make cpu_physical_memory_set_dirty_tracking equal to upstream
[qemu-kvm/amd-iommu.git] / qemu-kvm-x86.c
blobd1e1dfcab247fadb96c07dc252d17bb826a0d6a6
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "gdbstub.h"
15 #include <sys/io.h>
17 #include "qemu-kvm.h"
18 #include "libkvm.h"
19 #include <pthread.h>
20 #include <sys/utsname.h>
21 #include <linux/kvm_para.h>
22 #include <sys/ioctl.h>
24 #include "kvm.h"
25 #include "hw/pc.h"
27 #define MSR_IA32_TSC 0x10
29 static struct kvm_msr_list *kvm_msr_list;
30 extern unsigned int kvm_shadow_memory;
31 static int kvm_has_msr_star;
32 static int kvm_has_vm_hsave_pa;
34 static int lm_capable_kernel;
36 int kvm_set_tss_addr(kvm_context_t kvm, unsigned long addr)
38 #ifdef KVM_CAP_SET_TSS_ADDR
39 int r;
41 * Tell fw_cfg to notify the BIOS to reserve the range.
43 if (e820_add_entry(addr, 0x4000, E820_RESERVED) < 0) {
44 perror("e820_add_entry() table is full");
45 exit(1);
48 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
49 if (r > 0) {
50 r = kvm_vm_ioctl(kvm_state, KVM_SET_TSS_ADDR, addr);
51 if (r < 0) {
52 fprintf(stderr, "kvm_set_tss_addr: %m\n");
53 return r;
55 return 0;
57 #endif
58 return -ENOSYS;
61 static int kvm_init_tss(kvm_context_t kvm)
63 #ifdef KVM_CAP_SET_TSS_ADDR
64 int r;
66 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
67 if (r > 0) {
69 * this address is 3 pages before the bios, and the bios should present
70 * as unavaible memory
72 r = kvm_set_tss_addr(kvm, 0xfeffd000);
73 if (r < 0) {
74 fprintf(stderr, "kvm_init_tss: unable to set tss addr\n");
75 return r;
79 #endif
80 return 0;
83 static int kvm_set_identity_map_addr(kvm_context_t kvm, uint64_t addr)
85 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
86 int r;
88 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
89 if (r > 0) {
90 r = kvm_vm_ioctl(kvm_state, KVM_SET_IDENTITY_MAP_ADDR, &addr);
91 if (r == -1) {
92 fprintf(stderr, "kvm_set_identity_map_addr: %m\n");
93 return -errno;
95 return 0;
97 #endif
98 return -ENOSYS;
101 static int kvm_init_identity_map_page(kvm_context_t kvm)
103 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
104 int r;
106 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
107 if (r > 0) {
109 * this address is 4 pages before the bios, and the bios should present
110 * as unavaible memory
112 r = kvm_set_identity_map_addr(kvm, 0xfeffc000);
113 if (r < 0) {
114 fprintf(stderr, "kvm_init_identity_map_page: "
115 "unable to set identity mapping addr\n");
116 return r;
120 #endif
121 return 0;
124 static int kvm_create_pit(kvm_context_t kvm)
126 #ifdef KVM_CAP_PIT
127 int r;
129 kvm_state->pit_in_kernel = 0;
130 if (!kvm->no_pit_creation) {
131 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_PIT);
132 if (r > 0) {
133 r = kvm_vm_ioctl(kvm_state, KVM_CREATE_PIT);
134 if (r >= 0)
135 kvm_state->pit_in_kernel = 1;
136 else {
137 fprintf(stderr, "Create kernel PIC irqchip failed\n");
138 return r;
142 #endif
143 return 0;
146 int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes,
147 void **vm_mem)
149 int r = 0;
151 r = kvm_init_tss(kvm);
152 if (r < 0)
153 return r;
155 r = kvm_init_identity_map_page(kvm);
156 if (r < 0)
157 return r;
159 r = kvm_create_pit(kvm);
160 if (r < 0)
161 return r;
163 r = kvm_init_coalesced_mmio(kvm);
164 if (r < 0)
165 return r;
167 return 0;
170 #ifdef KVM_EXIT_TPR_ACCESS
172 static int kvm_handle_tpr_access(CPUState *env)
174 struct kvm_run *run = env->kvm_run;
175 kvm_tpr_access_report(env,
176 run->tpr_access.rip,
177 run->tpr_access.is_write);
178 return 0;
182 int kvm_enable_vapic(CPUState *env, uint64_t vapic)
184 struct kvm_vapic_addr va = {
185 .vapic_addr = vapic,
188 return kvm_vcpu_ioctl(env, KVM_SET_VAPIC_ADDR, &va);
191 #endif
193 int kvm_arch_run(CPUState *env)
195 int r = 0;
196 struct kvm_run *run = env->kvm_run;
199 switch (run->exit_reason) {
200 #ifdef KVM_EXIT_SET_TPR
201 case KVM_EXIT_SET_TPR:
202 break;
