Merge branch 'vgabios-cvs'
[qemu-kvm/amd-iommu.git] / gdbstub.c
blobba6de5f9ae0084ddd6f595008dbdb091c0229c84
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-kvm.h"
37 #endif
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
42 #ifdef _WIN32
43 /* XXX: these constants may be independent of the host ones even for Unix */
44 #ifndef SIGTRAP
45 #define SIGTRAP 5
46 #endif
47 #ifndef SIGINT
48 #define SIGINT 2
49 #endif
50 #else
51 #include <signal.h>
52 #endif
54 //#define DEBUG_GDB
56 typedef struct GDBRegisterState {
57 int base_reg;
58 int num_regs;
59 gdb_reg_cb get_reg;
60 gdb_reg_cb set_reg;
61 const char *xml;
62 struct GDBRegisterState *next;
63 } GDBRegisterState;
65 enum RSState {
66 RS_IDLE,
67 RS_GETLINE,
68 RS_CHKSUM1,
69 RS_CHKSUM2,
70 RS_SYSCALL,
72 typedef struct GDBState {
73 CPUState *c_cpu; /* current CPU for step/continue ops */
74 CPUState *g_cpu; /* current CPU for other ops */
75 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
76 enum RSState state; /* parsing state */
77 char line_buf[MAX_PACKET_LENGTH];
78 int line_buf_index;
79 int line_csum;
80 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
81 int last_packet_len;
82 int signal;
83 #ifdef CONFIG_USER_ONLY
84 int fd;
85 int running_state;
86 #else
87 CharDriverState *chr;
88 #endif
89 } GDBState;
91 /* By default use no IRQs and no timers while single stepping so as to
92 * make single stepping like an ICE HW step.
94 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
96 static GDBState *gdbserver_state;
98 /* This is an ugly hack to cope with both new and old gdb.
99 If gdb sends qXfer:features:read then assume we're talking to a newish
100 gdb that understands target descriptions. */
101 static int gdb_has_xml;
103 #ifdef CONFIG_USER_ONLY
104 /* XXX: This is not thread safe. Do we care? */
105 static int gdbserver_fd = -1;
107 static int get_char(GDBState *s)
109 uint8_t ch;
110 int ret;
112 for(;;) {
113 ret = recv(s->fd, &ch, 1, 0);
114 if (ret < 0) {
115 if (errno == ECONNRESET)
116 s->fd = -1;
117 if (errno != EINTR && errno != EAGAIN)
118 return -1;
119 } else if (ret == 0) {
120 close(s->fd);
121 s->fd = -1;
122 return -1;
123 } else {
124 break;
127 return ch;
129 #endif
131 static gdb_syscall_complete_cb gdb_current_syscall_cb;
133 enum {
134 GDB_SYS_UNKNOWN,
135 GDB_SYS_ENABLED,
136 GDB_SYS_DISABLED,
137 } gdb_syscall_mode;
139 /* If gdb is connected when the first semihosting syscall occurs then use
140 remote gdb syscalls. Otherwise use native file IO. */
141 int use_gdb_syscalls(void)
143 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
144 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
145 : GDB_SYS_DISABLED);
147 return gdb_syscall_mode == GDB_SYS_ENABLED;
150 /* Resume execution. */
151 static inline void gdb_continue(GDBState *s)
153 #ifdef CONFIG_USER_ONLY
154 s->running_state = 1;
155 #else
156 vm_start();
157 #endif
160 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
162 #ifdef CONFIG_USER_ONLY
163 int ret;
165 while (len > 0) {
166 ret = send(s->fd, buf, len, 0);
167 if (ret < 0) {
168 if (errno != EINTR && errno != EAGAIN)
169 return;
170 } else {
171 buf += ret;
172 len -= ret;
175 #else
176 qemu_chr_write(s->chr, buf, len);
177 #endif
180 static inline int fromhex(int v)
182 if (v >= '0' && v <= '9')
183 return v - '0';
184 else if (v >= 'A' && v <= 'F')
185 return v - 'A' + 10;
186 else if (v >= 'a' && v <= 'f')
187 return v - 'a' + 10;
188 else
189 return 0;
192 static inline int tohex(int v)
194 if (v < 10)
195 return v + '0';
196 else
197 return v - 10 + 'a';
200 static void memtohex(char *buf, const uint8_t *mem, int len)
202 int i, c;
203 char *q;
204 q = buf;
205 for(i = 0; i < len; i++) {
206 c = mem[i];
207 *q++ = tohex(c >> 4);
208 *q++ = tohex(c & 0xf);
210 *q = '\0';
213 static void hextomem(uint8_t *mem, const char *buf, int len)
215 int i;
217 for(i = 0; i < len; i++) {
218 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
219 buf += 2;
223 /* return -1 if error, 0 if OK */
224 static int put_packet_binary(GDBState *s, const char *buf, int len)
226 int csum, i;
227 uint8_t *p;
229 for(;;) {
230 p = s->last_packet;
231 *(p++) = '$';
232 memcpy(p, buf, len);
233 p += len;
234 csum = 0;
235 for(i = 0; i < len; i++) {
236 csum += buf[i];
238 *(p++) = '#';
239 *(p++) = tohex((csum >> 4) & 0xf);
240 *(p++) = tohex((csum) & 0xf);
242 s->last_packet_len = p - s->last_packet;
243 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
245 #ifdef CONFIG_USER_ONLY
246 i = get_char(s);
247 if (i < 0)
248 return -1;
249 if (i == '+')
250 break;
251 #else
252 break;
253 #endif
255 return 0;
258 /* return -1 if error, 0 if OK */
259 static int put_packet(GDBState *s, const char *buf)
261 #ifdef DEBUG_GDB
262 printf("reply='%s'\n", buf);
263 #endif
265 return put_packet_binary(s, buf, strlen(buf));
268 /* The GDB remote protocol transfers values in target byte order. This means
269 we can use the raw memory access routines to access the value buffer.
