Merge commit '4a942ceac7e38c259116960e45ba9619611d1df9' into upstream-merge
[qemu-kvm/amd-iommu.git] / target-i386 / kvm.c
blob791fedaba3c4b11aa698a32c5fb7d59f19dee951
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
71 return cpuid;
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
75 uint32_t index, int reg)
77 struct kvm_cpuid2 *cpuid;
78 int i, max;
79 uint32_t ret = 0;
80 uint32_t cpuid_1_edx;
82 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
83 return -1U;
86 max = 1;
87 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
88 max *= 2;
91 for (i = 0; i < cpuid->nent; ++i) {
92 if (cpuid->entries[i].function == function &&
93 cpuid->entries[i].index == index) {
94 switch (reg) {
95 case R_EAX:
96 ret = cpuid->entries[i].eax;
97 break;
98 case R_EBX:
99 ret = cpuid->entries[i].ebx;
100 break;
101 case R_ECX:
102 ret = cpuid->entries[i].ecx;
103 break;
104 case R_EDX:
105 ret = cpuid->entries[i].edx;
106 switch (function) {
107 case 1:
108 /* KVM before 2.6.30 misreports the following features */
109 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110 break;
111 case 0x80000001:
112 /* On Intel, kvm returns cpuid according to the Intel spec,
113 * so add missing bits according to the AMD spec:
115 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
116 ret |= cpuid_1_edx & 0x183f7ff;
117 break;
119 break;
124 qemu_free(cpuid);
126 return ret;
129 #else
131 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
132 uint32_t index, int reg)
134 return -1U;
137 #endif
139 #ifdef CONFIG_KVM_PARA
140 struct kvm_para_features {
141 int cap;
142 int feature;
143 } para_features[] = {
144 #ifdef KVM_CAP_CLOCKSOURCE
145 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
146 #endif
147 #ifdef KVM_CAP_NOP_IO_DELAY
148 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
149 #endif
150 #ifdef KVM_CAP_PV_MMU
151 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152 #endif
153 { -1, -1 }
156 static int get_para_features(CPUState *env)
158 int i, features = 0;
160 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
161 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
162 features |= (1 << para_features[i].feature);
165 return features;
167 #endif
169 static int _kvm_arch_init_vcpu(CPUState *env);
171 int kvm_arch_init_vcpu(CPUState *env)
173 int r;
174 struct {
175 struct kvm_cpuid2 cpuid;
176 struct kvm_cpuid_entry2 entries[100];
177 } __attribute__((packed)) cpuid_data;
178 uint32_t limit, i, j, cpuid_i;
179 uint32_t unused;
180 struct kvm_cpuid_entry2 *c;
181 #ifdef KVM_CPUID_SIGNATURE
182 uint32_t signature[3];
183 #endif
185 r = _kvm_arch_init_vcpu(env);
186 if (r < 0) {
187 return r;
190 #ifdef KVM_UPSTREAM
192 env->mp_state = KVM_MP_STATE_RUNNABLE;
194 #endif
196 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
198 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
199 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
200 env->cpuid_ext_features |= i;
202 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
203 0, R_EDX);
204 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
205 0, R_ECX);
207 cpuid_i = 0;
209 #ifdef CONFIG_KVM_PARA
210 /* Paravirtualization CPUIDs */
211 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
212 c = &cpuid_data.entries[cpuid_i++];
213 memset(c, 0, sizeof(*c));
214 c->function = KVM_CPUID_SIGNATURE;
215 c->eax = 0;
216 c->ebx = signature[0];
217 c->ecx = signature[1];
218 c->edx = signature[2];
220 c = &cpuid_data.entries[cpuid_i++];
221 memset(c, 0, sizeof(*c));
222 c->function = KVM_CPUID_FEATURES;
223 c->eax = env->cpuid_kvm_features & get_para_features(env);
224 #endif
226 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
228 for (i = 0; i <= limit; i++) {
229 c = &cpuid_data.entries[cpuid_i++];
231 switch (i) {
232 case 2: {
233 /* Keep reading function 2 till all the input is received */