203 #endif
204 #ifdef KVM_EXIT_TPR_ACCESS
205 case KVM_EXIT_TPR_ACCESS:
206 r = kvm_handle_tpr_access(env);
207 break;
208 #endif
209 default:
210 r = 1;
211 break;
214 return r;
217 #define MAX_ALIAS_SLOTS 4
218 static struct {
219 uint64_t start;
220 uint64_t len;
221 } kvm_aliases[MAX_ALIAS_SLOTS];
223 static int get_alias_slot(uint64_t start)
225 int i;
227 for (i=0; i<MAX_ALIAS_SLOTS; i++)
228 if (kvm_aliases[i].start == start)
229 return i;
230 return -1;
232 static int get_free_alias_slot(void)
234 int i;
236 for (i=0; i<MAX_ALIAS_SLOTS; i++)
237 if (kvm_aliases[i].len == 0)
238 return i;
239 return -1;
242 static void register_alias(int slot, uint64_t start, uint64_t len)
244 kvm_aliases[slot].start = start;
245 kvm_aliases[slot].len = len;
248 int kvm_create_memory_alias(kvm_context_t kvm,
249 uint64_t phys_start,
250 uint64_t len,
251 uint64_t target_phys)
253 struct kvm_memory_alias alias = {
254 .flags = 0,
255 .guest_phys_addr = phys_start,
256 .memory_size = len,
257 .target_phys_addr = target_phys,
259 int r;
260 int slot;
262 slot = get_alias_slot(phys_start);
263 if (slot < 0)
264 slot = get_free_alias_slot();
265 if (slot < 0)
266 return -EBUSY;
267 alias.slot = slot;
269 r = kvm_vm_ioctl(kvm_state, KVM_SET_MEMORY_ALIAS, &alias);
270 if (r == -1)
271 return -errno;
273 register_alias(slot, phys_start, len);
274 return 0;
277 int kvm_destroy_memory_alias(kvm_context_t kvm, uint64_t phys_start)
279 return kvm_create_memory_alias(kvm, phys_start, 0, 0);
282 #ifdef KVM_CAP_IRQCHIP
284 int kvm_get_lapic(CPUState *env, struct kvm_lapic_state *s)
286 int r = 0;
288 if (!kvm_irqchip_in_kernel())
289 return r;
291 r = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, s);
292 if (r < 0)
293 fprintf(stderr, "KVM_GET_LAPIC failed\n");
294 return r;
297 int kvm_set_lapic(CPUState *env, struct kvm_lapic_state *s)
299 int r = 0;
301 if (!kvm_irqchip_in_kernel())
302 return 0;
304 r = kvm_vcpu_ioctl(env, KVM_SET_LAPIC, s);
306 if (r < 0)
307 fprintf(stderr, "KVM_SET_LAPIC failed\n");
308 return r;
311 #endif
313 #ifdef KVM_CAP_PIT
315 int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s)
317 if (!kvm_pit_in_kernel())
318 return 0;
319 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT, s);
322 int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s)
324 if (!kvm_pit_in_kernel())
325 return 0;
326 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT, s);
329 #ifdef KVM_CAP_PIT_STATE2
330 int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
332 if (!kvm_pit_in_kernel())
333 return 0;
334 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT2, ps2);
337 int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
339 if (!kvm_pit_in_kernel())
340 return 0;
341 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT2, ps2);
344 #endif
345 #endif
347 int kvm_has_pit_state2(kvm_context_t kvm)
349 int r = 0;
351 #ifdef KVM_CAP_PIT_STATE2
352 r = kvm_check_extension(kvm_state, KVM_CAP_PIT_STATE2);
353 #endif
354 return r;
357 void kvm_show_code(CPUState *env)
359 #define SHOW_CODE_LEN 50
360 struct kvm_regs regs;
361 struct kvm_sregs sregs;
362 int r, n;
363 int back_offset;
364 unsigned char code;
365 char code_str[SHOW_CODE_LEN * 3 + 1];
366 unsigned long rip;
368 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
369 if (r < 0 ) {
370 perror("KVM_GET_SREGS");
371 return;
373 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
374 if (r < 0) {
375 perror("KVM_GET_REGS");
376 return;
378 rip = sregs.cs.base + regs.rip;
379 back_offset = regs.rip;
380 if (back_offset > 20)
381 back_offset = 20;
382 *code_str = 0;
383 for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) {
384 if (n == 0)
385 strcat(code_str, " -->");
386 cpu_physical_memory_rw(rip + n, &code, 1, 1);
387 sprintf(code_str + strlen(code_str), " %02x", code);
389 fprintf(stderr, "code:%s\n", code_str);
394 * Returns available msr list. User must free.
