kvm: libkvm: Add a wrapper for an ioctl for the KVM_SET_CPUID2 interface
[qemu-kvm/amd-iommu.git] / target-arm / helper.c
blob81663c8f3b35221aef962a13314a313b4aa0e099
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name);
31 static inline void set_feature(CPUARMState *env, int feature)
33 env->features |= 1u << feature;
36 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
38 env->cp15.c0_cpuid = id;
39 switch (id) {
40 case ARM_CPUID_ARM926:
41 set_feature(env, ARM_FEATURE_VFP);
42 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
43 env->cp15.c0_cachetype = 0x1dd20d2;
44 env->cp15.c1_sys = 0x00090078;
45 break;
46 case ARM_CPUID_ARM946:
47 set_feature(env, ARM_FEATURE_MPU);
48 env->cp15.c0_cachetype = 0x0f004006;
49 env->cp15.c1_sys = 0x00000078;
50 break;
51 case ARM_CPUID_ARM1026:
52 set_feature(env, ARM_FEATURE_VFP);
53 set_feature(env, ARM_FEATURE_AUXCR);
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
55 env->cp15.c0_cachetype = 0x1dd20d2;
56 env->cp15.c1_sys = 0x00090078;
57 break;
58 case ARM_CPUID_ARM1136_R2:
59 case ARM_CPUID_ARM1136:
60 set_feature(env, ARM_FEATURE_V6);
61 set_feature(env, ARM_FEATURE_VFP);
62 set_feature(env, ARM_FEATURE_AUXCR);
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
64 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
65 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
66 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
67 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
68 env->cp15.c0_cachetype = 0x1dd20d2;
69 break;
70 case ARM_CPUID_ARM11MPCORE:
71 set_feature(env, ARM_FEATURE_V6);
72 set_feature(env, ARM_FEATURE_V6K);
73 set_feature(env, ARM_FEATURE_VFP);
74 set_feature(env, ARM_FEATURE_AUXCR);
75 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
76 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
77 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
78 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
79 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
80 env->cp15.c0_cachetype = 0x1dd20d2;
81 break;
82 case ARM_CPUID_CORTEXA8:
83 set_feature(env, ARM_FEATURE_V6);
84 set_feature(env, ARM_FEATURE_V6K);
85 set_feature(env, ARM_FEATURE_V7);
86 set_feature(env, ARM_FEATURE_AUXCR);
87 set_feature(env, ARM_FEATURE_THUMB2);
88 set_feature(env, ARM_FEATURE_VFP);
89 set_feature(env, ARM_FEATURE_VFP3);
90 set_feature(env, ARM_FEATURE_NEON);
91 set_feature(env, ARM_FEATURE_THUMB2EE);
92 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
93 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
94 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
95 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
96 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
97 env->cp15.c0_cachetype = 0x82048004;
98 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
99 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
100 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
101 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
102 break;
103 case ARM_CPUID_CORTEXM3:
104 set_feature(env, ARM_FEATURE_V6);
105 set_feature(env, ARM_FEATURE_THUMB2);
106 set_feature(env, ARM_FEATURE_V7);
107 set_feature(env, ARM_FEATURE_M);
108 set_feature(env, ARM_FEATURE_DIV);
109 break;
110 case ARM_CPUID_ANY: /* For userspace emulation. */
111 set_feature(env, ARM_FEATURE_V6);
112 set_feature(env, ARM_FEATURE_V6K);
113 set_feature(env, ARM_FEATURE_V7);
114 set_feature(env, ARM_FEATURE_THUMB2);
115 set_feature(env, ARM_FEATURE_VFP);
116 set_feature(env, ARM_FEATURE_VFP3);
117 set_feature(env, ARM_FEATURE_NEON);
118 set_feature(env, ARM_FEATURE_THUMB2EE);
119 set_feature(env, ARM_FEATURE_DIV);
120 break;
121 case ARM_CPUID_TI915T:
122 case ARM_CPUID_TI925T:
123 set_feature(env, ARM_FEATURE_OMAPCP);
124 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
125 env->cp15.c0_cachetype = 0x5109149;
126 env->cp15.c1_sys = 0x00000070;
127 env->cp15.c15_i_max = 0x000;
128 env->cp15.c15_i_min = 0xff0;
129 break;
130 case ARM_CPUID_PXA250:
131 case ARM_CPUID_PXA255:
132 case ARM_CPUID_PXA260:
133 case ARM_CPUID_PXA261:
134 case ARM_CPUID_PXA262:
135 set_feature(env, ARM_FEATURE_XSCALE);
136 /* JTAG_ID is ((id << 28) | 0x09265013) */
137 env->cp15.c0_cachetype = 0xd172172;
138 env->cp15.c1_sys = 0x00000078;
139 break;
140 case ARM_CPUID_PXA270_A0:
141 case ARM_CPUID_PXA270_A1:
142 case ARM_CPUID_PXA270_B0:
143 case ARM_CPUID_PXA270_B1:
144 case ARM_CPUID_PXA270_C0:
145 case ARM_CPUID_PXA270_C5:
146 set_feature(env, ARM_FEATURE_XSCALE);
147 /* JTAG_ID is ((id << 28) | 0x09265013) */
148 set_feature(env, ARM_FEATURE_IWMMXT);
149 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
150 env->cp15.c0_cachetype = 0xd172172;
151 env->cp15.c1_sys = 0x00000078;
152 break;
153 default:
154 cpu_abort(env, "Bad CPU ID: %x\n", id);
155 break;
159 void cpu_reset(CPUARMState *env)
161 uint32_t id;
162 id = env->cp15.c0_cpuid;
163 memset(env, 0, offsetof(CPUARMState, breakpoints));
164 if (id)
165 cpu_reset_model_id(env, id);
166 #if defined (CONFIG_USER_ONLY)
167 env->uncached_cpsr = ARM_CPU_MODE_USR;
168 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
169 #else
170 /* SVC mode with interrupts disabled. */
171 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
172 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
173 clear at reset. */
174 if (IS_M(env))
175 env->uncached_cpsr &= ~CPSR_I;
176 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
177 env->cp15.c2_base_mask = 0xffffc000u;
178 #endif
179 env->regs[15] = 0;
180 tlb_flush(env, 1);
183 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
185 int nregs;
187 /* VFP data registers are always little-endian. */