270 Conveniently, these also handle the case where the buffer is mis-aligned.
272 #define GET_REG8(val) do { \
273 stb_p(mem_buf, val); \
274 return 1; \
275 } while(0)
276 #define GET_REG16(val) do { \
277 stw_p(mem_buf, val); \
278 return 2; \
279 } while(0)
280 #define GET_REG32(val) do { \
281 stl_p(mem_buf, val); \
282 return 4; \
283 } while(0)
284 #define GET_REG64(val) do { \
285 stq_p(mem_buf, val); \
286 return 8; \
287 } while(0)
289 #if TARGET_LONG_BITS == 64
290 #define GET_REGL(val) GET_REG64(val)
291 #define ldtul_p(addr) ldq_p(addr)
292 #else
293 #define GET_REGL(val) GET_REG32(val)
294 #define ldtul_p(addr) ldl_p(addr)
295 #endif
297 #if defined(TARGET_I386)
299 #ifdef TARGET_X86_64
300 static const int gpr_map[16] = {
301 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
302 8, 9, 10, 11, 12, 13, 14, 15
304 #else
305 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
306 #endif
308 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
310 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
312 if (n < CPU_NB_REGS) {
313 GET_REGL(env->regs[gpr_map[n]]);
314 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
315 /* FIXME: byteswap float values. */
316 #ifdef USE_X86LDOUBLE
317 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
318 #else
319 memset(mem_buf, 0, 10);
320 #endif
321 return 10;
322 } else if (n >= CPU_NB_REGS + 24) {
323 n -= CPU_NB_REGS + 24;
324 if (n < CPU_NB_REGS) {
325 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
326 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
327 return 16;
328 } else if (n == CPU_NB_REGS) {
329 GET_REG32(env->mxcsr);
331 } else {
332 n -= CPU_NB_REGS;
333 switch (n) {
334 case 0: GET_REGL(env->eip);
335 case 1: GET_REG32(env->eflags);
336 case 2: GET_REG32(env->segs[R_CS].selector);
337 case 3: GET_REG32(env->segs[R_SS].selector);
338 case 4: GET_REG32(env->segs[R_DS].selector);
339 case 5: GET_REG32(env->segs[R_ES].selector);
340 case 6: GET_REG32(env->segs[R_FS].selector);
341 case 7: GET_REG32(env->segs[R_GS].selector);
342 /* 8...15 x87 regs. */
343 case 16: GET_REG32(env->fpuc);
344 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
345 case 18: GET_REG32(0); /* ftag */
346 case 19: GET_REG32(0); /* fiseg */
347 case 20: GET_REG32(0); /* fioff */
348 case 21: GET_REG32(0); /* foseg */
349 case 22: GET_REG32(0); /* fooff */
350 case 23: GET_REG32(0); /* fop */
351 /* 24+ xmm regs. */
354 return 0;
357 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
359 uint32_t tmp;
361 if (i < CPU_NB_REGS) {
362 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
363 return sizeof(target_ulong);
364 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
365 i -= CPU_NB_REGS + 8;
366 #ifdef USE_X86LDOUBLE
367 memcpy(&env->fpregs[i], mem_buf, 10);
368 #endif
369 return 10;
370 } else if (i >= CPU_NB_REGS + 24) {
371 i -= CPU_NB_REGS + 24;
372 if (i < CPU_NB_REGS) {
373 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
374 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
375 return 16;
376 } else if (i == CPU_NB_REGS) {
377 env->mxcsr = ldl_p(mem_buf);
378 return 4;
380 } else {
381 i -= CPU_NB_REGS;
382 switch (i) {
383 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
384 case 1: env->eflags = ldl_p(mem_buf); return 4;
385 #if defined(CONFIG_USER_ONLY)
386 #define LOAD_SEG(index, sreg)\
387 tmp = ldl_p(mem_buf);\
388 if (tmp != env->segs[sreg].selector)\
389 cpu_x86_load_seg(env, sreg, tmp);
390 #else
391 /* FIXME: Honor segment registers. Needs to avoid raising an exception
392 when the selector is invalid. */
393 #define LOAD_SEG(index, sreg) do {} while(0)
394 #endif
395 case 2: LOAD_SEG(10, R_CS); return 4;
396 case 3: LOAD_SEG(11, R_SS); return 4;
397 case 4: LOAD_SEG(12, R_DS); return 4;
398 case 5: LOAD_SEG(13, R_ES); return 4;
399 case 6: LOAD_SEG(14, R_FS); return 4;
400 case 7: LOAD_SEG(15, R_GS); return 4;
401 /* 8...15 x87 regs. */
402 case 16: env->fpuc = ldl_p(mem_buf); return 4;
403 case 17:
404 tmp = ldl_p(mem_buf);
405 env->fpstt = (tmp >> 11) & 7;
406 env->fpus = tmp & ~0x3800;
407 return 4;
408 case 18: /* ftag */ return 4;
409 case 19: /* fiseg */ return 4;
410 case 20: /* fioff */ return 4;
411 case 21: /* foseg */ return 4;
412 case 22: /* fooff */ return 4;
413 case 23: /* fop */ return 4;
414 /* 24+ xmm regs. */
417 /* Unrecognised register. */
418 return 0;
421 #elif defined (TARGET_PPC)
423 #define NUM_CORE_REGS 71
425 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
427 if (n < 32) {
428 /* gprs */
429 GET_REGL(env->gpr[n]);
430 } else if (n < 64) {
431 /* fprs */
432 stfq_p(mem_buf, env->fpr[n-32]);
433 return 8;
434 } else {
435 switch (n) {
436 case 64: GET_REGL(env->nip);
437 case 65: GET_REGL(env->msr);
438 case 66:
440 uint32_t cr = 0;
441 int i;
442 for (i = 0; i < 8; i++)
443 cr |= env->crf[i] << (32 - ((i + 1) * 4));
444 GET_REG32(cr);
446 case 67: GET_REGL(env->lr);
447 case 68: GET_REGL(env->ctr);
448 case 69: GET_REGL(env->xer);
449 case 70: GET_REG32(0); /* fpscr */
452 return 0;
455 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
457 if (n < 32) {
458 /* gprs */
459 env->gpr[n] = ldtul_p(mem_buf);
460 return sizeof(target_ulong);
461 } else if (n < 64) {
462 /* fprs */
463 env->fpr[n-32] = ldfq_p(mem_buf);
464 return 8;
465 } else {
466 switch (n) {
467 case 64:
468 env->nip = ldtul_p(mem_buf);
469 return sizeof(target_ulong);
470 case 65:
471 ppc_store_msr(env, ldtul_p(mem_buf));
472 return sizeof(target_ulong);
473 case 66:
475 uint32_t cr = ldl_p(mem_buf);
476 int i;
477 for (i = 0; i < 8; i++)
478 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
479 return 4;
481 case 67:
482 env->lr = ldtul_p(mem_buf);
483 return sizeof(target_ulong);
484 case 68:
485 env->ctr = ldtul_p(mem_buf);
486 return sizeof(target_ulong);
487 case 69:
488 env->xer = ldtul_p(mem_buf);
489 return sizeof(target_ulong);
490 case 70:
491 /* fpscr */
492 return 4;
495 return 0;
498 #elif defined (TARGET_SPARC)
500 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
501 #define NUM_CORE_REGS 86
502 #else
503 #define NUM_CORE_REGS 73
504 #endif
506 #ifdef TARGET_ABI32