396 struct kvm_msr_list *kvm_get_msr_list(kvm_context_t kvm)
398 struct kvm_msr_list sizer, *msrs;
399 int r;
401 sizer.nmsrs = 0;
402 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, &sizer);
403 if (r < 0 && r != -E2BIG)
404 return NULL;
405 /* Old kernel modules had a bug and could write beyond the provided
406 memory. Allocate at least a safe amount of 1K. */
407 msrs = qemu_malloc(MAX(1024, sizeof(*msrs) +
408 sizer.nmsrs * sizeof(*msrs->indices)));
410 msrs->nmsrs = sizer.nmsrs;
411 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, msrs);
412 if (r < 0) {
413 free(msrs);
414 errno = r;
415 return NULL;
417 return msrs;
420 int kvm_get_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
422 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
423 int r;
425 kmsrs->nmsrs = n;
426 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
427 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
428 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
429 free(kmsrs);
430 return r;
433 int kvm_set_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
435 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
436 int r;
438 kmsrs->nmsrs = n;
439 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
440 r = kvm_vcpu_ioctl(env, KVM_SET_MSRS, kmsrs);
441 free(kmsrs);
442 return r;
445 int kvm_get_mce_cap_supported(kvm_context_t kvm, uint64_t *mce_cap,
446 int *max_banks)
448 #ifdef KVM_CAP_MCE
449 int r;
451 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
452 if (r > 0) {
453 *max_banks = r;
454 return kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
456 #endif
457 return -ENOSYS;
460 int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
462 #ifdef KVM_CAP_MCE
463 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
464 #else
465 return -ENOSYS;
466 #endif
469 int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
471 #ifdef KVM_CAP_MCE
472 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
473 #else
474 return -ENOSYS;
475 #endif
478 static void print_seg(FILE *file, const char *name, struct kvm_segment *seg)
480 fprintf(stderr,
481 "%s %04x (%08llx/%08x p %d dpl %d db %d s %d type %x l %d"
482 " g %d avl %d)\n",
483 name, seg->selector, seg->base, seg->limit, seg->present,
484 seg->dpl, seg->db, seg->s, seg->type, seg->l, seg->g,
485 seg->avl);
488 static void print_dt(FILE *file, const char *name, struct kvm_dtable *dt)
490 fprintf(stderr, "%s %llx/%x\n", name, dt->base, dt->limit);
493 void kvm_show_regs(CPUState *env)
495 struct kvm_regs regs;
496 struct kvm_sregs sregs;
497 int r;
499 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
500 if (r < 0) {
501 perror("KVM_GET_REGS");
502 return;
504 fprintf(stderr,
505 "rax %016llx rbx %016llx rcx %016llx rdx %016llx\n"
506 "rsi %016llx rdi %016llx rsp %016llx rbp %016llx\n"
507 "r8 %016llx r9 %016llx r10 %016llx r11 %016llx\n"
508 "r12 %016llx r13 %016llx r14 %016llx r15 %016llx\n"
509 "rip %016llx rflags %08llx\n",
510 regs.rax, regs.rbx, regs.rcx, regs.rdx,
511 regs.rsi, regs.rdi, regs.rsp, regs.rbp,
512 regs.r8, regs.r9, regs.r10, regs.r11,
513 regs.r12, regs.r13, regs.r14, regs.r15,
514 regs.rip, regs.rflags);
515 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
516 if (r < 0) {
517 perror("KVM_GET_SREGS");
518 return;
520 print_seg(stderr, "cs", &sregs.cs);
521 print_seg(stderr, "ds", &sregs.ds);
522 print_seg(stderr, "es", &sregs.es);
523 print_seg(stderr, "ss", &sregs.ss);
524 print_seg(stderr, "fs", &sregs.fs);
525 print_seg(stderr, "gs", &sregs.gs);
526 print_seg(stderr, "tr", &sregs.tr);
527 print_seg(stderr, "ldt", &sregs.ldt);
528 print_dt(stderr, "gdt", &sregs.gdt);
529 print_dt(stderr, "idt", &sregs.idt);
530 fprintf(stderr, "cr0 %llx cr2 %llx cr3 %llx cr4 %llx cr8 %llx"
531 " efer %llx\n",
532 sregs.cr0, sregs.cr2, sregs.cr3, sregs.cr4, sregs.cr8,
533 sregs.efer);
536 static void kvm_set_cr8(CPUState *env, uint64_t cr8)
538 env->kvm_run->cr8 = cr8;
541 int kvm_setup_cpuid(CPUState *env, int nent,
542 struct kvm_cpuid_entry *entries)
544 struct kvm_cpuid *cpuid;
545 int r;
547 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
549 cpuid->nent = nent;
550 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
551 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID, cpuid);
553 free(cpuid);
554 return r;
557 int kvm_setup_cpuid2(CPUState *env, int nent,
558 struct kvm_cpuid_entry2 *entries)
560 struct kvm_cpuid2 *cpuid;
561 int r;
563 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
565 cpuid->nent = nent;
566 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
567 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, cpuid);
568 free(cpuid);
569 return r;
572 int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages)
574 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
575 int r;
577 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
578 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
579 if (r > 0) {
580 r = kvm_vm_ioctl(kvm_state, KVM_SET_NR_MMU_PAGES, nrshadow_pages);