188 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
189 if (reg < nregs) {
190 stfq_le_p(buf, env->vfp.regs[reg]);
191 return 8;
193 if (arm_feature(env, ARM_FEATURE_NEON)) {
194 /* Aliases for Q regs. */
195 nregs += 16;
196 if (reg < nregs) {
197 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
198 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
199 return 16;
202 switch (reg - nregs) {
203 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
204 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
205 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
207 return 0;
210 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
212 int nregs;
214 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
215 if (reg < nregs) {
216 env->vfp.regs[reg] = ldfq_le_p(buf);
217 return 8;
219 if (arm_feature(env, ARM_FEATURE_NEON)) {
220 nregs += 16;
221 if (reg < nregs) {
222 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
223 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
224 return 16;
227 switch (reg - nregs) {
228 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
229 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
230 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
232 return 0;
235 CPUARMState *cpu_arm_init(const char *cpu_model)
237 CPUARMState *env;
238 uint32_t id;
239 static int inited = 0;
241 id = cpu_arm_find_by_name(cpu_model);
242 if (id == 0)
243 return NULL;
244 env = qemu_mallocz(sizeof(CPUARMState));
245 if (!env)
246 return NULL;
247 cpu_exec_init(env);
248 if (!inited) {
249 inited = 1;
250 arm_translate_init();
253 env->cpu_model_str = cpu_model;
254 env->cp15.c0_cpuid = id;
255 cpu_reset(env);
256 if (arm_feature(env, ARM_FEATURE_NEON)) {
257 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
258 51, "arm-neon.xml", 0);
259 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
260 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
261 35, "arm-vfp3.xml", 0);
262 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
263 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
264 19, "arm-vfp.xml", 0);
266 return env;
269 struct arm_cpu_t {
270 uint32_t id;
271 const char *name;
274 static const struct arm_cpu_t arm_cpu_names[] = {
275 { ARM_CPUID_ARM926, "arm926"},
276 { ARM_CPUID_ARM946, "arm946"},
277 { ARM_CPUID_ARM1026, "arm1026"},
278 { ARM_CPUID_ARM1136, "arm1136"},
279 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
280 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
281 { ARM_CPUID_CORTEXM3, "cortex-m3"},
282 { ARM_CPUID_CORTEXA8, "cortex-a8"},
283 { ARM_CPUID_TI925T, "ti925t" },
284 { ARM_CPUID_PXA250, "pxa250" },
285 { ARM_CPUID_PXA255, "pxa255" },
286 { ARM_CPUID_PXA260, "pxa260" },
287 { ARM_CPUID_PXA261, "pxa261" },
288 { ARM_CPUID_PXA262, "pxa262" },
289 { ARM_CPUID_PXA270, "pxa270" },
290 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
291 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
292 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
293 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
294 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
295 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
296 { ARM_CPUID_ANY, "any"},
297 { 0, NULL}
300 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
302 int i;
304 (*cpu_fprintf)(f, "Available CPUs:\n");
305 for (i = 0; arm_cpu_names[i].name; i++) {
306 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
310 /* return 0 if not found */
311 static uint32_t cpu_arm_find_by_name(const char *name)
313 int i;
314 uint32_t id;
316 id = 0;
317 for (i = 0; arm_cpu_names[i].name; i++) {
318 if (strcmp(name, arm_cpu_names[i].name) == 0) {
319 id = arm_cpu_names[i].id;
320 break;
323 return id;
326 void cpu_arm_close(CPUARMState *env)
328 free(env);
331 uint32_t cpsr_read(CPUARMState *env)
333 int ZF;
334 ZF = (env->ZF == 0);
335 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
336 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
337 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
338 | ((env->condexec_bits & 0xfc) << 8)
339 | (env->GE << 16);
342 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
344 if (mask & CPSR_NZCV) {
345 env->ZF = (~val) & CPSR_Z;
346 env->NF = val;
347 env->CF = (val >> 29) & 1;
348 env->VF = (val << 3) & 0x80000000;
350 if (mask & CPSR_Q)
351 env->QF = ((val & CPSR_Q) != 0);
352 if (mask & CPSR_T)
353 env->thumb = ((val & CPSR_T) != 0);
354 if (mask & CPSR_IT_0_1) {
355 env->condexec_bits &= ~3;
356 env->condexec_bits |= (val >> 25) & 3;
358 if (mask & CPSR_IT_2_7) {
359 env->condexec_bits &= 3;
360 env->condexec_bits |= (val >> 8) & 0xfc;
362 if (mask & CPSR_GE) {
363 env->GE = (val >> 16) & 0xf;
366 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
367 switch_mode(env, val & CPSR_M);
369 mask &= ~CACHED_CPSR_BITS;
370 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
373 /* Sign/zero extend */
374 uint32_t HELPER(sxtb16)(uint32_t x)
376 uint32_t res;
377 res = (uint16_t)(int8_t)x;
378 res |= (uint32_t)(int8_t)(x >> 16) << 16;
379 return res;
382 uint32_t HELPER(uxtb16)(uint32_t x)
384 uint32_t res;
385 res = (uint16_t)(uint8_t)x;
386 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
387 return res;
390 uint32_t HELPER(clz)(uint32_t x)
392 int count;
393 for (count = 32; x; count--)
394 x >>= 1;
395 return count;
398 int32_t HELPER(sdiv)(int32_t num, int32_t den)
400 if (den == 0)
401 return 0;
402 return num / den;
405 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
407 if (den == 0)
408 return 0;
409 return num / den;
412 uint32_t HELPER(rbit)(uint32_t x)
414 x = ((x & 0xff000000) >> 24)
