));
498 abort();
501 start_addr += old.memory_size;
502 phys_offset += old.memory_size;
503 size -= old.memory_size;
504 continue;
507 /* register prefix slot */
508 if (old.start_addr < start_addr) {
509 mem = kvm_alloc_slot(s);
510 mem->memory_size = start_addr - old.start_addr;
511 mem->start_addr = old.start_addr;
512 mem->phys_offset = old.phys_offset;
513 mem->flags = 0;
515 err = kvm_set_user_memory_region(s, mem);
516 if (err) {
517 fprintf(stderr, "%s: error registering prefix slot: %s\n",
518 __func__, strerror(-err));
519 abort();
523 /* register suffix slot */
524 if (old.start_addr + old.memory_size > start_addr + size) {
525 ram_addr_t size_delta;
527 mem = kvm_alloc_slot(s);
528 mem->start_addr = start_addr + size;
529 size_delta = mem->start_addr - old.start_addr;
530 mem->memory_size = old.memory_size - size_delta;
531 mem->phys_offset = old.phys_offset + size_delta;
532 mem->flags = 0;
534 err = kvm_set_user_memory_region(s, mem);
535 if (err) {
536 fprintf(stderr, "%s: error registering suffix slot: %s\n",
537 __func__, strerror(-err));
538 abort();
543 /* in case the KVM bug workaround already "consumed" the new slot */
544 if (!size)
545 return;
547 /* KVM does not need to know about this memory */
548 if (flags >= IO_MEM_UNASSIGNED)
549 return;
551 mem = kvm_alloc_slot(s);
552 mem->memory_size = size;
553 mem->start_addr = start_addr;
554 mem->phys_offset = phys_offset;
555 mem->flags = 0;
557 err = kvm_set_user_memory_region(s, mem);
558 if (err) {
559 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
560 strerror(-err));
561 abort();
565 #endif
567 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
568 target_phys_addr_t start_addr,
569 ram_addr_t size,
570 ram_addr_t phys_offset)
572 kvm_set_phys_mem(start_addr, size, phys_offset);
575 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
576 target_phys_addr_t start_addr,
577 target_phys_addr_t end_addr)
579 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
582 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
583 int enable)
585 return kvm_set_migration_log(enable);
588 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
589 .set_memory = kvm_client_set_memory,
590 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
591 .migration_log = kvm_client_migration_log,
595 void kvm_cpu_register_phys_memory_client(void)
597 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
600 #ifdef KVM_UPSTREAM
602 int kvm_init(int smp_cpus)
604 static const char upgrade_note[] =
605 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
606 "(see http://sourceforge.net/projects/kvm).\n";
607 KVMState *s;
608 int ret;
609 int i;
611 if (smp_cpus > 1) {
612 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
613 return -EINVAL;
616 s = qemu_mallocz(sizeof(KVMState));
618 #ifdef KVM_CAP_SET_GUEST_DEBUG
619 QTAILQ_INIT(&s->kvm_sw_breakpoints);
620 #endif
621 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
622 s->slots[i].slot = i;
624 s->vmfd = -1;
625 s->fd = qemu_open("/dev/kvm", O_RDWR);
626 if (s->fd == -1) {
627 fprintf(stderr, "Could not access KVM kernel module: %m\n");
628 ret = -errno;
629 goto err;
632 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
633 if (ret < KVM_API_VERSION) {
634 if (ret > 0)
635 ret = -EINVAL;
636 fprintf(stderr, "kvm version too old\n");
637 goto err;
640 if (ret > KVM_API_VERSION) {
641 ret = -EINVAL;
642 fprintf(stderr, "kvm version not supported\n");
643 goto err;
646 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
647 if (s->vmfd < 0) {
648 #ifdef TARGET_S390X
649 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
650 "your host kernel command line\n");
651 #endif
652 goto err;
655 /* initially, KVM allocated its own memory and we had to jump through
656 * hooks to make phys_ram_base point to this. Modern versions of KVM
657 * just use a user allocated buffer so we can use regular pages
658 * unmodified. Make sure we have a sufficiently modern version of KVM.