581 if (r < 0) {
582 fprintf(stderr, "kvm_set_shadow_pages: %m\n");
583 return r;
585 return 0;
587 #endif
588 return -1;
591 int kvm_get_shadow_pages(kvm_context_t kvm, unsigned int *nrshadow_pages)
593 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
594 int r;
596 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
597 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
598 if (r > 0) {
599 *nrshadow_pages = kvm_vm_ioctl(kvm_state, KVM_GET_NR_MMU_PAGES);
600 return 0;
602 #endif
603 return -1;
606 #ifdef KVM_CAP_VAPIC
607 static int kvm_enable_tpr_access_reporting(CPUState *env)
609 int r;
610 struct kvm_tpr_access_ctl tac = { .enabled = 1 };
612 r = kvm_ioctl(env->kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_VAPIC);
613 if (r <= 0)
614 return -ENOSYS;
615 return kvm_vcpu_ioctl(env, KVM_TPR_ACCESS_REPORTING, &tac);
617 #endif
619 int kvm_qemu_create_memory_alias(uint64_t phys_start,
620 uint64_t len,
621 uint64_t target_phys)
623 return kvm_create_memory_alias(kvm_context, phys_start, len, target_phys);
626 int kvm_qemu_destroy_memory_alias(uint64_t phys_start)
628 return kvm_destroy_memory_alias(kvm_context, phys_start);
631 #ifdef KVM_CAP_ADJUST_CLOCK
632 static struct kvm_clock_data kvmclock_data;
634 static void kvmclock_pre_save(void *opaque)
636 struct kvm_clock_data *cl = opaque;
638 kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, cl);
641 static int kvmclock_post_load(void *opaque, int version_id)
643 struct kvm_clock_data *cl = opaque;
645 return kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, cl);
648 static const VMStateDescription vmstate_kvmclock= {
649 .name = "kvmclock",
650 .version_id = 1,
651 .minimum_version_id = 1,
652 .minimum_version_id_old = 1,
653 .pre_save = kvmclock_pre_save,
654 .post_load = kvmclock_post_load,
655 .fields = (VMStateField []) {
656 VMSTATE_U64(clock, struct kvm_clock_data),
657 VMSTATE_END_OF_LIST()
660 #endif
662 int kvm_arch_qemu_create_context(void)
664 int i, r;
665 struct utsname utsname;
667 uname(&utsname);
668 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
670 if (kvm_shadow_memory)
671 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
673 kvm_msr_list = kvm_get_msr_list(kvm_context);
674 if (!kvm_msr_list)
675 return -1;
676 for (i = 0; i < kvm_msr_list->nmsrs; ++i) {
677 if (kvm_msr_list->indices[i] == MSR_STAR)
678 kvm_has_msr_star = 1;
679 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA)
680 kvm_has_vm_hsave_pa = 1;
683 #ifdef KVM_CAP_ADJUST_CLOCK
684 if (kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK))
685 vmstate_register(0, &vmstate_kvmclock, &kvmclock_data);
686 #endif
688 r = kvm_set_boot_cpu_id(0);
689 if (r < 0 && r != -ENOSYS) {
690 return r;
693 return 0;
696 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
697 uint64_t data)
699 entry->index = index;
700 entry->data = data;
703 /* returns 0 on success, non-0 on failure */
704 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
706 switch (entry->index) {
707 case MSR_IA32_SYSENTER_CS:
708 env->sysenter_cs = entry->data;
709 break;
710 case MSR_IA32_SYSENTER_ESP:
711 env->sysenter_esp = entry->data;
712 break;
713 case MSR_IA32_SYSENTER_EIP:
714 env->sysenter_eip = entry->data;
715 break;
716 case MSR_STAR:
717 env->star = entry->data;
718 break;
719 #ifdef TARGET_X86_64
720 case MSR_CSTAR:
721 env->cstar = entry->data;
722 break;
723 case MSR_KERNELGSBASE:
724 env->kernelgsbase = entry->data;
725 break;
726 case MSR_FMASK:
727 env->fmask = entry->data;
728 break;
729 case MSR_LSTAR:
730 env->lstar = entry->data;
731 break;
732 #endif
733 case MSR_IA32_TSC:
734 env->tsc = entry->data;
735 break;
736 case MSR_VM_HSAVE_PA:
737 env->vm_hsave = entry->data;
738 break;
739 case MSR_KVM_SYSTEM_TIME:
740 env->system_time_msr = entry->data;
741 break;
742 case MSR_KVM_WALL_CLOCK:
743 env->wall_clock_msr = entry->data;
744 break;
745 #ifdef KVM_CAP_MCE
746 case MSR_MCG_STATUS:
747 env->mcg_status = entry->data;
748 break;
749 case MSR_MCG_CTL:
750 env->mcg_ctl = entry->data;
751 break;
752 #endif
753 default:
754 #ifdef KVM_CAP_MCE
755 if (entry->index >= MSR_MC0_CTL && \
756 entry->index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
757 env->mce_banks[entry->index - MSR_MC0_CTL] = entry->data;
758 break;
760 #endif
761 printf("Warning unknown msr index 0x%x\n", entry->index);
762 return 1;
764 return 0;
767 static void kvm_arch_save_mpstate(CPUState *env)
769 #ifdef KVM_CAP_MP_STATE
770 int r;
771 struct kvm_mp_state mp_state;
773 r = kvm_get_mpstate(env, &mp_state);
774 if (r < 0) {
775 env->mp_state = -1;
776 } else {
777 env->mp_state = mp_state.mp_state;
778 if (kvm_irqchip_in_kernel()) {
779 env->halted = (env->mp_state == KVM_MP_STATE_HALTED);
782 #else
783 env->mp_state = -1;
784 #endif
787 static void kvm_arch_load_mpstate(CPUState *env)
789 #ifdef KVM_CAP_MP_STATE
790 struct kvm_mp_state mp_state;
793 * -1 indicates that the host did not support GET_MP_STATE ioctl,
794 * so don't touch it.