234 int times;
236 c->function = i;
237 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
238 KVM_CPUID_FLAG_STATE_READ_NEXT;
239 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
240 times = c->eax & 0xff;
242 for (j = 1; j < times; ++j) {
243 c = &cpuid_data.entries[cpuid_i++];
244 c->function = i;
245 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
246 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
248 break;
250 case 4:
251 case 0xb:
252 case 0xd:
253 for (j = 0; ; j++) {
254 c->function = i;
255 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
256 c->index = j;
257 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
259 if (i == 4 && c->eax == 0)
260 break;
261 if (i == 0xb && !(c->ecx & 0xff00))
262 break;
263 if (i == 0xd && c->eax == 0)
264 break;
266 c = &cpuid_data.entries[cpuid_i++];
268 break;
269 default:
270 c->function = i;
271 c->flags = 0;
272 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
273 break;
276 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
278 for (i = 0x80000000; i <= limit; i++) {
279 c = &cpuid_data.entries[cpuid_i++];
281 c->function = i;
282 c->flags = 0;
283 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
286 cpuid_data.cpuid.nent = cpuid_i;
288 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
291 void kvm_arch_reset_vcpu(CPUState *env)
293 env->exception_injected = -1;
294 env->interrupt_injected = -1;
295 env->nmi_injected = 0;
296 env->nmi_pending = 0;
297 /* Legal xcr0 for loading */
298 env->xcr0 = 1;
300 #ifdef KVM_UPSTREAM
302 static int kvm_has_msr_star(CPUState *env)
304 static int has_msr_star;
305 int ret;
307 /* first time */
308 if (has_msr_star == 0) {
309 struct kvm_msr_list msr_list, *kvm_msr_list;
311 has_msr_star = -1;
313 /* Obtain MSR list from KVM. These are the MSRs that we must
314 * save/restore */
315 msr_list.nmsrs = 0;
316 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
317 if (ret < 0 && ret != -E2BIG) {
318 return 0;
320 /* Old kernel modules had a bug and could write beyond the provided
321 memory. Allocate at least a safe amount of 1K. */
322 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
323 msr_list.nmsrs *
324 sizeof(msr_list.indices[0])));
326 kvm_msr_list->nmsrs = msr_list.nmsrs;
327 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
328 if (ret >= 0) {
329 int i;
331 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
332 if (kvm_msr_list->indices[i] == MSR_STAR) {
333 has_msr_star = 1;
334 break;
339 free(kvm_msr_list);
342 if (has_msr_star == 1)
343 return 1;
344 return 0;
347 static int kvm_init_identity_map_page(KVMState *s)
349 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
350 int ret;
351 uint64_t addr = 0xfffbc000;
353 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
354 return 0;
357 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
358 if (ret < 0) {
359 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
360 return ret;
362 #endif
363 return 0;
366 int kvm_arch_init(KVMState *s, int smp_cpus)
368 int ret;
370 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
371 * directly. In order to use vm86 mode, a TSS is needed. Since this
372 * must be part of guest physical memory, we need to allocate it. Older
373 * versions of KVM just assumed that it would be at the end of physical
374 * memory but that doesn't work with more than 4GB of memory. We simply
375 * refuse to work with those older versions of KVM. */
376 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
377 if (ret <= 0) {
378 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
379 return ret;
382 /* this address is 3 pages before the bios, and the bios should present
383 * as unavaible memory. FIXME, need to ensure the e820 map deals with
384 * this?
387 * Tell fw_cfg to notify the BIOS to reserve the range.