507 #define GET_REGA(val) GET_REG32(val)
508 #else
509 #define GET_REGA(val) GET_REGL(val)
510 #endif
512 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
514 if (n < 8) {
515 /* g0..g7 */
516 GET_REGA(env->gregs[n]);
518 if (n < 32) {
519 /* register window */
520 GET_REGA(env->regwptr[n - 8]);
522 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
523 if (n < 64) {
524 /* fprs */
525 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
527 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
528 switch (n) {
529 case 64: GET_REGA(env->y);
530 case 65: GET_REGA(GET_PSR(env));
531 case 66: GET_REGA(env->wim);
532 case 67: GET_REGA(env->tbr);
533 case 68: GET_REGA(env->pc);
534 case 69: GET_REGA(env->npc);
535 case 70: GET_REGA(env->fsr);
536 case 71: GET_REGA(0); /* csr */
537 case 72: GET_REGA(0);
539 #else
540 if (n < 64) {
541 /* f0-f31 */
542 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
544 if (n < 80) {
545 /* f32-f62 (double width, even numbers only) */
546 uint64_t val;
548 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
549 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
550 GET_REG64(val);
552 switch (n) {
553 case 80: GET_REGL(env->pc);
554 case 81: GET_REGL(env->npc);
555 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
556 ((env->asi & 0xff) << 24) |
557 ((env->pstate & 0xfff) << 8) |
558 GET_CWP64(env));
559 case 83: GET_REGL(env->fsr);
560 case 84: GET_REGL(env->fprs);
561 case 85: GET_REGL(env->y);
563 #endif
564 return 0;
567 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
569 #if defined(TARGET_ABI32)
570 abi_ulong tmp;
572 tmp = ldl_p(mem_buf);
573 #else
574 target_ulong tmp;
576 tmp = ldtul_p(mem_buf);
577 #endif
579 if (n < 8) {
580 /* g0..g7 */
581 env->gregs[n] = tmp;
582 } else if (n < 32) {
583 /* register window */
584 env->regwptr[n - 8] = tmp;
586 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
587 else if (n < 64) {
588 /* fprs */
589 *((uint32_t *)&env->fpr[n - 32]) = tmp;
590 } else {
591 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
592 switch (n) {
593 case 64: env->y = tmp; break;
594 case 65: PUT_PSR(env, tmp); break;
595 case 66: env->wim = tmp; break;
596 case 67: env->tbr = tmp; break;
597 case 68: env->pc = tmp; break;
598 case 69: env->npc = tmp; break;
599 case 70: env->fsr = tmp; break;
600 default: return 0;
603 return 4;
604 #else
605 else if (n < 64) {
606 /* f0-f31 */
607 env->fpr[n] = ldfl_p(mem_buf);
608 return 4;
609 } else if (n < 80) {
610 /* f32-f62 (double width, even numbers only) */
611 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
612 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
613 } else {
614 switch (n) {
615 case 80: env->pc = tmp; break;
616 case 81: env->npc = tmp; break;
617 case 82:
618 PUT_CCR(env, tmp >> 32);
619 env->asi = (tmp >> 24) & 0xff;
620 env->pstate = (tmp >> 8) & 0xfff;
621 PUT_CWP64(env, tmp & 0xff);
622 break;
623 case 83: env->fsr = tmp; break;
624 case 84: env->fprs = tmp; break;
625 case 85: env->y = tmp; break;
626 default: return 0;
629 return 8;
630 #endif
632 #elif defined (TARGET_ARM)
634 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
635 whatever the target description contains. Due to a historical mishap
636 the FPA registers appear in between core integer regs and the CPSR.
637 We hack round this by giving the FPA regs zero size when talking to a
638 newer gdb. */
639 #define NUM_CORE_REGS 26
640 #define GDB_CORE_XML "arm-core.xml"
642 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
644 if (n < 16) {
645 /* Core integer register. */
646 GET_REG32(env->regs[n]);
648 if (n < 24) {
649 /* FPA registers. */
650 if (gdb_has_xml)
651 return 0;
652 memset(mem_buf, 0, 12);
653 return 12;
655 switch (n) {
656 case 24:
657 /* FPA status register. */
658 if (gdb_has_xml)
659 return 0;
660 GET_REG32(0);
661 case 25:
662 /* CPSR */
663 GET_REG32(cpsr_read(env));
665 /* Unknown register. */
666 return 0;
669 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
671 uint32_t tmp;
673 tmp = ldl_p(mem_buf);
675 /* Mask out low bit of PC to workaround gdb bugs. This will probably
676 cause problems if we ever implement the Jazelle DBX extensions. */
677 if (n == 15)
678 tmp &= ~1;
680 if (n < 16) {
681 /* Core integer register. */
682 env->regs[n] = tmp;
683 return 4;
685 if (n < 24) { /* 16-23 */
686 /* FPA registers (ignored). */
687 if (gdb_has_xml)
688 return 0;
689 return 12;
691 switch (n) {
692 case 24:
693 /* FPA status register (ignored). */
694 if (gdb_has_xml)
695 return 0;
696 return 4;
697 case 25:
698 /* CPSR */
699 cpsr_write (env, tmp, 0xffffffff);
700 return 4;
702 /* Unknown register. */
703 return 0;
706 #elif defined (TARGET_M68K)
708 #define NUM_CORE_REGS 18
710 #define GDB_CORE_XML "cf-core.xml"
712 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
714 if (n < 8) {
715 /* D0-D7 */
716 GET_REG32(env->dregs[n]);
717 } else if (n < 16) {
718 /* A0-A7 */
719 GET_REG32(env->aregs[n - 8]);
720 } else {
721 switch (n) {
722 case 16: GET_REG32(env->sr);
723 case 17: GET_REG32(env->pc);
726 /* FP registers not included here because they vary between
727 ColdFire and m68k. Use XML bits for these. */
728 return 0;
731 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
733 uint32_t tmp;
735 tmp = ldl_p(mem_buf);
737 if (n < 8) {
738 /* D0-D7 */
739 env->dregs[n] = tmp;
740 } else if (n < 8) {
741 /* A0-A7 */
742 env->aregs[n - 8] = tmp;
743 } else {
744 switch (n) {
745 case 16: env->sr = tmp; break;
746 case 17: env->pc = tmp; break;
747 default: return 0;
750 return 4;
752 #elif defined (TARGET_MIPS)
754 #define NUM_CORE_REGS 73
756 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
758 if (n < 32) {
759 GET_REGL(env->active_tc.gpr[n]);
761 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
762 if (n >= 38 && n < 70) {
763 if (env->CP0_Status & (1 << CP0St_FR))
764 GET_REGL(env->active_fpu.fpr[n - 38].d);
765 else
766 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
768 switch (n) {
769 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
770 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