796 if (env->mp_state != -1) {
797 mp_state.mp_state = env->mp_state;
798 kvm_set_mpstate(env, &mp_state);
800 #endif
803 static void kvm_reset_mpstate(CPUState *env)
805 #ifdef KVM_CAP_MP_STATE
806 if (kvm_check_extension(kvm_state, KVM_CAP_MP_STATE)) {
807 if (kvm_irqchip_in_kernel()) {
808 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
809 KVM_MP_STATE_UNINITIALIZED;
810 } else {
811 env->mp_state = KVM_MP_STATE_RUNNABLE;
814 #endif
817 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
819 lhs->selector = rhs->selector;
820 lhs->base = rhs->base;
821 lhs->limit = rhs->limit;
822 lhs->type = 3;
823 lhs->present = 1;
824 lhs->dpl = 3;
825 lhs->db = 0;
826 lhs->s = 1;
827 lhs->l = 0;
828 lhs->g = 0;
829 lhs->avl = 0;
830 lhs->unusable = 0;
833 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
835 unsigned flags = rhs->flags;
836 lhs->selector = rhs->selector;
837 lhs->base = rhs->base;
838 lhs->limit = rhs->limit;
839 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
840 lhs->present = (flags & DESC_P_MASK) != 0;
841 lhs->dpl = rhs->selector & 3;
842 lhs->db = (flags >> DESC_B_SHIFT) & 1;
843 lhs->s = (flags & DESC_S_MASK) != 0;
844 lhs->l = (flags >> DESC_L_SHIFT) & 1;
845 lhs->g = (flags & DESC_G_MASK) != 0;
846 lhs->avl = (flags & DESC_AVL_MASK) != 0;
847 lhs->unusable = 0;
850 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
852 lhs->selector = rhs->selector;
853 lhs->base = rhs->base;
854 lhs->limit = rhs->limit;
855 lhs->flags =
856 (rhs->type << DESC_TYPE_SHIFT)
857 | (rhs->present * DESC_P_MASK)
858 | (rhs->dpl << DESC_DPL_SHIFT)
859 | (rhs->db << DESC_B_SHIFT)
860 | (rhs->s * DESC_S_MASK)
861 | (rhs->l << DESC_L_SHIFT)
862 | (rhs->g * DESC_G_MASK)
863 | (rhs->avl * DESC_AVL_MASK);
866 void kvm_arch_load_regs(CPUState *env, int level)
868 struct kvm_regs regs;
869 struct kvm_fpu fpu;
870 struct kvm_sregs sregs;
871 struct kvm_msr_entry msrs[100];
872 int rc, n, i;
874 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
876 regs.rax = env->regs[R_EAX];
877 regs.rbx = env->regs[R_EBX];
878 regs.rcx = env->regs[R_ECX];
879 regs.rdx = env->regs[R_EDX];
880 regs.rsi = env->regs[R_ESI];
881 regs.rdi = env->regs[R_EDI];
882 regs.rsp = env->regs[R_ESP];
883 regs.rbp = env->regs[R_EBP];
884 #ifdef TARGET_X86_64
885 regs.r8 = env->regs[8];
886 regs.r9 = env->regs[9];
887 regs.r10 = env->regs[10];
888 regs.r11 = env->regs[11];
889 regs.r12 = env->regs[12];
890 regs.r13 = env->regs[13];
891 regs.r14 = env->regs[14];
892 regs.r15 = env->regs[15];
893 #endif
895 regs.rflags = env->eflags;
896 regs.rip = env->eip;
898 kvm_set_regs(env, &regs);
900 memset(&fpu, 0, sizeof fpu);
901 fpu.fsw = env->fpus & ~(7 << 11);
902 fpu.fsw |= (env->fpstt & 7) << 11;
903 fpu.fcw = env->fpuc;
904 for (i = 0; i < 8; ++i)
905 fpu.ftwx |= (!env->fptags[i]) << i;
906 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
907 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
908 fpu.mxcsr = env->mxcsr;
909 kvm_set_fpu(env, &fpu);
911 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
912 if (env->interrupt_injected >= 0) {
913 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
914 (uint64_t)1 << (env->interrupt_injected % 64);
917 if ((env->eflags & VM_MASK)) {
918 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
919 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
920 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
921 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
922 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
923 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
924 } else {
925 set_seg(&sregs.cs, &env->segs[R_CS]);
926 set_seg(&sregs.ds, &env->segs[R_DS]);
927 set_seg(&sregs.es, &env->segs[R_ES]);
928 set_seg(&sregs.fs, &env->segs[R_FS]);
929 set_seg(&sregs.gs, &env->segs[R_GS]);
930 set_seg(&sregs.ss, &env->segs[R_SS]);
932 if (env->cr[0] & CR0_PE_MASK) {
933 /* force ss cpl to cs cpl */
934 sregs.ss.selector = (sregs.ss.selector & ~3) |
935 (sregs.cs.selector & 3);
936 sregs.ss.dpl = sregs.ss.selector & 3;
940 set_seg(&sregs.tr, &env->tr);
941 set_seg(&sregs.ldt, &env->ldt);
943 sregs.idt.limit = env->idt.limit;
944 sregs.idt.base = env->idt.base;
945 sregs.gdt.limit = env->gdt.limit;
946 sregs.gdt.base = env->gdt.base;
948 sregs.cr0 = env->cr[0];
949 sregs.cr2 = env->cr[2];
950 sregs.cr3 = env->cr[3];
951 sregs.cr4 = env->cr[4];
953 sregs.cr8 = cpu_get_apic_tpr(env);
954 sregs.apic_base = cpu_get_apic_base(env);
956 sregs.efer = env->efer;
958 kvm_set_sregs(env, &sregs);
960 /* msrs */
961 n = 0;
962 /* Remember to increase msrs size if you add new registers below */
963 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
964 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
965 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
966 if (kvm_has_msr_star)
967 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
968 if (kvm_has_vm_hsave_pa)
969 set_msr_entry(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
970 #ifdef TARGET_X86_64
971 if (lm_capable_kernel) {
972 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
973 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
974 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
975 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
977 #endif
978 if (level == KVM_PUT_FULL_STATE) {
980 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
981 * writeback. Until this is fixed, we only write the offset to SMP
982 * guests after migration, desynchronizing the VCPUs, but avoiding
983 * huge jump-backs that would occur without any writeback at all.