389 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
390 perror("e820_add_entry() table is full");
391 exit(1);
393 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
394 if (ret < 0) {
395 return ret;
398 return kvm_init_identity_map_page(s);
401 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
403 lhs->selector = rhs->selector;
404 lhs->base = rhs->base;
405 lhs->limit = rhs->limit;
406 lhs->type = 3;
407 lhs->present = 1;
408 lhs->dpl = 3;
409 lhs->db = 0;
410 lhs->s = 1;
411 lhs->l = 0;
412 lhs->g = 0;
413 lhs->avl = 0;
414 lhs->unusable = 0;
417 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
419 unsigned flags = rhs->flags;
420 lhs->selector = rhs->selector;
421 lhs->base = rhs->base;
422 lhs->limit = rhs->limit;
423 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
424 lhs->present = (flags & DESC_P_MASK) != 0;
425 lhs->dpl = rhs->selector & 3;
426 lhs->db = (flags >> DESC_B_SHIFT) & 1;
427 lhs->s = (flags & DESC_S_MASK) != 0;
428 lhs->l = (flags >> DESC_L_SHIFT) & 1;
429 lhs->g = (flags & DESC_G_MASK) != 0;
430 lhs->avl = (flags & DESC_AVL_MASK) != 0;
431 lhs->unusable = 0;
434 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
436 lhs->selector = rhs->selector;
437 lhs->base = rhs->base;
438 lhs->limit = rhs->limit;
439 lhs->flags =
440 (rhs->type << DESC_TYPE_SHIFT)
441 | (rhs->present * DESC_P_MASK)
442 | (rhs->dpl << DESC_DPL_SHIFT)
443 | (rhs->db << DESC_B_SHIFT)
444 | (rhs->s * DESC_S_MASK)
445 | (rhs->l << DESC_L_SHIFT)
446 | (rhs->g * DESC_G_MASK)
447 | (rhs->avl * DESC_AVL_MASK);
450 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
452 if (set)
453 *kvm_reg = *qemu_reg;
454 else
455 *qemu_reg = *kvm_reg;
458 static int kvm_getput_regs(CPUState *env, int set)
460 struct kvm_regs regs;
461 int ret = 0;
463 if (!set) {
464 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
465 if (ret < 0)
466 return ret;
469 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
470 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
471 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
472 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
473 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
474 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
475 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
476 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
477 #ifdef TARGET_X86_64
478 kvm_getput_reg(&regs.r8, &env->regs[8], set);
479 kvm_getput_reg(&regs.r9, &env->regs[9], set);
480 kvm_getput_reg(&regs.r10, &env->regs[10], set);
481 kvm_getput_reg(&regs.r11, &env->regs[11], set);
482 kvm_getput_reg(&regs.r12, &env->regs[12], set);
483 kvm_getput_reg(&regs.r13, &env->regs[13], set);
484 kvm_getput_reg(&regs.r14, &env->regs[14], set);
485 kvm_getput_reg(&regs.r15, &env->regs[15], set);
486 #endif
488 kvm_getput_reg(&regs.rflags, &env->eflags, set);
489 kvm_getput_reg(&regs.rip, &env->eip, set);
491 if (set)
492 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
494 return ret;
497 static int kvm_put_fpu(CPUState *env)
499 struct kvm_fpu fpu;
500 int i;
502 memset(&fpu, 0, sizeof fpu);
503 fpu.fsw = env->fpus & ~(7 << 11);
504 fpu.fsw |= (env->fpstt & 7) << 11;
505 fpu.fcw = env->fpuc;
506 for (i = 0; i < 8; ++i)
507 fpu.ftwx |= (!env->fptags[i]) << i;
508 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
509 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
510 fpu.mxcsr = env->mxcsr;
512 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
515 static int kvm_put_sregs(CPUState *env)
517 struct kvm_sregs sregs;
519 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
520 if (env->interrupt_injected >= 0) {
521 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
522 (uint64_t)1 << (env->interrupt_injected % 64);
525 if ((env->eflags & VM_MASK)) {
526 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
527 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