773 switch (n) {
774 case 32: GET_REGL((int32_t)env->CP0_Status);
775 case 33: GET_REGL(env->active_tc.LO[0]);
776 case 34: GET_REGL(env->active_tc.HI[0]);
777 case 35: GET_REGL(env->CP0_BadVAddr);
778 case 36: GET_REGL((int32_t)env->CP0_Cause);
779 case 37: GET_REGL(env->active_tc.PC);
780 case 72: GET_REGL(0); /* fp */
781 case 89: GET_REGL((int32_t)env->CP0_PRid);
783 if (n >= 73 && n <= 88) {
784 /* 16 embedded regs. */
785 GET_REGL(0);
788 return 0;
791 /* convert MIPS rounding mode in FCR31 to IEEE library */
792 static unsigned int ieee_rm[] =
794 float_round_nearest_even,
795 float_round_to_zero,
796 float_round_up,
797 float_round_down
799 #define RESTORE_ROUNDING_MODE \
800 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
802 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
804 target_ulong tmp;
806 tmp = ldtul_p(mem_buf);
808 if (n < 32) {
809 env->active_tc.gpr[n] = tmp;
810 return sizeof(target_ulong);
812 if (env->CP0_Config1 & (1 << CP0C1_FP)
813 && n >= 38 && n < 73) {
814 if (n < 70) {
815 if (env->CP0_Status & (1 << CP0St_FR))
816 env->active_fpu.fpr[n - 38].d = tmp;
817 else
818 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
820 switch (n) {
821 case 70:
822 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
823 /* set rounding mode */
824 RESTORE_ROUNDING_MODE;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
828 #endif
829 break;
830 case 71: env->active_fpu.fcr0 = tmp; break;
832 return sizeof(target_ulong);
834 switch (n) {
835 case 32: env->CP0_Status = tmp; break;
836 case 33: env->active_tc.LO[0] = tmp; break;
837 case 34: env->active_tc.HI[0] = tmp; break;
838 case 35: env->CP0_BadVAddr = tmp; break;
839 case 36: env->CP0_Cause = tmp; break;
840 case 37: env->active_tc.PC = tmp; break;
841 case 72: /* fp, ignored */ break;
842 default:
843 if (n > 89)
844 return 0;
845 /* Other registers are readonly. Ignore writes. */
846 break;
849 return sizeof(target_ulong);
851 #elif defined (TARGET_SH4)
853 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
854 /* FIXME: We should use XML for this. */
856 #define NUM_CORE_REGS 59
858 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
860 if (n < 8) {
861 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
862 GET_REGL(env->gregs[n + 16]);
863 } else {
864 GET_REGL(env->gregs[n]);
866 } else if (n < 16) {
867 GET_REGL(env->gregs[n - 8]);
868 } else if (n >= 25 && n < 41) {
869 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
870 } else if (n >= 43 && n < 51) {
871 GET_REGL(env->gregs[n - 43]);
872 } else if (n >= 51 && n < 59) {
873 GET_REGL(env->gregs[n - (51 - 16)]);
875 switch (n) {
876 case 16: GET_REGL(env->pc);
877 case 17: GET_REGL(env->pr);
878 case 18: GET_REGL(env->gbr);
879 case 19: GET_REGL(env->vbr);
880 case 20: GET_REGL(env->mach);
881 case 21: GET_REGL(env->macl);
882 case 22: GET_REGL(env->sr);
883 case 23: GET_REGL(env->fpul);
884 case 24: GET_REGL(env->fpscr);
885 case 41: GET_REGL(env->ssr);
886 case 42: GET_REGL(env->spc);
889 return 0;
892 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
894 uint32_t tmp;
896 tmp = ldl_p(mem_buf);
898 if (n < 8) {
899 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
900 env->gregs[n + 16] = tmp;
901 } else {
902 env->gregs[n] = tmp;
904 return 4;
905 } else if (n < 16) {
906 env->gregs[n - 8] = tmp;
907 return 4;
908 } else if (n >= 25 && n < 41) {
909 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
910 } else if (n >= 43 && n < 51) {
911 env->gregs[n - 43] = tmp;
912 return 4;
913 } else if (n >= 51 && n < 59) {
914 env->gregs[n - (51 - 16)] = tmp;
915 return 4;
917 switch (n) {
918 case 16: env->pc = tmp;
919 case 17: env->pr = tmp;
920 case 18: env->gbr = tmp;
921 case 19: env->vbr = tmp;
922 case 20: env->mach = tmp;
923 case 21: env->macl = tmp;
924 case 22: env->sr = tmp;
925 case 23: env->fpul = tmp;
926 case 24: env->fpscr = tmp;
927 case 41: env->ssr = tmp;
928 case 42: env->spc = tmp;
929 default: return 0;
932 return 4;
934 #elif defined (TARGET_CRIS)
936 #define NUM_CORE_REGS 49
938 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
940 uint8_t srs;
942 srs = env->pregs[PR_SRS];
943 if (n < 16) {
944 GET_REG32(env->regs[n]);
947 if (n >= 21 && n < 32) {
948 GET_REG32(env->pregs[n - 16]);
950 if (n >= 33 && n < 49) {
951 GET_REG32(env->sregs[srs][n - 33]);
953 switch (n) {
954 case 16: GET_REG8(env->pregs[0]);
955 case 17: GET_REG8(env->pregs[1]);
956 case 18: GET_REG32(env->pregs[2]);
957 case 19: GET_REG8(srs);
958 case 20: GET_REG16(env->pregs[4]);
959 case 32: GET_REG32(env->pc);
962 return 0;
965 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
967 uint32_t tmp;
969 if (n > 49)
970 return 0;
972 tmp = ldl_p(mem_buf);
974 if (n < 16) {
975 env->regs[n] = tmp;
978 if (n >= 21 && n < 32) {
979 env->pregs[n - 16] = tmp;
982 /* FIXME: Should support function regs be writable? */
983 switch (n) {
984 case 16: return 1;
985 case 17: return 1;
986 case 18: env->pregs[PR_PID] = tmp; break;
987 case 19: return 1;
988 case 20: return 2;
989 case 32: env->pc = tmp; break;
992 return 4;
994 #elif defined (TARGET_ALPHA)
996 #define NUM_CORE_REGS 65
998 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1000 if (n < 31) {
1001 GET_REGL(env->ir[n]);
1003 else if (n == 31) {
1004 GET_REGL(0);
1006 else if (n<63) {
1007 uint64_t val;
1009 val=*((uint64_t *)&env->fir[n-32]);
1010 GET_REGL(val);
1012 else if (n==63) {
1013 GET_REGL(env->fpcr);
1015 else if (n==64) {
1016 GET_REGL(env->pc);
1018 else {
1019 GET_REGL(0);
1022 return 0;
1025 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1027 target_ulong tmp;
1028 tmp = ldtul_p(mem_buf);
1030 if (n < 31) {
1031 env->ir[n] = tmp;
1034 if (n > 31 && n < 63) {
1035 env->fir[n - 32] = ldfl_p(mem_buf);
1038 if (n == 64 ) {
1039 env->pc=tmp;
1042 return 8;
1044 #else
1046 #define NUM_CORE_REGS 0
1048 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1050 return 0;
1053 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1055 return 0;
1058 #endif
1060 static int num_g_regs = NUM_CORE_REGS;
1062 #ifdef GDB_CORE_XML
1063 /* Encode data using the encoding for 'x' packets. */