985 if (smp_cpus == 1 || env->tsc != 0) {
986 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
988 set_msr_entry(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
989 set_msr_entry(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
991 #ifdef KVM_CAP_MCE
992 if (env->mcg_cap) {
993 if (level == KVM_PUT_RESET_STATE)
994 set_msr_entry(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
995 else if (level == KVM_PUT_FULL_STATE) {
996 set_msr_entry(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
997 set_msr_entry(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
998 for (i = 0; i < (env->mcg_cap & 0xff); i++)
999 set_msr_entry(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1002 #endif
1004 rc = kvm_set_msrs(env, msrs, n);
1005 if (rc == -1)
1006 perror("kvm_set_msrs FAILED");
1008 if (level >= KVM_PUT_RESET_STATE) {
1009 kvm_arch_load_mpstate(env);
1010 kvm_load_lapic(env);
1012 if (level == KVM_PUT_FULL_STATE) {
1013 if (env->kvm_vcpu_update_vapic)
1014 kvm_tpr_enable_vapic(env);
1016 if (kvm_irqchip_in_kernel()) {
1017 /* Avoid deadlock: no user space IRQ will ever clear it. */
1018 env->halted = 0;
1021 kvm_put_vcpu_events(env, level);
1022 kvm_put_debugregs(env);
1024 /* must be last */
1025 kvm_guest_debug_workarounds(env);
1028 void kvm_arch_save_regs(CPUState *env)
1030 struct kvm_regs regs;
1031 struct kvm_fpu fpu;
1032 struct kvm_sregs sregs;
1033 struct kvm_msr_entry msrs[100];
1034 uint32_t hflags;
1035 uint32_t i, n, rc, bit;
1037 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
1039 kvm_get_regs(env, &regs);
1041 env->regs[R_EAX] = regs.rax;
1042 env->regs[R_EBX] = regs.rbx;
1043 env->regs[R_ECX] = regs.rcx;
1044 env->regs[R_EDX] = regs.rdx;
1045 env->regs[R_ESI] = regs.rsi;
1046 env->regs[R_EDI] = regs.rdi;
1047 env->regs[R_ESP] = regs.rsp;
1048 env->regs[R_EBP] = regs.rbp;
1049 #ifdef TARGET_X86_64
1050 env->regs[8] = regs.r8;
1051 env->regs[9] = regs.r9;
1052 env->regs[10] = regs.r10;
1053 env->regs[11] = regs.r11;
1054 env->regs[12] = regs.r12;
1055 env->regs[13] = regs.r13;
1056 env->regs[14] = regs.r14;
1057 env->regs[15] = regs.r15;
1058 #endif
1060 env->eflags = regs.rflags;
1061 env->eip = regs.rip;
1063 kvm_get_fpu(env, &fpu);
1064 env->fpstt = (fpu.fsw >> 11) & 7;
1065 env->fpus = fpu.fsw;
1066 env->fpuc = fpu.fcw;
1067 for (i = 0; i < 8; ++i)
1068 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1069 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1070 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1071 env->mxcsr = fpu.mxcsr;
1073 kvm_get_sregs(env, &sregs);
1075 /* There can only be one pending IRQ set in the bitmap at a time, so try
1076 to find it and save its number instead (-1 for none). */
1077 env->interrupt_injected = -1;
1078 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1079 if (sregs.interrupt_bitmap[i]) {
1080 bit = ctz64(sregs.interrupt_bitmap[i]);
1081 env->interrupt_injected = i * 64 + bit;
1082 break;
1086 get_seg(&env->segs[R_CS], &sregs.cs);
1087 get_seg(&env->segs[R_DS], &sregs.ds);
1088 get_seg(&env->segs[R_ES], &sregs.es);
1089 get_seg(&env->segs[R_FS], &sregs.fs);
1090 get_seg(&env->segs[R_GS], &sregs.gs);
1091 get_seg(&env->segs[R_SS], &sregs.ss);
1093 get_seg(&env->tr, &sregs.tr);
1094 get_seg(&env->ldt, &sregs.ldt);
1096 env->idt.limit = sregs.idt.limit;
1097 env->idt.base = sregs.idt.base;
1098 env->gdt.limit = sregs.gdt.limit;
1099 env->gdt.base = sregs.gdt.base;
1101 env->cr[0] = sregs.cr0;
1102 env->cr[2] = sregs.cr2;
1103 env->cr[3] = sregs.cr3;
1104 env->cr[4] = sregs.cr4;
1106 cpu_set_apic_base(env, sregs.apic_base);
1108 env->efer = sregs.efer;
1109 //cpu_set_apic_tpr(env, sregs.cr8);
1111 #define HFLAG_COPY_MASK ~( \
1112 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1113 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1114 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1115 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1119 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1120 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1121 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1122 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1123 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1124 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1125 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1127 if (env->efer & MSR_EFER_LMA) {
1128 hflags |= HF_LMA_MASK;
1131 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1132 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1133 } else {
1134 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1135 (DESC_B_SHIFT - HF_CS32_SHIFT);