415 | ((x & 0x00ff0000) >> 8)
416 | ((x & 0x0000ff00) << 8)
417 | ((x & 0x000000ff) << 24);
418 x = ((x & 0xf0f0f0f0) >> 4)
419 | ((x & 0x0f0f0f0f) << 4);
420 x = ((x & 0x88888888) >> 3)
421 | ((x & 0x44444444) >> 1)
422 | ((x & 0x22222222) << 1)
423 | ((x & 0x11111111) << 3);
424 return x;
427 uint32_t HELPER(abs)(uint32_t x)
429 return ((int32_t)x < 0) ? -x : x;
432 #if defined(CONFIG_USER_ONLY)
434 void do_interrupt (CPUState *env)
436 env->exception_index = -1;
439 /* Structure used to record exclusive memory locations. */
440 typedef struct mmon_state {
441 struct mmon_state *next;
442 CPUARMState *cpu_env;
443 uint32_t addr;
444 } mmon_state;
446 /* Chain of current locks. */
447 static mmon_state* mmon_head = NULL;
449 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
450 int mmu_idx, int is_softmmu)
452 if (rw == 2) {
453 env->exception_index = EXCP_PREFETCH_ABORT;
454 env->cp15.c6_insn = address;
455 } else {
456 env->exception_index = EXCP_DATA_ABORT;
457 env->cp15.c6_data = address;
459 return 1;
462 static void allocate_mmon_state(CPUState *env)
464 env->mmon_entry = malloc(sizeof (mmon_state));
465 if (!env->mmon_entry)
466 abort();
467 memset (env->mmon_entry, 0, sizeof (mmon_state));
468 env->mmon_entry->cpu_env = env;
469 mmon_head = env->mmon_entry;
472 /* Flush any monitor locks for the specified address. */
473 static void flush_mmon(uint32_t addr)
475 mmon_state *mon;
477 for (mon = mmon_head; mon; mon = mon->next)
479 if (mon->addr != addr)
480 continue;
482 mon->addr = 0;
483 break;
487 /* Mark an address for exclusive access. */
488 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
490 if (!env->mmon_entry)
491 allocate_mmon_state(env);
492 /* Clear any previous locks. */
493 flush_mmon(addr);
494 env->mmon_entry->addr = addr;
497 /* Test if an exclusive address is still exclusive. Returns zero
498 if the address is still exclusive. */
499 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
501 int res;
503 if (!env->mmon_entry)
504 return 1;
505 if (env->mmon_entry->addr == addr)
506 res = 0;
507 else
508 res = 1;
509 flush_mmon(addr);
510 return res;
513 void HELPER(clrex)(CPUState *env)
515 if (!(env->mmon_entry && env->mmon_entry->addr))
516 return;
517 flush_mmon(env->mmon_entry->addr);
520 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
522 return addr;
525 /* These should probably raise undefined insn exceptions. */
526 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
528 int op1 = (insn >> 8) & 0xf;
529 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
530 return;
533 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
535 int op1 = (insn >> 8) & 0xf;
536 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
537 return 0;
540 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
542 cpu_abort(env, "cp15 insn %08x\n", insn);
545 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
547 cpu_abort(env, "cp15 insn %08x\n", insn);
548 return 0;
551 /* These should probably raise undefined insn exceptions. */
552 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
554 cpu_abort(env, "v7m_mrs %d\n", reg);
557 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
559 cpu_abort(env, "v7m_mrs %d\n", reg);
560 return 0;
563 void switch_mode(CPUState *env, int mode)
565 if (mode != ARM_CPU_MODE_USR)
566 cpu_abort(env, "Tried to switch out of user mode\n");
569 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
571 cpu_abort(env, "banked r13 write\n");
574 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
576 cpu_abort(env, "banked r13 read\n");
577 return 0;
580 #else
582 extern int semihosting_enabled;
584 /* Map CPU modes onto saved register banks. */
585 static inline int bank_number (int mode)
587 switch (mode) {
588 case ARM_CPU_MODE_USR:
589 case ARM_CPU_MODE_SYS:
590 return 0;
591 case ARM_CPU_MODE_SVC:
592 return 1;
593 case ARM_CPU_MODE_ABT:
594 return 2;
595 case ARM_CPU_MODE_UND:
596 return 3;
597 case ARM_CPU_MODE_IRQ:
598 return 4;
599 case ARM_CPU_MODE_FIQ:
600 return 5;
602 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
603 return -1;
606 void switch_mode(CPUState *env, int mode)
608 int old_mode;
609 int i;
611 old_mode = env->uncached_cpsr & CPSR_M;
612 if (mode == old_mode)
613 return;
615 if (old_mode == ARM_CPU_MODE_FIQ) {
616 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
617 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
618 } else if (mode == ARM_CPU_MODE_FIQ) {
619 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
620 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
623 i = bank_number(old_mode);
624 env->banked_r13[i] = env->regs[13];
625 env->banked_r14[i] = env->regs[14];
626 env->banked_spsr[i] = env->spsr;
628 i = bank_number(mode);
629 env->regs[13] = env->banked_r13[i];
630 env->regs[14] = env->banked_r14[i];
631 env->spsr = env->banked_spsr[i];
634 static void v7m_push(CPUARMState *env, uint32_t val)
636 env->regs[13] -= 4;
637 stl_phys(env->regs[13], val);
640 static uint32_t v7m_pop(CPUARMState *env)
642 uint32_t val;
643 val = ldl_phys(env->regs[13]);
644 env->regs[13] += 4;
645 return val;
648 /* Switch to V7M main or process stack pointer. */
649 static void switch_v7m_sp(CPUARMState *env, int process)
651 uint32_t tmp;
652 if (env->v7m.current_sp != process) {
653 tmp = env->v7m.other_sp;
654 env->v7m.other_sp = env->regs[13];
655 env->regs[13] = tmp;
656 env->v7m.current_sp = process;
660 static void do_v7m_exception_exit(CPUARMState *env)
662 uint32_t type;
663 uint32_t xpsr;
665 type = env->regs[15];
666 if (env->v7m.exception != 0)
667 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