1064 static int memtox(char *buf, const char *mem, int len)
1066 char *p = buf;
1067 char c;
1069 while (len--) {
1070 c = *(mem++);
1071 switch (c) {
1072 case '#': case '$': case '*': case '}':
1073 *(p++) = '}';
1074 *(p++) = c ^ 0x20;
1075 break;
1076 default:
1077 *(p++) = c;
1078 break;
1081 return p - buf;
1084 static const char *get_feature_xml(const char *p, const char **newp)
1086 extern const char *const xml_builtin[][2];
1087 size_t len;
1088 int i;
1089 const char *name;
1090 static char target_xml[1024];
1092 len = 0;
1093 while (p[len] && p[len] != ':')
1094 len++;
1095 *newp = p + len;
1097 name = NULL;
1098 if (strncmp(p, "target.xml", len) == 0) {
1099 /* Generate the XML description for this CPU. */
1100 if (!target_xml[0]) {
1101 GDBRegisterState *r;
1103 snprintf(target_xml, sizeof(target_xml),
1104 "<?xml version=\"1.0\"?>"
1105 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1106 "<target>"
1107 "<xi:include href=\"%s\"/>",
1108 GDB_CORE_XML);
1110 for (r = first_cpu->gdb_regs; r; r = r->next) {
1111 strcat(target_xml, "<xi:include href=\"");
1112 strcat(target_xml, r->xml);
1113 strcat(target_xml, "\"/>");
1115 strcat(target_xml, "</target>");
1117 return target_xml;
1119 for (i = 0; ; i++) {
1120 name = xml_builtin[i][0];
1121 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1122 break;
1124 return name ? xml_builtin[i][1] : NULL;
1126 #endif
1128 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1130 GDBRegisterState *r;
1132 if (reg < NUM_CORE_REGS)
1133 return cpu_gdb_read_register(env, mem_buf, reg);
1135 for (r = env->gdb_regs; r; r = r->next) {
1136 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1137 return r->get_reg(env, mem_buf, reg - r->base_reg);
1140 return 0;
1143 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1145 GDBRegisterState *r;
1147 if (reg < NUM_CORE_REGS)
1148 return cpu_gdb_write_register(env, mem_buf, reg);
1150 for (r = env->gdb_regs; r; r = r->next) {
1151 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1152 return r->set_reg(env, mem_buf, reg - r->base_reg);
1155 return 0;
1158 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1159 specifies the first register number and these registers are included in
1160 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1161 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1164 void gdb_register_coprocessor(CPUState * env,
1165 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1166 int num_regs, const char *xml, int g_pos)
1168 GDBRegisterState *s;
1169 GDBRegisterState **p;
1170 static int last_reg = NUM_CORE_REGS;
1172 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1173 s->base_reg = last_reg;
1174 s->num_regs = num_regs;
1175 s->get_reg = get_reg;
1176 s->set_reg = set_reg;
1177 s->xml = xml;
1178 p = &env->gdb_regs;
1179 while (*p) {
1180 /* Check for duplicates. */
1181 if (strcmp((*p)->xml, xml) == 0)
1182 return;
1183 p = &(*p)->next;
1185 /* Add to end of list. */
1186 last_reg += num_regs;
1187 *p = s;
1188 if (g_pos) {
1189 if (g_pos != s->base_reg) {
1190 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1191 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1192 } else {
1193 num_g_regs = last_reg;
1198 #ifndef CONFIG_USER_ONLY
1199 static const int xlat_gdb_type[] = {
1200 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1201 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1202 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1204 #endif
1206 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1208 CPUState *env;
1209 int err = 0;
1211 if (kvm_enabled())
1212 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1214 switch (type) {
1215 case GDB_BREAKPOINT_SW:
1216 case GDB_BREAKPOINT_HW:
1217 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1218 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1219 if (err)
1220 break;
1222 return err;
1223 #ifndef CONFIG_USER_ONLY
1224 case GDB_WATCHPOINT_WRITE:
1225 case GDB_WATCHPOINT_READ:
1226 case GDB_WATCHPOINT_ACCESS:
1227 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1228 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1229 NULL);
1230 if (err)
1231 break;
1233 return err;
1234 #endif
1235 default:
1236 return -ENOSYS;
1240 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1242 CPUState *env;
1243 int err = 0;
1245 if (kvm_enabled())
1246 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1248 switch (type) {
1249 case GDB_BREAKPOINT_SW:
1250 case GDB_BREAKPOINT_HW:
1251 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1252 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1253 if (err)
1254 break;
1256 return err;
1257 #ifndef CONFIG_USER_ONLY
1258 case GDB_WATCHPOINT_WRITE:
1259 case GDB_WATCHPOINT_READ:
1260 case GDB_WATCHPOINT_ACCESS:
1261 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1262 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1263 if (err)
1264 break;
1266 return err;
1267 #endif
1268 default:
1269 return -ENOSYS;
1273 static void gdb_breakpoint_remove_all(void)
1275 CPUState *env;
1277 if (kvm_enabled()) {
1278 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1279 return;
1282 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1283 cpu_breakpoint_remove_all(env, BP_GDB);
1284 #ifndef CONFIG_USER_ONLY
1285 cpu_watchpoint_remove_all(env, BP_GDB);
1286 #endif
1290 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1292 CPUState *env;
1293 const char *p;
1294 int ch, reg_size, type, res, thread;
1295 char buf[MAX_PACKET_LENGTH];
1296 uint8_t mem_buf[MAX_PACKET_LENGTH];
1297 uint8_t *registers;
1298 target_ulong addr, len;
1300 #ifdef DEBUG_GDB
1301 printf("command='%s'\n", line_buf);
1302 #endif
1303 p = line_buf;
1304 ch = *p++;
1305 switch(ch) {
1306 case '?':
1307 /* TODO: Make this return the correct value for user-mode. */
1308 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", SIGTRAP,
1309 s->c_cpu->cpu_index+1);
1310 put_packet(s, buf);
1311 /* Remove all the breakpoints when this query is issued,
1312 * because gdb is doing and initial connect and the state
1313 * should be cleaned up.