528 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
529 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
530 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
531 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
532 } else {
533 set_seg(&sregs.cs, &env->segs[R_CS]);
534 set_seg(&sregs.ds, &env->segs[R_DS]);
535 set_seg(&sregs.es, &env->segs[R_ES]);
536 set_seg(&sregs.fs, &env->segs[R_FS]);
537 set_seg(&sregs.gs, &env->segs[R_GS]);
538 set_seg(&sregs.ss, &env->segs[R_SS]);
540 if (env->cr[0] & CR0_PE_MASK) {
541 /* force ss cpl to cs cpl */
542 sregs.ss.selector = (sregs.ss.selector & ~3) |
543 (sregs.cs.selector & 3);
544 sregs.ss.dpl = sregs.ss.selector & 3;
548 set_seg(&sregs.tr, &env->tr);
549 set_seg(&sregs.ldt, &env->ldt);
551 sregs.idt.limit = env->idt.limit;
552 sregs.idt.base = env->idt.base;
553 sregs.gdt.limit = env->gdt.limit;
554 sregs.gdt.base = env->gdt.base;
556 sregs.cr0 = env->cr[0];
557 sregs.cr2 = env->cr[2];
558 sregs.cr3 = env->cr[3];
559 sregs.cr4 = env->cr[4];
561 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
562 sregs.apic_base = cpu_get_apic_base(env->apic_state);
564 sregs.efer = env->efer;
566 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
569 #endif
571 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
572 uint32_t index, uint64_t value)
574 entry->index = index;
575 entry->data = value;
578 #ifdef KVM_UPSTREAM
579 static int kvm_put_msrs(CPUState *env, int level)
581 struct {
582 struct kvm_msrs info;
583 struct kvm_msr_entry entries[100];
584 } msr_data;
585 struct kvm_msr_entry *msrs = msr_data.entries;
586 int n = 0;
588 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
589 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
590 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
591 if (kvm_has_msr_star(env))
592 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
593 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
594 #ifdef TARGET_X86_64
595 /* FIXME if lm capable */
596 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
597 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
598 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
599 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
600 #endif
601 if (level == KVM_PUT_FULL_STATE) {
602 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
603 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
604 env->system_time_msr);
605 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
608 msr_data.info.nmsrs = n;
610 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
615 static int kvm_get_fpu(CPUState *env)
617 struct kvm_fpu fpu;
618 int i, ret;
620 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
621 if (ret < 0)
622 return ret;
624 env->fpstt = (fpu.fsw >> 11) & 7;
625 env->fpus = fpu.fsw;
626 env->fpuc = fpu.fcw;
627 for (i = 0; i < 8; ++i)
628 env->fptags[i] = !((fpu.ftwx >> i) & 1);
629 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
630 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
631 env->mxcsr = fpu.mxcsr;
633 return 0;
636 static int kvm_get_sregs(CPUState *env)
638 struct kvm_sregs sregs;
639 uint32_t hflags;
640 int bit, i, ret;
642 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
643 if (ret < 0)
644 return ret;
646 /* There can only be one pending IRQ set in the bitmap at a time, so try
647 to find it and save its number instead (-1 for none). */
648 env->interrupt_injected = -1;
649 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
650 if (sregs.interrupt_bitmap[i]) {
651 bit = ctz64(sregs.interrupt_bitmap[i]);
652 env->interrupt_injected = i * 64 + bit;
653 break;
657 get_seg(&env->segs[R_CS], &sregs.cs);
658 get_seg(&env->segs[R_DS], &sregs.ds);
659 get_seg(&env->segs[R_ES], &sregs.es);
660 get_seg(&env->segs[R_FS], &sregs.fs);
661 get_seg(&env->segs[R_GS], &sregs.gs);
662 get_seg(&env->segs[R_SS], &sregs.ss);
664 get_seg(&env->tr, &sregs.tr);
665 get_seg(&env->ldt, &sregs.ldt);