669 /* Switch to the target stack. */
670 switch_v7m_sp(env, (type & 4) != 0);
671 /* Pop registers. */
672 env->regs[0] = v7m_pop(env);
673 env->regs[1] = v7m_pop(env);
674 env->regs[2] = v7m_pop(env);
675 env->regs[3] = v7m_pop(env);
676 env->regs[12] = v7m_pop(env);
677 env->regs[14] = v7m_pop(env);
678 env->regs[15] = v7m_pop(env);
679 xpsr = v7m_pop(env);
680 xpsr_write(env, xpsr, 0xfffffdff);
681 /* Undo stack alignment. */
682 if (xpsr & 0x200)
683 env->regs[13] |= 4;
684 /* ??? The exception return type specifies Thread/Handler mode. However
685 this is also implied by the xPSR value. Not sure what to do
686 if there is a mismatch. */
687 /* ??? Likewise for mismatches between the CONTROL register and the stack
688 pointer. */
691 void do_interrupt_v7m(CPUARMState *env)
693 uint32_t xpsr = xpsr_read(env);
694 uint32_t lr;
695 uint32_t addr;
697 lr = 0xfffffff1;
698 if (env->v7m.current_sp)
699 lr |= 4;
700 if (env->v7m.exception == 0)
701 lr |= 8;
703 /* For exceptions we just mark as pending on the NVIC, and let that
704 handle it. */
705 /* TODO: Need to escalate if the current priority is higher than the
706 one we're raising. */
707 switch (env->exception_index) {
708 case EXCP_UDEF:
709 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
710 return;
711 case EXCP_SWI:
712 env->regs[15] += 2;
713 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
714 return;
715 case EXCP_PREFETCH_ABORT:
716 case EXCP_DATA_ABORT:
717 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
718 return;
719 case EXCP_BKPT:
720 if (semihosting_enabled) {
721 int nr;
722 nr = lduw_code(env->regs[15]) & 0xff;
723 if (nr == 0xab) {
724 env->regs[15] += 2;
725 env->regs[0] = do_arm_semihosting(env);
726 return;
729 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
730 return;
731 case EXCP_IRQ:
732 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
733 break;
734 case EXCP_EXCEPTION_EXIT:
735 do_v7m_exception_exit(env);
736 return;
737 default:
738 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
739 return; /* Never happens. Keep compiler happy. */
742 /* Align stack pointer. */
743 /* ??? Should only do this if Configuration Control Register
744 STACKALIGN bit is set. */
745 if (env->regs[13] & 4) {
746 env->regs[13] -= 4;
747 xpsr |= 0x200;
749 /* Switch to the handler mode. */
750 v7m_push(env, xpsr);
751 v7m_push(env, env->regs[15]);
752 v7m_push(env, env->regs[14]);
753 v7m_push(env, env->regs[12]);
754 v7m_push(env, env->regs[3]);
755 v7m_push(env, env->regs[2]);
756 v7m_push(env, env->regs[1]);
757 v7m_push(env, env->regs[0]);
758 switch_v7m_sp(env, 0);
759 env->uncached_cpsr &= ~CPSR_IT;
760 env->regs[14] = lr;
761 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
762 env->regs[15] = addr & 0xfffffffe;
763 env->thumb = addr & 1;
766 /* Handle a CPU exception. */
767 void do_interrupt(CPUARMState *env)
769 uint32_t addr;
770 uint32_t mask;
771 int new_mode;
772 uint32_t offset;
774 if (IS_M(env)) {
775 do_interrupt_v7m(env);
776 return;
778 /* TODO: Vectored interrupt controller. */
779 switch (env->exception_index) {
780 case EXCP_UDEF:
781 new_mode = ARM_CPU_MODE_UND;
782 addr = 0x04;
783 mask = CPSR_I;
784 if (env->thumb)
785 offset = 2;
786 else
787 offset = 4;
788 break;
789 case EXCP_SWI:
790 if (semihosting_enabled) {
791 /* Check for semihosting interrupt. */
792 if (env->thumb) {
793 mask = lduw_code(env->regs[15] - 2) & 0xff;
794 } else {
795 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
797 /* Only intercept calls from privileged modes, to provide some
798 semblance of security. */
799 if (((mask == 0x123456 && !env->thumb)
800 || (mask == 0xab && env->thumb))
801 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
802 env->regs[0] = do_arm_semihosting(env);
803 return;
806 new_mode = ARM_CPU_MODE_SVC;
807 addr = 0x08;
808 mask = CPSR_I;
809 /* The PC already points to the next instruction. */
810 offset = 0;
811 break;
812 case EXCP_BKPT:
813 /* See if this is a semihosting syscall. */
814 if (env->thumb && semihosting_enabled) {
815 mask = lduw_code(env->regs[15]) & 0xff;
816 if (mask == 0xab
817 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
818 env->regs[15] += 2;
819 env->regs[0] = do_arm_semihosting(env);
820 return;
823 /* Fall through to prefetch abort. */
824 case EXCP_PREFETCH_ABORT:
825 new_mode = ARM_CPU_MODE_ABT;
826 addr = 0x0c;
827 mask = CPSR_A | CPSR_I;
828 offset = 4;
829 break;
830 case EXCP_DATA_ABORT:
831 new_mode = ARM_CPU_MODE_ABT;
832 addr = 0x10;
833 mask = CPSR_A | CPSR_I;
834 offset = 8;
835 break;
836 case EXCP_IRQ:
837 new_mode = ARM_CPU_MODE_IRQ;
838 addr = 0x18;
839 /* Disable IRQ and imprecise data aborts. */
840 mask = CPSR_A | CPSR_I;
841 offset = 4;
842 break;
843 case EXCP_FIQ:
844 new_mode = ARM_CPU_MODE_FIQ;
845 addr = 0x1c;
846 /* Disable FIQ, IRQ and imprecise data aborts. */
847 mask = CPSR_A | CPSR_I | CPSR_F;
848 offset = 4;
849 break;
850 default:
851 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
852 return; /* Never happens. Keep compiler happy. */
854 /* High vectors. */
855 if (env->cp15.c1_sys & (1 << 13)) {
856 addr += 0xffff0000;
858 switch_mode (env, new_mode);
859 env->spsr = cpsr_read(env);
860 /* Clear IT bits. */
861 env->condexec_bits = 0;
862 /* Switch to the new mode, and switch to Arm mode. */
863 /* ??? Thumb interrupt handlers not implemented. */
864 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
865 env->uncached_cpsr |= mask;
866 env->thumb = 0;
867 env->regs[14] = env->regs[15] + offset;
868 env->regs[15] = addr;
869 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
872 /* Check section/page access permissions.