1315 gdb_breakpoint_remove_all();
1316 break;
1317 case 'c':
1318 if (*p != '\0') {
1319 addr = strtoull(p, (char **)&p, 16);
1320 #if defined(TARGET_I386)
1321 s->c_cpu->eip = addr;
1322 kvm_load_registers(s->c_cpu);
1323 #elif defined (TARGET_PPC)
1324 s->c_cpu->nip = addr;
1325 kvm_load_registers(s->c_cpu);
1326 #elif defined (TARGET_SPARC)
1327 s->c_cpu->pc = addr;
1328 s->c_cpu->npc = addr + 4;
1329 #elif defined (TARGET_ARM)
1330 s->c_cpu->regs[15] = addr;
1331 #elif defined (TARGET_SH4)
1332 s->c_cpu->pc = addr;
1333 #elif defined (TARGET_MIPS)
1334 s->c_cpu->active_tc.PC = addr;
1335 #elif defined (TARGET_CRIS)
1336 s->c_cpu->pc = addr;
1337 #elif defined (TARGET_ALPHA)
1338 s->c_cpu->pc = addr;
1339 #endif
1341 gdb_continue(s);
1342 return RS_IDLE;
1343 case 'C':
1344 s->signal = strtoul(p, (char **)&p, 16);
1345 gdb_continue(s);
1346 return RS_IDLE;
1347 case 'k':
1348 /* Kill the target */
1349 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1350 exit(0);
1351 case 'D':
1352 /* Detach packet */
1353 gdb_breakpoint_remove_all();
1354 gdb_continue(s);
1355 put_packet(s, "OK");
1356 break;
1357 case 's':
1358 if (*p != '\0') {
1359 addr = strtoull(p, (char **)&p, 16);
1360 #if defined(TARGET_I386)
1361 s->c_cpu->eip = addr;
1362 kvm_load_registers(s->c_cpu);
1363 #elif defined (TARGET_PPC)
1364 s->c_cpu->nip = addr;
1365 kvm_load_registers(s->c_cpu);
1366 #elif defined (TARGET_SPARC)
1367 s->c_cpu->pc = addr;
1368 s->c_cpu->npc = addr + 4;
1369 #elif defined (TARGET_ARM)
1370 s->c_cpu->regs[15] = addr;
1371 #elif defined (TARGET_SH4)
1372 s->c_cpu->pc = addr;
1373 #elif defined (TARGET_MIPS)
1374 s->c_cpu->active_tc.PC = addr;
1375 #elif defined (TARGET_CRIS)
1376 s->c_cpu->pc = addr;
1377 #elif defined (TARGET_ALPHA)
1378 s->c_cpu->pc = addr;
1379 #endif
1381 cpu_single_step(s->c_cpu, sstep_flags);
1382 gdb_continue(s);
1383 return RS_IDLE;
1384 case 'F':
1386 target_ulong ret;
1387 target_ulong err;
1389 ret = strtoull(p, (char **)&p, 16);
1390 if (*p == ',') {
1391 p++;
1392 err = strtoull(p, (char **)&p, 16);
1393 } else {
1394 err = 0;
1396 if (*p == ',')
1397 p++;
1398 type = *p;
1399 if (gdb_current_syscall_cb)
1400 gdb_current_syscall_cb(s->c_cpu, ret, err);
1401 if (type == 'C') {
1402 put_packet(s, "T02");
1403 } else {
1404 gdb_continue(s);
1407 break;
1408 case 'g':
1409 kvm_save_registers(s->g_cpu);
1410 len = 0;
1411 for (addr = 0; addr < num_g_regs; addr++) {
1412 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1413 len += reg_size;
1415 memtohex(buf, mem_buf, len);
1416 put_packet(s, buf);
1417 break;
1418 case 'G':
1419 registers = mem_buf;
1420 len = strlen(p) / 2;
1421 hextomem((uint8_t *)registers, p, len);
1422 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1423 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1424 len -= reg_size;
1425 registers += reg_size;
1427 kvm_load_registers(s->g_cpu);
1428 put_packet(s, "OK");
1429 break;
1430 case 'm':
1431 addr = strtoull(p, (char **)&p, 16);
1432 if (*p == ',')
1433 p++;
1434 len = strtoull(p, NULL, 16);
1435 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1436 put_packet (s, "E14");
1437 } else {
1438 memtohex(buf, mem_buf, len);
1439 put_packet(s, buf);
1441 break;
1442 case 'M':
1443 addr = strtoull(p, (char **)&p, 16);
1444 if (*p == ',')
1445 p++;
1446 len = strtoull(p, (char **)&p, 16);
1447 if (*p == ':')
1448 p++;
1449 hextomem(mem_buf, p, len);
1450 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1451 put_packet(s, "E14");
1452 else
1453 put_packet(s, "OK");
1454 break;
1455 case 'p':
1456 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1457 This works, but can be very slow. Anything new enough to
1458 understand XML also knows how to use this properly. */
1459 if (!gdb_has_xml)
1460 goto unknown_command;
1461 addr = strtoull(p, (char **)&p, 16);
1462 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1463 if (reg_size) {
1464 memtohex(buf, mem_buf, reg_size);
1465 put_packet(s, buf);
1466 } else {
1467 put_packet(s, "E14");
1469 break;
1470 case 'P':
1471 if (!gdb_has_xml)
1472 goto unknown_command;
1473 addr = strtoull(p, (char **)&p, 16);
1474 if (*p == '=')
1475 p++;
1476 reg_size = strlen(p) / 2;
1477 hextomem(mem_buf, p, reg_size);
1478 gdb_write_register(s->g_cpu, mem_buf, addr);
1479 put_packet(s, "OK");
1480 break;
1481 case 'Z':
1482 case 'z':
1483 type = strtoul(p, (char **)&p, 16);
1484 if (*p == ',')
1485 p++;
1486 addr = strtoull(p, (char **)&p, 16);
1487 if (*p == ',')
1488 p++;
1489 len = strtoull(p, (char **)&p, 16);
1490 if (ch == 'Z')
1491 res = gdb_breakpoint_insert(addr, len, type);
1492 else
1493 res = gdb_breakpoint_remove(addr, len, type);
1494 if (res >= 0)
1495 put_packet(s, "OK");
1496 else if (res == -ENOSYS)
1497 put_packet(s, "");
1498 else
1499 put_packet(s, "E22");
1500 break;
1501 case 'H':
1502 type = *p++;
1503 thread = strtoull(p, (char **)&p, 16);
1504 if (thread == -1 || thread == 0) {
1505 put_packet(s, "OK");
1506 break;
1508 for (env = first_cpu; env != NULL; env = env->next_cpu)
1509 if (env->cpu_index + 1 == thread)
1510 break;
1511 if (env == NULL) {
1512 put_packet(s, "E22");
1513 break;
1515 switch (type) {
1516 case 'c':
1517 s->c_cpu = env;
1518 put_packet(s, "OK");
1519 break;
1520 case 'g':
1521 s->g_cpu = env;
1522 put_packet(s, "OK");
1523 break;
1524 default:
1525 put_packet(s, "E22");
1526 break;
1528 break;
1529 case 'T':
1530 thread = strtoull(p, (char **)&p, 16);
1531 #ifndef CONFIG_USER_ONLY
1532 if (thread > 0 && thread < smp_cpus + 1)
1533 #else
1534 if (thread == 1)
1535 #endif
1536 put_packet(s, "OK");
1537 else
1538 put_packet(s, "E22");
1539 break;
1540 case 'q':
1541 case 'Q':
1542 /* parse any 'q' packets here */
1543 if (!strcmp(p,"qemu.sstepbits")) {
1544 /* Query Breakpoint bit definitions */
1545 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1546 SSTEP_ENABLE,
1547 SSTEP_NOIRQ,
1548 SSTEP_NOTIMER);
1549 put_packet(s, buf);
1550 break;