660 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
661 ret = -EINVAL;
662 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
663 upgrade_note);
664 goto err;
667 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
668 * destroyed properly. Since we rely on this capability, refuse to work
669 * with any kernel without this capability. */
670 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
671 ret = -EINVAL;
673 fprintf(stderr,
674 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
675 upgrade_note);
676 goto err;
679 s->coalesced_mmio = 0;
680 #ifdef KVM_CAP_COALESCED_MMIO
681 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
682 s->coalesced_mmio_ring = NULL;
683 #endif
685 s->broken_set_mem_region = 1;
686 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
687 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
688 if (ret > 0) {
689 s->broken_set_mem_region = 0;
691 #endif
693 s->vcpu_events = 0;
694 #ifdef KVM_CAP_VCPU_EVENTS
695 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
696 #endif
698 s->robust_singlestep = 0;
699 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
700 s->robust_singlestep =
701 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
702 #endif
704 s->debugregs = 0;
705 #ifdef KVM_CAP_DEBUGREGS
706 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
707 #endif
709 ret = kvm_arch_init(s, smp_cpus);
710 if (ret < 0)
711 goto err;
713 kvm_state = s;
714 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
716 return 0;
718 err:
719 if (s) {
720 if (s->vmfd != -1)
721 close(s->vmfd);
722 if (s->fd != -1)
723 close(s->fd);
725 qemu_free(s);
727 return ret;
729 #endif
731 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
732 uint32_t count)
734 int i;
735 uint8_t *ptr = data;
737 for (i = 0; i < count; i++) {
738 if (direction == KVM_EXIT_IO_IN) {
739 switch (size) {
740 case 1:
741 stb_p(ptr, cpu_inb(port));
742 break;
743 case 2:
744 stw_p(ptr, cpu_inw(port));
745 break;
746 case 4:
747 stl_p(ptr, cpu_inl(port));
748 break;
750 } else {
751 switch (size) {
752 case 1:
753 cpu_outb(port, ldub_p(ptr));
754 break;
755 case 2:
756 cpu_outw(port, lduw_p(ptr));
757 break;
758 case 4:
759 cpu_outl(port, ldl_p(ptr));
760 break;
764 ptr += size;
767 return 1;
770 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
771 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
774 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
775 int i;
777 fprintf(stderr, "KVM internal error. Suberror: %d\n",
778 run->internal.suberror);
780 for (i = 0; i < run->internal.ndata; ++i) {
781 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
782 i, (uint64_t)run->internal.data[i]);
785 cpu_dump_state(env, stderr, fprintf, 0);
786 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
787 fprintf(stderr, "emulation failure\n");
789 /* FIXME: Should trigger a qmp message to let management know
790 * something went wrong.
792 vm_stop(0);
794 #endif
796 void kvm_flush_coalesced_mmio_buffer(void)
798 #ifdef KVM_CAP_COALESCED_MMIO
799 KVMState *s = kvm_state;
800 if (s->coalesced_mmio_ring) {
801 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
802 while (ring->first != ring->last) {
803 struct kvm_coalesced_mmio *ent;
805 ent = &ring->coalesced_mmio[ring->first];
807 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
808 smp_wmb();
809 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
812 #endif
815 #ifdef KVM_UPSTREAM
817 void kvm_cpu_synchronize_state(CPUState *env)
819 if (!env->kvm_vcpu_dirty) {
820 kvm_arch_get_registers(env);
821 env->kvm_vcpu_dirty = 1;
825 void kvm_cpu_synchronize_post_reset(CPUState *env)
827 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
828 env->kvm_vcpu_dirty = 0;
831 void kvm_cpu_synchronize_post_init(CPUState *env)
833 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
834 env->kvm_vcpu_dirty = 0;
837 int kvm_cpu_exec(CPUState *env)
839 struct kvm_run *run = env->kvm_run;
840 int ret;
842 DPRINTF("kvm_cpu_exec()\n");
844 do {
845 #ifndef CONFIG_IOTHREAD
846 if (env->exit_request) {
847 DPRINTF("interrupt exit requested\n");
848 ret = 0;
849 break;
851 #endif
853 if (env->kvm_vcpu_dirty) {
854 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
855 env->kvm_vcpu_dirty = 0;
858 kvm_arch_pre_run(env, run);
859 qemu_mutex_unlock_iothread();
860 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
861 qemu_mutex_lock_iothread();
862 kvm_arch_post_run(env, run);
864 if (ret == -EINTR || ret == -EAGAIN) {