1136 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1137 (DESC_B_SHIFT - HF_SS32_SHIFT);
1138 if (!(env->cr[0] & CR0_PE_MASK) ||
1139 (env->eflags & VM_MASK) ||
1140 !(hflags & HF_CS32_MASK)) {
1141 hflags |= HF_ADDSEG_MASK;
1142 } else {
1143 hflags |= ((env->segs[R_DS].base |
1144 env->segs[R_ES].base |
1145 env->segs[R_SS].base) != 0) <<
1146 HF_ADDSEG_SHIFT;
1149 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1151 /* msrs */
1152 n = 0;
1153 /* Remember to increase msrs size if you add new registers below */
1154 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1155 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1156 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1157 if (kvm_has_msr_star)
1158 msrs[n++].index = MSR_STAR;
1159 msrs[n++].index = MSR_IA32_TSC;
1160 if (kvm_has_vm_hsave_pa)
1161 msrs[n++].index = MSR_VM_HSAVE_PA;
1162 #ifdef TARGET_X86_64
1163 if (lm_capable_kernel) {
1164 msrs[n++].index = MSR_CSTAR;
1165 msrs[n++].index = MSR_KERNELGSBASE;
1166 msrs[n++].index = MSR_FMASK;
1167 msrs[n++].index = MSR_LSTAR;
1169 #endif
1170 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1171 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1173 #ifdef KVM_CAP_MCE
1174 if (env->mcg_cap) {
1175 msrs[n++].index = MSR_MCG_STATUS;
1176 msrs[n++].index = MSR_MCG_CTL;
1177 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1178 msrs[n++].index = MSR_MC0_CTL + i;
1180 #endif
1182 rc = kvm_get_msrs(env, msrs, n);
1183 if (rc == -1) {
1184 perror("kvm_get_msrs FAILED");
1186 else {
1187 n = rc; /* actual number of MSRs */
1188 for (i=0 ; i<n; i++) {
1189 if (get_msr_entry(&msrs[i], env))
1190 return;
1193 kvm_arch_save_mpstate(env);
1194 kvm_save_lapic(env);
1195 kvm_get_vcpu_events(env);
1196 kvm_get_debugregs(env);
1199 static void do_cpuid_ent(struct kvm_cpuid_entry2 *e, uint32_t function,
1200 uint32_t count, CPUState *env)
1202 env->regs[R_EAX] = function;
1203 env->regs[R_ECX] = count;
1204 qemu_kvm_cpuid_on_env(env);
1205 e->function = function;
1206 e->flags = 0;
1207 e->index = 0;
1208 e->eax = env->regs[R_EAX];
1209 e->ebx = env->regs[R_EBX];
1210 e->ecx = env->regs[R_ECX];
1211 e->edx = env->regs[R_EDX];
1214 struct kvm_para_features {
1215 int cap;
1216 int feature;
1217 } para_features[] = {
1218 #ifdef KVM_CAP_CLOCKSOURCE
1219 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
1220 #endif
1221 #ifdef KVM_CAP_NOP_IO_DELAY
1222 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
1223 #endif
1224 #ifdef KVM_CAP_PV_MMU
1225 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
1226 #endif
1227 { -1, -1 }
1230 static int get_para_features(kvm_context_t kvm_context)
1232 int i, features = 0;
1234 for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
1235 if (kvm_check_extension(kvm_state, para_features[i].cap))
1236 features |= (1 << para_features[i].feature);
1239 return features;
1242 static void kvm_trim_features(uint32_t *features, uint32_t supported)
1244 int i;
1245 uint32_t mask;
1247 for (i = 0; i < 32; ++i) {
1248 mask = 1U << i;
1249 if ((*features & mask) && !(supported & mask)) {
1250 *features &= ~mask;
1255 int kvm_arch_init_vcpu(CPUState *cenv)
1257 struct kvm_cpuid_entry2 cpuid_ent[100];
1258 #ifdef KVM_CPUID_SIGNATURE
1259 struct kvm_cpuid_entry2 *pv_ent;
1260 uint32_t signature[3];
1261 #endif
1262 int cpuid_nent = 0;
1263 CPUState copy;
1264 uint32_t i, j, limit;
1266 kvm_arch_reset_vcpu(cenv);
1268 #ifdef KVM_CPUID_SIGNATURE
1269 /* Paravirtualization CPUIDs */
1270 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1271 pv_ent = &cpuid_ent[cpuid_nent++];
1272 memset(pv_ent, 0, sizeof(*pv_ent));
1273 pv_ent->function = KVM_CPUID_SIGNATURE;
1274 pv_ent->eax = 0;
1275 pv_ent->ebx = signature[0];
1276 pv_ent->ecx = signature[1];
1277 pv_ent->edx = signature[2];
1279 pv_ent = &cpuid_ent[cpuid_nent++];
1280 memset(pv_ent, 0, sizeof(*pv_ent));
1281 pv_ent->function = KVM_CPUID_FEATURES;
1282 pv_ent->eax = get_para_features(kvm_context);
1283 #endif
1285 kvm_trim_features(&cenv->cpuid_features,
1286 kvm_arch_get_supported_cpuid(cenv, 1, R_EDX));
1288 /* prevent the hypervisor bit from being cleared by the kernel */
1289 i = cenv->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
1290 kvm_trim_features(&cenv->cpuid_ext_features,
1291 kvm_arch_get_supported_cpuid(cenv, 1, R_ECX));
1292 cenv->cpuid_ext_features |= i;
1294 kvm_trim_features(&cenv->cpuid_ext2_features,
1295 kvm_arch_get_supported_cpuid(cenv, 0x80000001, R_EDX));
1296 kvm_trim_features(&cenv->cpuid_ext3_features,