873 Returns the page protection flags, or zero if the access is not
874 permitted. */
875 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
876 int is_user)
878 int prot_ro;
880 if (domain == 3)
881 return PAGE_READ | PAGE_WRITE;
883 if (access_type == 1)
884 prot_ro = 0;
885 else
886 prot_ro = PAGE_READ;
888 switch (ap) {
889 case 0:
890 if (access_type == 1)
891 return 0;
892 switch ((env->cp15.c1_sys >> 8) & 3) {
893 case 1:
894 return is_user ? 0 : PAGE_READ;
895 case 2:
896 return PAGE_READ;
897 default:
898 return 0;
900 case 1:
901 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
902 case 2:
903 if (is_user)
904 return prot_ro;
905 else
906 return PAGE_READ | PAGE_WRITE;
907 case 3:
908 return PAGE_READ | PAGE_WRITE;
909 case 4: /* Reserved. */
910 return 0;
911 case 5:
912 return is_user ? 0 : prot_ro;
913 case 6:
914 return prot_ro;
915 case 7:
916 if (!arm_feature (env, ARM_FEATURE_V7))
917 return 0;
918 return prot_ro;
919 default:
920 abort();
924 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
926 uint32_t table;
928 if (address & env->cp15.c2_mask)
929 table = env->cp15.c2_base1 & 0xffffc000;
930 else
931 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
933 table |= (address >> 18) & 0x3ffc;
934 return table;
937 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
938 int is_user, uint32_t *phys_ptr, int *prot)
940 int code;
941 uint32_t table;
942 uint32_t desc;
943 int type;
944 int ap;
945 int domain;
946 uint32_t phys_addr;
948 /* Pagetable walk. */
949 /* Lookup l1 descriptor. */
950 table = get_level1_table_address(env, address);
951 desc = ldl_phys(table);
952 type = (desc & 3);
953 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
954 if (type == 0) {
955 /* Section translation fault. */
956 code = 5;
957 goto do_fault;
959 if (domain == 0 || domain == 2) {
960 if (type == 2)
961 code = 9; /* Section domain fault. */
962 else
963 code = 11; /* Page domain fault. */
964 goto do_fault;
966 if (type == 2) {
967 /* 1Mb section. */
968 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
969 ap = (desc >> 10) & 3;
970 code = 13;
971 } else {
972 /* Lookup l2 entry. */
973 if (type == 1) {
974 /* Coarse pagetable. */
975 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
976 } else {
977 /* Fine pagetable. */
978 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
980 desc = ldl_phys(table);
981 switch (desc & 3) {
982 case 0: /* Page translation fault. */
983 code = 7;
984 goto do_fault;
985 case 1: /* 64k page. */
986 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
987 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
988 break;
989 case 2: /* 4k page. */
990 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
991 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
992 break;
993 case 3: /* 1k page. */
994 if (type == 1) {
995 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
996 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
997 } else {
998 /* Page translation fault. */
999 code = 7;
1000 goto do_fault;
1002 } else {
1003 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1005 ap = (desc >> 4) & 3;
1006 break;
1007 default:
1008 /* Never happens, but compiler isn't smart enough to tell. */
1009 abort();
1011 code = 15;
1013 *prot = check_ap(env, ap, domain, access_type, is_user);
1014 if (!*prot) {
1015 /* Access permission fault. */
1016 goto do_fault;
1018 *phys_ptr = phys_addr;
1019 return 0;
1020 do_fault:
1021 return code | (domain << 4);
1024 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1025 int is_user, uint32_t *phys_ptr, int *prot)
1027 int code;
1028 uint32_t table;
1029 uint32_t desc;
1030 uint32_t xn;
1031 int type;
1032 int ap;
1033 int domain;
1034 uint32_t phys_addr;
1036 /* Pagetable walk. */
1037 /* Lookup l1 descriptor. */
1038 table = get_level1_table_address(env, address);
1039 desc = ldl_phys(table);
1040 type = (desc & 3);
1041 if (type == 0) {
1042 /* Section translation fault. */
1043 code = 5;
1044 domain = 0;
1045 goto do_fault;
1046 } else if (type == 2 && (desc & (1 << 18))) {
1047 /* Supersection. */
1048 domain = 0;
1049 } else {
1050 /* Section or page. */
1051 domain = (desc >> 4) & 0x1e;
1053 domain = (env->cp15.c3 >> domain) & 3;
1054 if (domain == 0 || domain == 2) {
1055 if (type == 2)
1056 code = 9; /* Section domain fault. */
1057 else
1058 code = 11; /* Page domain fault. */
1059 goto do_fault;
1061 if (type == 2) {
1062 if (desc & (1 << 18)) {
1063 /* Supersection. */