1551 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1552 /* Display or change the sstep_flags */
1553 p += 10;
1554 if (*p != '=') {
1555 /* Display current setting */
1556 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1557 put_packet(s, buf);
1558 break;
1560 p++;
1561 type = strtoul(p, (char **)&p, 16);
1562 sstep_flags = type;
1563 put_packet(s, "OK");
1564 break;
1565 } else if (strcmp(p,"C") == 0) {
1566 /* "Current thread" remains vague in the spec, so always return
1567 * the first CPU (gdb returns the first thread). */
1568 put_packet(s, "QC1");
1569 break;
1570 } else if (strcmp(p,"fThreadInfo") == 0) {
1571 s->query_cpu = first_cpu;
1572 goto report_cpuinfo;
1573 } else if (strcmp(p,"sThreadInfo") == 0) {
1574 report_cpuinfo:
1575 if (s->query_cpu) {
1576 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1577 put_packet(s, buf);
1578 s->query_cpu = s->query_cpu->next_cpu;
1579 } else
1580 put_packet(s, "l");
1581 break;
1582 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1583 thread = strtoull(p+16, (char **)&p, 16);
1584 for (env = first_cpu; env != NULL; env = env->next_cpu)
1585 if (env->cpu_index + 1 == thread) {
1586 kvm_save_registers(env);
1587 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1588 "CPU#%d [%s]", env->cpu_index,
1589 env->halted ? "halted " : "running");
1590 memtohex(buf, mem_buf, len);
1591 put_packet(s, buf);
1592 break;
1594 break;
1596 #ifdef CONFIG_LINUX_USER
1597 else if (strncmp(p, "Offsets", 7) == 0) {
1598 TaskState *ts = s->c_cpu->opaque;
1600 snprintf(buf, sizeof(buf),
1601 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1602 ";Bss=" TARGET_ABI_FMT_lx,
1603 ts->info->code_offset,
1604 ts->info->data_offset,
1605 ts->info->data_offset);
1606 put_packet(s, buf);
1607 break;
1609 #endif
1610 if (strncmp(p, "Supported", 9) == 0) {
1611 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1612 #ifdef GDB_CORE_XML
1613 strcat(buf, ";qXfer:features:read+");
1614 #endif
1615 put_packet(s, buf);
1616 break;
1618 #ifdef GDB_CORE_XML
1619 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1620 const char *xml;
1621 target_ulong total_len;
1623 gdb_has_xml = 1;
1624 p += 19;
1625 xml = get_feature_xml(p, &p);
1626 if (!xml) {
1627 snprintf(buf, sizeof(buf), "E00");
1628 put_packet(s, buf);
1629 break;
1632 if (*p == ':')
1633 p++;
1634 addr = strtoul(p, (char **)&p, 16);
1635 if (*p == ',')
1636 p++;
1637 len = strtoul(p, (char **)&p, 16);
1639 total_len = strlen(xml);
1640 if (addr > total_len) {
1641 snprintf(buf, sizeof(buf), "E00");
1642 put_packet(s, buf);
1643 break;
1645 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1646 len = (MAX_PACKET_LENGTH - 5) / 2;
1647 if (len < total_len - addr) {
1648 buf[0] = 'm';
1649 len = memtox(buf + 1, xml + addr, len);
1650 } else {
1651 buf[0] = 'l';
1652 len = memtox(buf + 1, xml + addr, total_len - addr);
1654 put_packet_binary(s, buf, len + 1);
1655 break;
1657 #endif
1658 /* Unrecognised 'q' command. */
1659 goto unknown_command;
1661 default:
1662 unknown_command:
1663 /* put empty packet */
1664 buf[0] = '\0';
1665 put_packet(s, buf);
1666 break;
1668 return RS_IDLE;
1671 void gdb_set_stop_cpu(CPUState *env)
1673 gdbserver_state->c_cpu = env;
1674 gdbserver_state->g_cpu = env;
1677 #ifndef CONFIG_USER_ONLY
1678 static void gdb_vm_stopped(void *opaque, int reason)
1680 GDBState *s = gdbserver_state;
1681 CPUState *env = s->c_cpu;
1682 char buf[256];
1683 const char *type;
1684 int ret;
1686 if (s->state == RS_SYSCALL)
1687 return;
1689 /* disable single step if it was enable */
1690 cpu_single_step(env, 0);
1692 if (reason == EXCP_DEBUG) {
1693 if (env->watchpoint_hit) {
1694 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1695 case BP_MEM_READ:
1696 type = "r";
1697 break;
1698 case BP_MEM_ACCESS:
1699 type = "a";
1700 break;
1701 default:
1702 type = "";
1703 break;
1705 snprintf(buf, sizeof(buf),
1706 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1707 SIGTRAP, env->cpu_index+1, type,
1708 env->watchpoint_hit->vaddr);
1709 put_packet(s, buf);
1710 env->watchpoint_hit = NULL;
1711 return;
1713 tb_flush(env);
1714 ret = SIGTRAP;
1715 } else if (reason == EXCP_INTERRUPT) {
1716 ret = SIGINT;
1717 } else {
1718 ret = 0;
1720 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1721 put_packet(s, buf);
1723 #endif
1725 /* Send a gdb syscall request.
1726 This accepts limited printf-style format specifiers, specifically:
1727 %x - target_ulong argument printed in hex.
1728 %lx - 64-bit argument printed in hex.
1729 %s - string pointer (target_ulong) and length (int) pair. */
1730 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1732 va_list va;
1733 char buf[256];
1734 char *p;
1735 target_ulong addr;
1736 uint64_t i64;
1737 GDBState *s;
1739 s = gdbserver_state;
1740 if (!s)
1741 return;
1742 gdb_current_syscall_cb = cb;
1743 s->state = RS_SYSCALL;
1744 #ifndef CONFIG_USER_ONLY
1745 vm_stop(EXCP_DEBUG);
1746 #endif
1747 s->state = RS_IDLE;
1748 va_start(va, fmt);
1749 p = buf;
1750 *(p++) = 'F';
1751 while (*fmt) {
1752 if (*fmt == '%') {
1753 fmt++;
1754 switch (*fmt++) {
1755 case 'x':
1756 addr = va_arg(va, target_ulong);
1757 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1758 break;
1759 case 'l':
1760 if (*(fmt++) != 'x')
1761 goto bad_format;
1762 i64 = va_arg(va, uint64_t);
1763 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1764 break;
1765 case 's':
1766 addr = va_arg(va, target_ulong);
1767 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1768 addr, va_arg(va, int));
1769 break;
1770 default:
1771 bad_format:
1772 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1773 fmt - 1);
1774 break;
1776 } else {
1777 *(p++) = *(fmt++);
1780 *p = 0;
1781 va_end(va);
1782 put_packet(s, buf);
1783 #ifdef CONFIG_USER_ONLY
1784 gdb_handlesig(s->c_cpu, 0);
1785 #else
1786 cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
1787 #endif
1790 static void gdb_read_byte(GDBState *s, int ch)
1792 int i, csum;