667 env->idt.limit = sregs.idt.limit;
668 env->idt.base = sregs.idt.base;
669 env->gdt.limit = sregs.gdt.limit;
670 env->gdt.base = sregs.gdt.base;
672 env->cr[0] = sregs.cr0;
673 env->cr[2] = sregs.cr2;
674 env->cr[3] = sregs.cr3;
675 env->cr[4] = sregs.cr4;
677 cpu_set_apic_base(env->apic_state, sregs.apic_base);
679 env->efer = sregs.efer;
680 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
682 #define HFLAG_COPY_MASK ~( \
683 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
684 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
685 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
686 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
690 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
691 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
692 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
693 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
694 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
695 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
696 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
698 if (env->efer & MSR_EFER_LMA) {
699 hflags |= HF_LMA_MASK;
702 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
703 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
704 } else {
705 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
706 (DESC_B_SHIFT - HF_CS32_SHIFT);
707 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
708 (DESC_B_SHIFT - HF_SS32_SHIFT);
709 if (!(env->cr[0] & CR0_PE_MASK) ||
710 (env->eflags & VM_MASK) ||
711 !(hflags & HF_CS32_MASK)) {
712 hflags |= HF_ADDSEG_MASK;
713 } else {
714 hflags |= ((env->segs[R_DS].base |
715 env->segs[R_ES].base |
716 env->segs[R_SS].base) != 0) <<
717 HF_ADDSEG_SHIFT;
720 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
722 return 0;
725 static int kvm_get_msrs(CPUState *env)
727 struct {
728 struct kvm_msrs info;
729 struct kvm_msr_entry entries[100];
730 } msr_data;
731 struct kvm_msr_entry *msrs = msr_data.entries;
732 int ret, i, n;
734 n = 0;
735 msrs[n++].index = MSR_IA32_SYSENTER_CS;
736 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
737 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
738 if (kvm_has_msr_star(env))
739 msrs[n++].index = MSR_STAR;
740 msrs[n++].index = MSR_IA32_TSC;
741 msrs[n++].index = MSR_VM_HSAVE_PA;
742 #ifdef TARGET_X86_64
743 /* FIXME lm_capable_kernel */
744 msrs[n++].index = MSR_CSTAR;
745 msrs[n++].index = MSR_KERNELGSBASE;
746 msrs[n++].index = MSR_FMASK;
747 msrs[n++].index = MSR_LSTAR;
748 #endif
749 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
750 msrs[n++].index = MSR_KVM_WALL_CLOCK;
752 msr_data.info.nmsrs = n;
753 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
754 if (ret < 0)
755 return ret;
757 for (i = 0; i < ret; i++) {
758 switch (msrs[i].index) {
759 case MSR_IA32_SYSENTER_CS:
760 env->sysenter_cs = msrs[i].data;
761 break;
762 case MSR_IA32_SYSENTER_ESP:
763 env->sysenter_esp = msrs[i].data;
764 break;
765 case MSR_IA32_SYSENTER_EIP:
766 env->sysenter_eip = msrs[i].data;
767 break;
768 case MSR_STAR:
769 env->star = msrs[i].data;
770 break;
771 #ifdef TARGET_X86_64
772 case MSR_CSTAR:
773 env->cstar = msrs[i].data;
774 break;
775 case MSR_KERNELGSBASE:
776 env->kernelgsbase = msrs[i].data;
777 break;
778 case MSR_FMASK:
779 env->fmask = msrs[i].data;
780 break;
781 case MSR_LSTAR:
782 env->lstar = msrs[i].data;
783 break;
784 #endif
785 case MSR_IA32_TSC:
786 env->tsc = msrs[i].data;
787 break;
788 case MSR_KVM_SYSTEM_TIME:
789 env->system_time_msr = msrs[i].data;
790 break;
791 case MSR_KVM_WALL_CLOCK:
792 env->wall_clock_msr = msrs[i].data;
793 break;
794 case MSR_VM_HSAVE_PA:
795 env->vm_hsave = msrs[i].data;
796 break;
800 return 0;
803 static int kvm_put_mp_state(CPUState *env)
805 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
807 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
810 static int kvm_get_mp_state(CPUState *env)