1064 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1065 } else {
1066 /* Section. */
1067 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1069 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1070 xn = desc & (1 << 4);
1071 code = 13;
1072 } else {
1073 /* Lookup l2 entry. */
1074 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1075 desc = ldl_phys(table);
1076 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1077 switch (desc & 3) {
1078 case 0: /* Page translation fault. */
1079 code = 7;
1080 goto do_fault;
1081 case 1: /* 64k page. */
1082 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1083 xn = desc & (1 << 15);
1084 break;
1085 case 2: case 3: /* 4k page. */
1086 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1087 xn = desc & 1;
1088 break;
1089 default:
1090 /* Never happens, but compiler isn't smart enough to tell. */
1091 abort();
1093 code = 15;
1095 if (xn && access_type == 2)
1096 goto do_fault;
1098 /* The simplified model uses AP[0] as an access control bit. */
1099 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1100 /* Access flag fault. */
1101 code = (code == 15) ? 6 : 3;
1102 goto do_fault;
1104 *prot = check_ap(env, ap, domain, access_type, is_user);
1105 if (!*prot) {
1106 /* Access permission fault. */
1107 goto do_fault;
1109 *phys_ptr = phys_addr;
1110 return 0;
1111 do_fault:
1112 return code | (domain << 4);
1115 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1116 int is_user, uint32_t *phys_ptr, int *prot)
1118 int n;
1119 uint32_t mask;
1120 uint32_t base;
1122 *phys_ptr = address;
1123 for (n = 7; n >= 0; n--) {
1124 base = env->cp15.c6_region[n];
1125 if ((base & 1) == 0)
1126 continue;
1127 mask = 1 << ((base >> 1) & 0x1f);
1128 /* Keep this shift separate from the above to avoid an
1129 (undefined) << 32. */
1130 mask = (mask << 1) - 1;
1131 if (((base ^ address) & ~mask) == 0)
1132 break;
1134 if (n < 0)
1135 return 2;
1137 if (access_type == 2) {
1138 mask = env->cp15.c5_insn;
1139 } else {
1140 mask = env->cp15.c5_data;
1142 mask = (mask >> (n * 4)) & 0xf;
1143 switch (mask) {
1144 case 0:
1145 return 1;
1146 case 1:
1147 if (is_user)
1148 return 1;
1149 *prot = PAGE_READ | PAGE_WRITE;
1150 break;
1151 case 2:
1152 *prot = PAGE_READ;
1153 if (!is_user)
1154 *prot |= PAGE_WRITE;
1155 break;
1156 case 3:
1157 *prot = PAGE_READ | PAGE_WRITE;
1158 break;
1159 case 5:
1160 if (is_user)
1161 return 1;
1162 *prot = PAGE_READ;
1163 break;
1164 case 6:
1165 *prot = PAGE_READ;
1166 break;
1167 default:
1168 /* Bad permission. */
1169 return 1;
1171 return 0;
1174 static inline int get_phys_addr(CPUState *env, uint32_t address,
1175 int access_type, int is_user,
1176 uint32_t *phys_ptr, int *prot)
1178 /* Fast Context Switch Extension. */
1179 if (address < 0x02000000)
1180 address += env->cp15.c13_fcse;
1182 if ((env->cp15.c1_sys & 1) == 0) {
1183 /* MMU/MPU disabled. */
1184 *phys_ptr = address;
1185 *prot = PAGE_READ | PAGE_WRITE;
1186 return 0;
1187 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1188 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1189 prot);
1190 } else if (env->cp15.c1_sys & (1 << 23)) {
1191 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1192 prot);
1193 } else {
1194 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1195 prot);
1199 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1200 int access_type, int mmu_idx, int is_softmmu)
1202 uint32_t phys_addr;
1203 int prot;
1204 int ret, is_user;
1206 is_user = mmu_idx == MMU_USER_IDX;
1207 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1208 if (ret == 0) {
1209 /* Map a single [sub]page. */
1210 phys_addr &= ~(uint32_t)0x3ff;
1211 address &= ~(uint32_t)0x3ff;
1212 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1213 is_softmmu);
1216 if (access_type == 2) {
1217 env->cp15.c5_insn = ret;
1218 env->cp15.c6_insn = address;
1219 env->exception_index = EXCP_PREFETCH_ABORT;
1220 } else {
1221 env->cp15.c5_data = ret;
1222 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1223 env->cp15.c5_data |= (1 << 11);
1224 env->cp15.c6_data = address;
1225 env->exception_index = EXCP_DATA_ABORT;
1227 return 1;
1230 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1232 uint32_t phys_addr;
1233 int prot;
1234 int ret;
1236 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1238 if (ret != 0)
1239 return -1;
1241 return phys_addr;
1244 /* Not really implemented. Need to figure out a sane way of doing this.