865 cpu_exit(env);
866 DPRINTF("io window exit\n");
867 ret = 0;
868 break;
871 if (ret < 0) {
872 DPRINTF("kvm run failed %s\n", strerror(-ret));
873 abort();
876 kvm_flush_coalesced_mmio_buffer();
878 ret = 0; /* exit loop */
879 switch (run->exit_reason) {
880 case KVM_EXIT_IO:
881 DPRINTF("handle_io\n");
882 ret = kvm_handle_io(run->io.port,
883 (uint8_t *)run + run->io.data_offset,
884 run->io.direction,
885 run->io.size,
886 run->io.count);
887 break;
888 case KVM_EXIT_MMIO:
889 DPRINTF("handle_mmio\n");
890 cpu_physical_memory_rw(run->mmio.phys_addr,
891 run->mmio.data,
892 run->mmio.len,
893 run->mmio.is_write);
894 ret = 1;
895 break;
896 case KVM_EXIT_IRQ_WINDOW_OPEN:
897 DPRINTF("irq_window_open\n");
898 break;
899 case KVM_EXIT_SHUTDOWN:
900 DPRINTF("shutdown\n");
901 qemu_system_reset_request();
902 ret = 1;
903 break;
904 case KVM_EXIT_UNKNOWN:
905 DPRINTF("kvm_exit_unknown\n");
906 break;
907 case KVM_EXIT_FAIL_ENTRY:
908 DPRINTF("kvm_exit_fail_entry\n");
909 break;
910 case KVM_EXIT_EXCEPTION:
911 DPRINTF("kvm_exit_exception\n");
912 break;
913 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
914 case KVM_EXIT_INTERNAL_ERROR:
915 kvm_handle_internal_error(env, run);
916 break;
917 #endif
918 case KVM_EXIT_DEBUG:
919 DPRINTF("kvm_exit_debug\n");
920 #ifdef KVM_CAP_SET_GUEST_DEBUG
921 if (kvm_arch_debug(&run->debug.arch)) {
922 gdb_set_stop_cpu(env);
923 vm_stop(EXCP_DEBUG);
924 env->exception_index = EXCP_DEBUG;
925 return 0;
927 /* re-enter, this exception was guest-internal */
928 ret = 1;
929 #endif /* KVM_CAP_SET_GUEST_DEBUG */
930 break;
931 default:
932 DPRINTF("kvm_arch_handle_exit\n");
933 ret = kvm_arch_handle_exit(env, run);
934 break;
936 } while (ret > 0);
938 if (env->exit_request) {
939 env->exit_request = 0;
940 env->exception_index = EXCP_INTERRUPT;
943 return ret;
946 #endif
947 int kvm_ioctl(KVMState *s, int type, ...)
949 int ret;
950 void *arg;
951 va_list ap;
953 va_start(ap, type);
954 arg = va_arg(ap, void *);
955 va_end(ap);
957 ret = ioctl(s->fd, type, arg);
958 if (ret == -1)
959 ret = -errno;
961 return ret;
964 int kvm_vm_ioctl(KVMState *s, int type, ...)
966 int ret;
967 void *arg;
968 va_list ap;
970 va_start(ap, type);
971 arg = va_arg(ap, void *);
972 va_end(ap);
974 ret = ioctl(s->vmfd, type, arg);
975 if (ret == -1)
976 ret = -errno;
978 return ret;
981 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
983 int ret;
984 void *arg;
985 va_list ap;
987 va_start(ap, type);
988 arg = va_arg(ap, void *);
989 va_end(ap);
991 ret = ioctl(env->kvm_fd, type, arg);
992 if (ret == -1)
993 ret = -errno;
995 return ret;
998 int kvm_has_sync_mmu(void)
1000 #ifdef KVM_CAP_SYNC_MMU
1001 KVMState *s = kvm_state;
1003 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1004 #else
1005 return 0;
1006 #endif
1009 int kvm_has_vcpu_events(void)
1011 return kvm_state->vcpu_events;
1014 int kvm_has_robust_singlestep(void)
1016 return kvm_state->robust_singlestep;
1019 int kvm_has_debugregs(void)
1021 return kvm_state->debugregs;
1024 void kvm_setup_guest_memory(void *start, size_t size)
1026 if (!kvm_has_sync_mmu()) {
1027 #ifdef MADV_DONTFORK
1028 int ret = madvise(start, size, MADV_DONTFORK);
1030 if (ret) {
1031 perror("madvice");
1032 exit(1);
1034 #else
1035 fprintf(stderr,
1036 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1037 exit(1);
1038 #endif
1042 #ifdef KVM_CAP_SET_GUEST_DEBUG
1044 #ifdef KVM_UPSTREAM
1045 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
1047 #ifdef CONFIG_IOTHREAD
1048 if (env != cpu_single_env) {
1049 abort();
1051 #endif
1052 func(data);
1054 #else /* !KVM_UPSTREAM */
1055 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data);
1056 #endif /* !KVM_UPSTREAM */
1058 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1059 target_ulong pc)
1061 struct kvm_sw_breakpoint *bp;
1063 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1064 if (bp->pc == pc)
1065 return bp;
1067 return NULL;
1070 int kvm_sw_breakpoints_active(CPUState *env)
1072 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1075 struct kvm_set_guest_debug_data {
1076 struct kvm_guest_debug dbg;
1077 CPUState *env;
1078 int err;
1081 static void kvm_invoke_set_guest_debug(void *data)
1083 struct kvm_set_guest_debug_data *dbg_data = data;
1084 CPUState *env = dbg_data->env;
1086 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1089 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1091 struct kvm_set_guest_debug_data data;