812 struct kvm_mp_state mp_state;
813 int ret;
815 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
816 if (ret < 0) {
817 return ret;
819 env->mp_state = mp_state.mp_state;
820 return 0;
822 #endif
824 static int kvm_put_vcpu_events(CPUState *env, int level)
826 #ifdef KVM_CAP_VCPU_EVENTS
827 struct kvm_vcpu_events events;
829 if (!kvm_has_vcpu_events()) {
830 return 0;
833 events.exception.injected = (env->exception_injected >= 0);
834 events.exception.nr = env->exception_injected;
835 events.exception.has_error_code = env->has_error_code;
836 events.exception.error_code = env->error_code;
838 events.interrupt.injected = (env->interrupt_injected >= 0);
839 events.interrupt.nr = env->interrupt_injected;
840 events.interrupt.soft = env->soft_interrupt;
842 events.nmi.injected = env->nmi_injected;
843 events.nmi.pending = env->nmi_pending;
844 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
846 events.sipi_vector = env->sipi_vector;
848 events.flags = 0;
849 if (level >= KVM_PUT_RESET_STATE) {
850 events.flags |=
851 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
854 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
855 #else
856 return 0;
857 #endif
860 static int kvm_get_vcpu_events(CPUState *env)
862 #ifdef KVM_CAP_VCPU_EVENTS
863 struct kvm_vcpu_events events;
864 int ret;
866 if (!kvm_has_vcpu_events()) {
867 return 0;
870 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
871 if (ret < 0) {
872 return ret;
874 env->exception_injected =
875 events.exception.injected ? events.exception.nr : -1;
876 env->has_error_code = events.exception.has_error_code;
877 env->error_code = events.exception.error_code;
879 env->interrupt_injected =
880 events.interrupt.injected ? events.interrupt.nr : -1;
881 env->soft_interrupt = events.interrupt.soft;
883 env->nmi_injected = events.nmi.injected;
884 env->nmi_pending = events.nmi.pending;
885 if (events.nmi.masked) {
886 env->hflags2 |= HF2_NMI_MASK;
887 } else {
888 env->hflags2 &= ~HF2_NMI_MASK;
891 env->sipi_vector = events.sipi_vector;
892 #endif
894 return 0;
897 static int kvm_guest_debug_workarounds(CPUState *env)
899 int ret = 0;
900 #ifdef KVM_CAP_SET_GUEST_DEBUG
901 unsigned long reinject_trap = 0;
903 if (!kvm_has_vcpu_events()) {
904 if (env->exception_injected == 1) {
905 reinject_trap = KVM_GUESTDBG_INJECT_DB;
906 } else if (env->exception_injected == 3) {
907 reinject_trap = KVM_GUESTDBG_INJECT_BP;
909 env->exception_injected = -1;
913 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
914 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
915 * by updating the debug state once again if single-stepping is on.
916 * Another reason to call kvm_update_guest_debug here is a pending debug
917 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
918 * reinject them via SET_GUEST_DEBUG.
920 if (reinject_trap ||
921 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
922 ret = kvm_update_guest_debug(env, reinject_trap);
924 #endif /* KVM_CAP_SET_GUEST_DEBUG */
925 return ret;
928 static int kvm_put_debugregs(CPUState *env)
930 #ifdef KVM_CAP_DEBUGREGS
931 struct kvm_debugregs dbgregs;
932 int i;
934 if (!kvm_has_debugregs()) {
935 return 0;
938 for (i = 0; i < 4; i++) {
939 dbgregs.db[i] = env->dr[i];
941 dbgregs.dr6 = env->dr[6];
942 dbgregs.dr7 = env->dr[7];
943 dbgregs.flags = 0;
945 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
946 #else
947 return 0;
948 #endif
951 static int kvm_get_debugregs(CPUState *env)
953 #ifdef KVM_CAP_DEBUGREGS
954 struct kvm_debugregs dbgregs;
955 int i, ret;
957 if (!kvm_has_debugregs()) {
958 return 0;
961 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
962 if (ret < 0) {
963 return ret;
965 for (i = 0; i < 4; i++) {
966 env->dr[i] = dbgregs.db[i];
968 env->dr[4] = env->dr[6] = dbgregs.dr6;
969 env->dr[5] = env->dr[7] = dbgregs.dr7;
970 #endif
972 return 0;
975 #ifdef KVM_UPSTREAM
976 int kvm_arch_put_registers(CPUState *env, int level)