1245 Maybe add generic watchpoint support and use that. */
1247 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1249 env->mmon_addr = addr;
1252 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1254 return (env->mmon_addr != addr);
1257 void HELPER(clrex)(CPUState *env)
1259 env->mmon_addr = -1;
1262 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1264 int cp_num = (insn >> 8) & 0xf;
1265 int cp_info = (insn >> 5) & 7;
1266 int src = (insn >> 16) & 0xf;
1267 int operand = insn & 0xf;
1269 if (env->cp[cp_num].cp_write)
1270 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1271 cp_info, src, operand, val);
1274 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1276 int cp_num = (insn >> 8) & 0xf;
1277 int cp_info = (insn >> 5) & 7;
1278 int dest = (insn >> 16) & 0xf;
1279 int operand = insn & 0xf;
1281 if (env->cp[cp_num].cp_read)
1282 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1283 cp_info, dest, operand);
1284 return 0;
1287 /* Return basic MPU access permission bits. */
1288 static uint32_t simple_mpu_ap_bits(uint32_t val)
1290 uint32_t ret;
1291 uint32_t mask;
1292 int i;
1293 ret = 0;
1294 mask = 3;
1295 for (i = 0; i < 16; i += 2) {
1296 ret |= (val >> i) & mask;
1297 mask <<= 2;
1299 return ret;
1302 /* Pad basic MPU access permission bits to extended format. */
1303 static uint32_t extended_mpu_ap_bits(uint32_t val)
1305 uint32_t ret;
1306 uint32_t mask;
1307 int i;
1308 ret = 0;
1309 mask = 3;
1310 for (i = 0; i < 16; i += 2) {
1311 ret |= (val & mask) << i;
1312 mask <<= 2;
1314 return ret;
1317 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1319 int op1;
1320 int op2;
1321 int crm;
1323 op1 = (insn >> 21) & 7;
1324 op2 = (insn >> 5) & 7;
1325 crm = insn & 0xf;
1326 switch ((insn >> 16) & 0xf) {
1327 case 0:
1328 /* ID codes. */
1329 if (arm_feature(env, ARM_FEATURE_XSCALE))
1330 break;
1331 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1332 break;
1333 if (arm_feature(env, ARM_FEATURE_V7)
1334 && op1 == 2 && crm == 0 && op2 == 0) {
1335 env->cp15.c0_cssel = val & 0xf;
1336 break;
1338 goto bad_reg;
1339 case 1: /* System configuration. */
1340 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1341 op2 = 0;
1342 switch (op2) {
1343 case 0:
1344 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1345 env->cp15.c1_sys = val;
1346 /* ??? Lots of these bits are not implemented. */
1347 /* This may enable/disable the MMU, so do a TLB flush. */
1348 tlb_flush(env, 1);
1349 break;
1350 case 1: /* Auxiliary cotrol register. */
1351 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1352 env->cp15.c1_xscaleauxcr = val;
1353 break;
1355 /* Not implemented. */
1356 break;
1357 case 2:
1358 if (arm_feature(env, ARM_FEATURE_XSCALE))
1359 goto bad_reg;
1360 if (env->cp15.c1_coproc != val) {
1361 env->cp15.c1_coproc = val;
1362 /* ??? Is this safe when called from within a TB? */
1363 tb_flush(env);
1365 break;
1366 default:
1367 goto bad_reg;
1369 break;
1370 case 2: /* MMU Page table control / MPU cache control. */
1371 if (arm_feature(env, ARM_FEATURE_MPU)) {
1372 switch (op2) {
1373 case 0:
1374 env->cp15.c2_data = val;
1375 break;
1376 case 1:
1377 env->cp15.c2_insn = val;
1378 break;
1379 default:
1380 goto bad_reg;
1382 } else {
1383 switch (op2) {
1384 case 0:
1385 env->cp15.c2_base0 = val;
1386 break;
1387 case 1:
1388 env->cp15.c2_base1 = val;
1389 break;
1390 case 2:
1391 val &= 7;
1392 env->cp15.c2_control = val;
1393 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1394 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1395 break;
1396 default:
1397 goto bad_reg;
1400 break;
1401 case 3: /* MMU Domain access control / MPU write buffer control. */
1402 env->cp15.c3 = val;
1403 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1404 break;
1405 case 4: /* Reserved. */
1406 goto bad_reg;
1407 case 5: /* MMU Fault status / MPU access permission. */
1408 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1409 op2 = 0;
1410 switch (op2) {
1411 case 0:
1412 if (arm_feature(env, ARM_FEATURE_MPU))
1413 val = extended_mpu_ap_bits(val);
1414 env->cp15.c5_data = val;
1415 break;
1416 case 1:
1417 if (arm_feature(env, ARM_FEATURE_MPU))
1418 val = extended_mpu_ap_bits(val);
1419 env->cp15.c5_insn = val;
1420 break;
1421 case 2:
1422 if (!arm_feature(env, ARM_FEATURE_MPU))
1423 goto bad_reg;
1424 env->cp15.c5_data = val;
1425 break;
1426 case 3:
1427 if (!arm_feature(env, ARM_FEATURE_MPU))
1428 goto bad_reg;
1429 env->cp15.c5_insn = val;
1430 break;
1431 default:
1432 goto bad_reg;
1434 break;
1435 case 6: /* MMU Fault address / MPU base/size. */
1436 if (arm_feature(env, ARM_FEATURE_MPU)) {
1437 if (crm >= 8)
1438 goto bad_reg;
1439 env->cp15.c6_region[crm] = val;
1440 } else {
1441 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1442 op2 = 0;
1443 switch (op2) {
1444 case 0:
1445 env->cp15.c6_data = val;
1446 break;
1447 case 1: /* ??? This is WFAR on armv6 */
1448 case 2:
1449 env->cp15.c6_insn = val;
1450 break;
1451 default:
1452 goto bad_reg;
1455 break;
1456 case 7: /* Cache control. */
1457 env->cp15.c15_i_max = 0x000;
1458 env->cp15.c15_i_min = 0xff0;