1793 uint8_t reply;
1795 #ifndef CONFIG_USER_ONLY
1796 if (s->last_packet_len) {
1797 /* Waiting for a response to the last packet. If we see the start
1798 of a new command then abandon the previous response. */
1799 if (ch == '-') {
1800 #ifdef DEBUG_GDB
1801 printf("Got NACK, retransmitting\n");
1802 #endif
1803 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1805 #ifdef DEBUG_GDB
1806 else if (ch == '+')
1807 printf("Got ACK\n");
1808 else
1809 printf("Got '%c' when expecting ACK/NACK\n", ch);
1810 #endif
1811 if (ch == '+' || ch == '$')
1812 s->last_packet_len = 0;
1813 if (ch != '$')
1814 return;
1816 if (vm_running) {
1817 /* when the CPU is running, we cannot do anything except stop
1818 it when receiving a char */
1819 vm_stop(EXCP_INTERRUPT);
1820 } else
1821 #endif
1823 switch(s->state) {
1824 case RS_IDLE:
1825 if (ch == '$') {
1826 s->line_buf_index = 0;
1827 s->state = RS_GETLINE;
1829 break;
1830 case RS_GETLINE:
1831 if (ch == '#') {
1832 s->state = RS_CHKSUM1;
1833 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1834 s->state = RS_IDLE;
1835 } else {
1836 s->line_buf[s->line_buf_index++] = ch;
1838 break;
1839 case RS_CHKSUM1:
1840 s->line_buf[s->line_buf_index] = '\0';
1841 s->line_csum = fromhex(ch) << 4;
1842 s->state = RS_CHKSUM2;
1843 break;
1844 case RS_CHKSUM2:
1845 s->line_csum |= fromhex(ch);
1846 csum = 0;
1847 for(i = 0; i < s->line_buf_index; i++) {
1848 csum += s->line_buf[i];
1850 if (s->line_csum != (csum & 0xff)) {
1851 reply = '-';
1852 put_buffer(s, &reply, 1);
1853 s->state = RS_IDLE;
1854 } else {
1855 reply = '+';
1856 put_buffer(s, &reply, 1);
1857 s->state = gdb_handle_packet(s, s->line_buf);
1859 break;
1860 default:
1861 abort();
1866 #ifdef CONFIG_USER_ONLY
1868 gdb_handlesig (CPUState *env, int sig)
1870 GDBState *s;
1871 char buf[256];
1872 int n;
1874 s = gdbserver_state;
1875 if (gdbserver_fd < 0 || s->fd < 0)
1876 return sig;
1878 /* disable single step if it was enabled */
1879 cpu_single_step(env, 0);
1880 tb_flush(env);
1882 if (sig != 0)
1884 snprintf(buf, sizeof(buf), "S%02x", sig);
1885 put_packet(s, buf);
1887 /* put_packet() might have detected that the peer terminated the
1888 connection. */
1889 if (s->fd < 0)
1890 return sig;
1892 sig = 0;
1893 s->state = RS_IDLE;
1894 s->running_state = 0;
1895 while (s->running_state == 0) {
1896 n = read (s->fd, buf, 256);
1897 if (n > 0)
1899 int i;
1901 for (i = 0; i < n; i++)
1902 gdb_read_byte (s, buf[i]);
1904 else if (n == 0 || errno != EAGAIN)
1906 /* XXX: Connection closed. Should probably wait for annother
1907 connection before continuing. */
1908 return sig;
1911 sig = s->signal;
1912 s->signal = 0;
1913 return sig;
1916 /* Tell the remote gdb that the process has exited. */
1917 void gdb_exit(CPUState *env, int code)
1919 GDBState *s;
1920 char buf[4];
1922 s = gdbserver_state;
1923 if (gdbserver_fd < 0 || s->fd < 0)
1924 return;
1926 snprintf(buf, sizeof(buf), "W%02x", code);
1927 put_packet(s, buf);
1931 static void gdb_accept(void)
1933 GDBState *s;
1934 struct sockaddr_in sockaddr;
1935 socklen_t len;
1936 int val, fd;
1938 for(;;) {
1939 len = sizeof(sockaddr);
1940 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1941 if (fd < 0 && errno != EINTR) {
1942 perror("accept");
1943 return;
1944 } else if (fd >= 0) {
1945 break;
1949 /* set short latency */
1950 val = 1;
1951 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1953 s = qemu_mallocz(sizeof(GDBState));
1954 if (!s) {
1955 errno = ENOMEM;
1956 perror("accept");
1957 return;
1960 memset (s, 0, sizeof (GDBState));
1961 s->c_cpu = first_cpu;
1962 s->g_cpu = first_cpu;
1963 s->fd = fd;
1964 gdb_has_xml = 0;
1966 gdbserver_state = s;
1968 fcntl(fd, F_SETFL, O_NONBLOCK);
1971 static int gdbserver_open(int port)
1973 struct sockaddr_in sockaddr;
1974 int fd, val, ret;
1976 fd = socket(PF_INET, SOCK_STREAM, 0);
1977 if (fd < 0) {
1978 perror("socket");
1979 return -1;
1982 /* allow fast reuse */
1983 val = 1;
1984 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1986 sockaddr.sin_family = AF_INET;
1987 sockaddr.sin_port = htons(port);
1988 sockaddr.sin_addr.s_addr = 0;
1989 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1990 if (ret < 0) {
1991 perror("bind");
1992 return -1;
1994 ret = listen(fd, 0);
1995 if (ret < 0) {
1996 perror("listen");
1997 return -1;
1999 return fd;
2002 int gdbserver_start(int port)
2004 gdbserver_fd = gdbserver_open(port);
2005 if (gdbserver_fd < 0)
2006 return -1;
2007 /* accept connections */
2008 gdb_accept();
2009 return 0;
2011 #else
2012 static int gdb_chr_can_receive(void *opaque)
2014 /* We can handle an arbitrarily large amount of data.
2015 Pick the maximum packet size, which is as good as anything. */
2016 return MAX_PACKET_LENGTH;
2019 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2021 int i;
2023 for (i = 0; i < size; i++) {
2024 gdb_read_byte(gdbserver_state, buf[i]);
2028 static void gdb_chr_event(void *opaque, int event)
2030 switch (event) {
2031 case CHR_EVENT_RESET:
2032 vm_stop(EXCP_INTERRUPT);
2033 gdb_has_xml = 0;
2034 break;
2035 default:
2036 break;
2040 int gdbserver_start(const char *port)
2042 GDBState *s;
2043 char gdbstub_port_name[128];
2044 int port_num;
2045 char *p;
2046 CharDriverState *chr;
2048 if (!port || !*port)
2049 return -1;
2051 port_num = strtol(port, &p, 10);
2052 if (*p == 0) {
2053 /* A numeric value is interpreted as a port number. */
2054 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
2055 "tcp::%d,nowait,nodelay,server", port_num);
2056 port = gdbstub_port_name;
2059 chr = qemu_chr_open("gdb", port);
2060 if (!chr)
2061 return -1;
2063 s = qemu_mallocz(sizeof(GDBState));
2064 if (!s) {
2065 return -1;
2067 s->c_cpu = first_cpu;
2068 s->g_cpu = first_cpu;
2069 s->chr = chr;
2070 gdbserver_state = s;
2071 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2072 gdb_chr_event, NULL);
2073 qemu_add_vm_stop_handler(gdb_vm_stopped, NULL);
2074 return 0;
2076 #endif