978 int ret;
980 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
982 ret = kvm_getput_regs(env, 1);
983 if (ret < 0)
984 return ret;
986 ret = kvm_put_fpu(env);
987 if (ret < 0)
988 return ret;
990 ret = kvm_put_sregs(env);
991 if (ret < 0)
992 return ret;
994 ret = kvm_put_msrs(env, level);
995 if (ret < 0)
996 return ret;
998 if (level >= KVM_PUT_RESET_STATE) {
999 ret = kvm_put_mp_state(env);
1000 if (ret < 0)
1001 return ret;
1004 ret = kvm_put_vcpu_events(env, level);
1005 if (ret < 0)
1006 return ret;
1008 /* must be last */
1009 ret = kvm_guest_debug_workarounds(env);
1010 if (ret < 0)
1011 return ret;
1013 ret = kvm_put_debugregs(env);
1014 if (ret < 0)
1015 return ret;
1017 return 0;
1020 int kvm_arch_get_registers(CPUState *env)
1022 int ret;
1024 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1026 ret = kvm_getput_regs(env, 0);
1027 if (ret < 0)
1028 return ret;
1030 ret = kvm_get_fpu(env);
1031 if (ret < 0)
1032 return ret;
1034 ret = kvm_get_sregs(env);
1035 if (ret < 0)
1036 return ret;
1038 ret = kvm_get_msrs(env);
1039 if (ret < 0)
1040 return ret;
1042 ret = kvm_get_mp_state(env);
1043 if (ret < 0)
1044 return ret;
1046 ret = kvm_get_vcpu_events(env);
1047 if (ret < 0)
1048 return ret;
1050 ret = kvm_get_debugregs(env);
1051 if (ret < 0)
1052 return ret;
1054 return 0;
1057 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1059 /* Try to inject an interrupt if the guest can accept it */
1060 if (run->ready_for_interrupt_injection &&
1061 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1062 (env->eflags & IF_MASK)) {
1063 int irq;
1065 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1066 irq = cpu_get_pic_interrupt(env);
1067 if (irq >= 0) {
1068 struct kvm_interrupt intr;
1069 intr.irq = irq;
1070 /* FIXME: errors */
1071 DPRINTF("injected interrupt %d\n", irq);
1072 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1076 /* If we have an interrupt but the guest is not ready to receive an
1077 * interrupt, request an interrupt window exit. This will
1078 * cause a return to userspace as soon as the guest is ready to
1079 * receive interrupts. */
1080 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1081 run->request_interrupt_window = 1;
1082 else
1083 run->request_interrupt_window = 0;
1085 DPRINTF("setting tpr\n");
1086 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1088 return 0;
1090 #endif
1092 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1094 if (run->if_flag)
1095 env->eflags |= IF_MASK;
1096 else
1097 env->eflags &= ~IF_MASK;
1099 cpu_set_apic_tpr(env->apic_state, run->cr8);
1100 cpu_set_apic_base(env->apic_state, run->apic_base);
1102 return 0;
1105 #ifdef KVM_UPSTREAM
1107 int kvm_arch_process_irqchip_events(CPUState *env)
1109 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1110 kvm_cpu_synchronize_state(env);
1111 do_cpu_init(env);
1112 env->exception_index = EXCP_HALTED;
1115 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1116 kvm_cpu_synchronize_state(env);
1117 do_cpu_sipi(env);
1120 return env->halted;
1123 static int kvm_handle_halt(CPUState *env)
1125 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1126 (env->eflags & IF_MASK)) &&
1127 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1128 env->halted = 1;
1129 env->exception_index = EXCP_HLT;
1130 return 0;
1133 return 1;
1136 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1138 int ret = 0;
1140 switch (run->exit_reason) {
1141 case KVM_EXIT_HLT:
1142 DPRINTF("handle_hlt\n");
1143 ret = kvm_handle_halt(env);
1144 break;
1147 return ret;
1149 #endif
1151 #ifdef KVM_CAP_SET_GUEST_DEBUG
1152 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1154 static const uint8_t int3 = 0xcc;
1156 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1157 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1158 return -EINVAL;
1159 return 0;
1162 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1164 uint8_t int3;