1297 kvm_arch_get_supported_cpuid(cenv, 0x80000001, R_ECX));
1299 copy = *cenv;
1301 copy.regs[R_EAX] = 0;
1302 qemu_kvm_cpuid_on_env(&copy);
1303 limit = copy.regs[R_EAX];
1305 for (i = 0; i <= limit; ++i) {
1306 if (i == 4 || i == 0xb || i == 0xd) {
1307 for (j = 0; ; ++j) {
1308 do_cpuid_ent(&cpuid_ent[cpuid_nent], i, j, &copy);
1310 cpuid_ent[cpuid_nent].flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1311 cpuid_ent[cpuid_nent].index = j;
1313 cpuid_nent++;
1315 if (i == 4 && copy.regs[R_EAX] == 0)
1316 break;
1317 if (i == 0xb && !(copy.regs[R_ECX] & 0xff00))
1318 break;
1319 if (i == 0xd && copy.regs[R_EAX] == 0)
1320 break;
1322 } else
1323 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
1326 copy.regs[R_EAX] = 0x80000000;
1327 qemu_kvm_cpuid_on_env(&copy);
1328 limit = copy.regs[R_EAX];
1330 for (i = 0x80000000; i <= limit; ++i)
1331 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
1333 kvm_setup_cpuid2(cenv, cpuid_nent, cpuid_ent);
1335 #ifdef KVM_CAP_MCE
1336 if (((cenv->cpuid_version >> 8)&0xF) >= 6
1337 && (cenv->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
1338 && kvm_check_extension(kvm_state, KVM_CAP_MCE) > 0) {
1339 uint64_t mcg_cap;
1340 int banks;
1342 if (kvm_get_mce_cap_supported(kvm_context, &mcg_cap, &banks))
1343 perror("kvm_get_mce_cap_supported FAILED");
1344 else {
1345 if (banks > MCE_BANKS_DEF)
1346 banks = MCE_BANKS_DEF;
1347 mcg_cap &= MCE_CAP_DEF;
1348 mcg_cap |= banks;
1349 if (kvm_setup_mce(cenv, &mcg_cap))
1350 perror("kvm_setup_mce FAILED");
1351 else
1352 cenv->mcg_cap = mcg_cap;
1355 #endif
1357 #ifdef KVM_EXIT_TPR_ACCESS
1358 kvm_enable_tpr_access_reporting(cenv);
1359 #endif
1360 kvm_reset_mpstate(cenv);
1361 return 0;
1364 int kvm_arch_halt(CPUState *env)
1367 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1368 (env->eflags & IF_MASK)) &&
1369 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1370 env->halted = 1;
1372 return 1;
1375 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1377 if (!kvm_irqchip_in_kernel())
1378 kvm_set_cr8(env, cpu_get_apic_tpr(env));
1379 return 0;
1382 int kvm_arch_has_work(CPUState *env)
1384 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1385 (env->eflags & IF_MASK)) ||
1386 (env->interrupt_request & CPU_INTERRUPT_NMI))
1387 return 1;
1388 return 0;
1391 int kvm_arch_try_push_interrupts(void *opaque)
1393 CPUState *env = cpu_single_env;
1394 int r, irq;
1396 if (kvm_is_ready_for_interrupt_injection(env) &&
1397 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1398 (env->eflags & IF_MASK)) {
1399 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1400 irq = cpu_get_pic_interrupt(env);
1401 if (irq >= 0) {
1402 r = kvm_inject_irq(env, irq);
1403 if (r < 0)
1404 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
1408 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
1411 #ifdef KVM_CAP_USER_NMI
1412 void kvm_arch_push_nmi(void *opaque)
1414 CPUState *env = cpu_single_env;
1415 int r;
1417 if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
1418 return;
1420 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1421 r = kvm_inject_nmi(env);
1422 if (r < 0)
1423 printf("cpu %d fail inject NMI\n", env->cpu_index);
1425 #endif /* KVM_CAP_USER_NMI */
1427 void kvm_arch_cpu_reset(CPUState *env)
1429 kvm_arch_reset_vcpu(env);
1430 kvm_reset_mpstate(env);
1433 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
1434 void kvm_arch_do_ioperm(void *_data)
1436 struct ioperm_data *data = _data;
1437 ioperm(data->start_port, data->num, data->turn_on);
1439 #endif
1442 * Setup x86 specific IRQ routing
1444 int kvm_arch_init_irq_routing(void)
1446 int i, r;
1448 if (kvm_irqchip && kvm_has_gsi_routing(kvm_context)) {
1449 kvm_clear_gsi_routes(kvm_context);
1450 for (i = 0; i < 8; ++i) {
1451 if (i == 2)
1452 continue;
1453 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_MASTER, i);
1454 if (r < 0)
1455 return r;
1457 for (i = 8; i < 16; ++i) {
1458 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
1459 if (r < 0)
1460 return r;
1462 for (i = 0; i < 24; ++i) {
1463 if (i == 0) {
1464 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, 2);
1465 } else if (i != 2) {
1466 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, i);
1468 if (r < 0)
1469 return r;
1471 kvm_commit_irq_routes(kvm_context);
1473 return 0;
1476 void kvm_arch_process_irqchip_events(CPUState *env)
1478 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1479 kvm_cpu_synchronize_state(env);
1480 do_cpu_init(env);
1482 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1483 kvm_cpu_synchronize_state(env);
1484 do_cpu_sipi(env);