1093 data.dbg.control = reinject_trap;
1095 if (env->singlestep_enabled) {
1096 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1098 kvm_arch_update_guest_debug(env, &data.dbg);
1099 data.env = env;
1101 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1102 return data.err;
1105 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1106 target_ulong len, int type)
1108 struct kvm_sw_breakpoint *bp;
1109 CPUState *env;
1110 int err;
1112 if (type == GDB_BREAKPOINT_SW) {
1113 bp = kvm_find_sw_breakpoint(current_env, addr);
1114 if (bp) {
1115 bp->use_count++;
1116 return 0;
1119 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1120 if (!bp)
1121 return -ENOMEM;
1123 bp->pc = addr;
1124 bp->use_count = 1;
1125 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1126 if (err) {
1127 free(bp);
1128 return err;
1131 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1132 bp, entry);
1133 } else {
1134 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1135 if (err)
1136 return err;
1139 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1140 err = kvm_update_guest_debug(env, 0);
1141 if (err)
1142 return err;
1144 return 0;
1147 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1148 target_ulong len, int type)
1150 struct kvm_sw_breakpoint *bp;
1151 CPUState *env;
1152 int err;
1154 if (type == GDB_BREAKPOINT_SW) {
1155 bp = kvm_find_sw_breakpoint(current_env, addr);
1156 if (!bp)
1157 return -ENOENT;
1159 if (bp->use_count > 1) {
1160 bp->use_count--;
1161 return 0;
1164 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1165 if (err)
1166 return err;
1168 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1169 qemu_free(bp);
1170 } else {
1171 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1172 if (err)
1173 return err;
1176 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1177 err = kvm_update_guest_debug(env, 0);
1178 if (err)
1179 return err;
1181 return 0;
1184 void kvm_remove_all_breakpoints(CPUState *current_env)
1186 struct kvm_sw_breakpoint *bp, *next;
1187 KVMState *s = current_env->kvm_state;
1188 CPUState *env;
1190 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1191 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1192 /* Try harder to find a CPU that currently sees the breakpoint. */
1193 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1194 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1195 break;
1199 kvm_arch_remove_all_hw_breakpoints();
1201 for (env = first_cpu; env != NULL; env = env->next_cpu)
1202 kvm_update_guest_debug(env, 0);
1205 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1207 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1209 return -EINVAL;
1212 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1213 target_ulong len, int type)
1215 return -EINVAL;
1218 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1219 target_ulong len, int type)
1221 return -EINVAL;
1224 void kvm_remove_all_breakpoints(CPUState *current_env)
1227 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1229 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1231 struct kvm_signal_mask *sigmask;
1232 int r;
1234 if (!sigset)
1235 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1237 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1239 sigmask->len = 8;
1240 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1241 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1242 free(sigmask);
1244 return r;
1247 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1249 #ifdef KVM_IOEVENTFD
1250 struct kvm_ioeventfd kick = {
1251 .datamatch = val,
1252 .addr = addr,
1253 .len = 2,
1254 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1255 .fd = fd,
1257 int r;
1258 if (!kvm_enabled())
1259 return -ENOSYS;
1260 if (!assign)
1261 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1262 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1263 if (r < 0)
1264 return r;
1265 return 0;
1266 #else
1267 return -ENOSYS;
1268 #endif
1271 #if defined(KVM_IRQFD)
1272 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1274 struct kvm_irqfd irqfd = {
1275 .fd = fd,
1276 .gsi = gsi,
1277 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1279 int r;
1280 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1281 return -ENOSYS;
1283 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1284 if (r < 0)
1285 return r;
1286 return 0;
1288 #endif
1290 #undef PAGE_SIZE
1291 #include "qemu-kvm.c"