1166 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1167 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1168 return -EINVAL;
1169 return 0;
1172 static struct {
1173 target_ulong addr;
1174 int len;
1175 int type;
1176 } hw_breakpoint[4];
1178 static int nb_hw_breakpoint;
1180 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1182 int n;
1184 for (n = 0; n < nb_hw_breakpoint; n++)
1185 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1186 (hw_breakpoint[n].len == len || len == -1))
1187 return n;
1188 return -1;
1191 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1192 target_ulong len, int type)
1194 switch (type) {
1195 case GDB_BREAKPOINT_HW:
1196 len = 1;
1197 break;
1198 case GDB_WATCHPOINT_WRITE:
1199 case GDB_WATCHPOINT_ACCESS:
1200 switch (len) {
1201 case 1:
1202 break;
1203 case 2:
1204 case 4:
1205 case 8:
1206 if (addr & (len - 1))
1207 return -EINVAL;
1208 break;
1209 default:
1210 return -EINVAL;
1212 break;
1213 default:
1214 return -ENOSYS;
1217 if (nb_hw_breakpoint == 4)
1218 return -ENOBUFS;
1220 if (find_hw_breakpoint(addr, len, type) >= 0)
1221 return -EEXIST;
1223 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1224 hw_breakpoint[nb_hw_breakpoint].len = len;
1225 hw_breakpoint[nb_hw_breakpoint].type = type;
1226 nb_hw_breakpoint++;
1228 return 0;
1231 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1232 target_ulong len, int type)
1234 int n;
1236 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1237 if (n < 0)
1238 return -ENOENT;
1240 nb_hw_breakpoint--;
1241 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1243 return 0;
1246 void kvm_arch_remove_all_hw_breakpoints(void)
1248 nb_hw_breakpoint = 0;
1251 static CPUWatchpoint hw_watchpoint;
1253 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1255 int handle = 0;
1256 int n;
1258 if (arch_info->exception == 1) {
1259 if (arch_info->dr6 & (1 << 14)) {
1260 if (cpu_single_env->singlestep_enabled)
1261 handle = 1;
1262 } else {
1263 for (n = 0; n < 4; n++)
1264 if (arch_info->dr6 & (1 << n))
1265 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1266 case 0x0:
1267 handle = 1;
1268 break;
1269 case 0x1:
1270 handle = 1;
1271 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1272 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1273 hw_watchpoint.flags = BP_MEM_WRITE;
1274 break;
1275 case 0x3:
1276 handle = 1;
1277 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1278 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1279 hw_watchpoint.flags = BP_MEM_ACCESS;
1280 break;
1283 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1284 handle = 1;
1286 if (!handle) {
1287 cpu_synchronize_state(cpu_single_env);
1288 assert(cpu_single_env->exception_injected == -1);
1290 cpu_single_env->exception_injected = arch_info->exception;
1291 cpu_single_env->has_error_code = 0;
1294 return handle;
1297 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1299 const uint8_t type_code[] = {
1300 [GDB_BREAKPOINT_HW] = 0x0,
1301 [GDB_WATCHPOINT_WRITE] = 0x1,
1302 [GDB_WATCHPOINT_ACCESS] = 0x3
1304 const uint8_t len_code[] = {
1305 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1307 int n;
1309 if (kvm_sw_breakpoints_active(env))
1310 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1312 if (nb_hw_breakpoint > 0) {
1313 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1314 dbg->arch.debugreg[7] = 0x0600;
1315 for (n = 0; n < nb_hw_breakpoint; n++) {
1316 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1317 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1318 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1319 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1323 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1325 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1327 return !(env->cr[0] & CR0_PE_MASK) ||
1328 ((env->segs[R_CS].selector & 3) != 3);
1331 #include "qemu-kvm-x86.c"