1459 /* No cache, so nothing to do. */
1460 /* ??? MPCore has VA to PA translation functions. */
1461 break;
1462 case 8: /* MMU TLB control. */
1463 switch (op2) {
1464 case 0: /* Invalidate all. */
1465 tlb_flush(env, 0);
1466 break;
1467 case 1: /* Invalidate single TLB entry. */
1468 #if 0
1469 /* ??? This is wrong for large pages and sections. */
1470 /* As an ugly hack to make linux work we always flush a 4K
1471 pages. */
1472 val &= 0xfffff000;
1473 tlb_flush_page(env, val);
1474 tlb_flush_page(env, val + 0x400);
1475 tlb_flush_page(env, val + 0x800);
1476 tlb_flush_page(env, val + 0xc00);
1477 #else
1478 tlb_flush(env, 1);
1479 #endif
1480 break;
1481 case 2: /* Invalidate on ASID. */
1482 tlb_flush(env, val == 0);
1483 break;
1484 case 3: /* Invalidate single entry on MVA. */
1485 /* ??? This is like case 1, but ignores ASID. */
1486 tlb_flush(env, 1);
1487 break;
1488 default:
1489 goto bad_reg;
1491 break;
1492 case 9:
1493 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1494 break;
1495 switch (crm) {
1496 case 0: /* Cache lockdown. */
1497 switch (op1) {
1498 case 0: /* L1 cache. */
1499 switch (op2) {
1500 case 0:
1501 env->cp15.c9_data = val;
1502 break;
1503 case 1:
1504 env->cp15.c9_insn = val;
1505 break;
1506 default:
1507 goto bad_reg;
1509 break;
1510 case 1: /* L2 cache. */
1511 /* Ignore writes to L2 lockdown/auxiliary registers. */
1512 break;
1513 default:
1514 goto bad_reg;
1516 break;
1517 case 1: /* TCM memory region registers. */
1518 /* Not implemented. */
1519 goto bad_reg;
1520 default:
1521 goto bad_reg;
1523 break;
1524 case 10: /* MMU TLB lockdown. */
1525 /* ??? TLB lockdown not implemented. */
1526 break;
1527 case 12: /* Reserved. */
1528 goto bad_reg;
1529 case 13: /* Process ID. */
1530 switch (op2) {
1531 case 0:
1532 /* Unlike real hardware the qemu TLB uses virtual addresses,
1533 not modified virtual addresses, so this causes a TLB flush.
1535 if (env->cp15.c13_fcse != val)
1536 tlb_flush(env, 1);
1537 env->cp15.c13_fcse = val;
1538 break;
1539 case 1:
1540 /* This changes the ASID, so do a TLB flush. */
1541 if (env->cp15.c13_context != val
1542 && !arm_feature(env, ARM_FEATURE_MPU))
1543 tlb_flush(env, 0);
1544 env->cp15.c13_context = val;
1545 break;
1546 case 2:
1547 env->cp15.c13_tls1 = val;
1548 break;
1549 case 3:
1550 env->cp15.c13_tls2 = val;
1551 break;
1552 case 4:
1553 env->cp15.c13_tls3 = val;
1554 break;
1555 default:
1556 goto bad_reg;
1558 break;
1559 case 14: /* Reserved. */
1560 goto bad_reg;
1561 case 15: /* Implementation specific. */
1562 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1563 if (op2 == 0 && crm == 1) {
1564 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1565 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1566 tb_flush(env);
1567 env->cp15.c15_cpar = val & 0x3fff;
1569 break;
1571 goto bad_reg;
1573 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1574 switch (crm) {
1575 case 0:
1576 break;
1577 case 1: /* Set TI925T configuration. */
1578 env->cp15.c15_ticonfig = val & 0xe7;
1579 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1580 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1581 break;
1582 case 2: /* Set I_max. */
1583 env->cp15.c15_i_max = val;
1584 break;
1585 case 3: /* Set I_min. */
1586 env->cp15.c15_i_min = val;
1587 break;
1588 case 4: /* Set thread-ID. */
1589 env->cp15.c15_threadid = val & 0xffff;
1590 break;
1591 case 8: /* Wait-for-interrupt (deprecated). */
1592 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1593 break;
1594 default:
1595 goto bad_reg;
1598 break;
1600 return;
1601 bad_reg:
1602 /* ??? For debugging only. Should raise illegal instruction exception. */
1603 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1604 (insn >> 16) & 0xf, crm, op1, op2);
1607 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1609 int op1;
1610 int op2;
1611 int crm;
1613 op1 = (insn >> 21) & 7;
1614 op2 = (insn >> 5) & 7;
1615 crm = insn & 0xf;
1616 switch ((insn >> 16) & 0xf) {
1617 case 0: /* ID codes. */
1618 switch (op1) {
1619 case 0:
1620 switch (crm) {
1621 case 0:
1622 switch (op2) {
1623 case 0: /* Device ID. */
1624 return env->cp15.c0_cpuid;
1625 case 1: /* Cache Type. */
1626 return env->cp15.c0_cachetype;
1627 case 2: /* TCM status. */
1628 return 0;
1629 case 3: /* TLB type register. */
1630 return 0; /* No lockable TLB entries. */
1631 case 5: /* CPU ID */
1632 return env->cpu_index;
1633 default:
1634 goto bad_reg;
1636 case 1:
1637 if (!arm_feature(env, ARM_FEATURE_V6))
1638 goto bad_reg;
1639 return env->cp15.c0_c1[op2];
1640 case 2:
1641 if (!arm_feature(env, ARM_FEATURE_V6))
1642 goto bad_reg;
1643 return env->cp15.c0_c2[op2];
1644 case 3: case 4: case 5: case 6: case 7:
1645 return 0;
1646 default:
1647 goto bad_reg;
1649 case 1:
1650 /* These registers aren't documented on arm11 cores. However
1651 Linux looks at them anyway. */
1652 if (!arm_feature(env, ARM_FEATURE_V6))
1653 goto bad_reg;
1654 if (crm != 0)
1655 goto bad_reg;
1656 if (!arm_feature(env, ARM_FEATURE_V7))
1657 return 0;
1659 switch (op2) {
1660 case 0:
1661 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1662 case 1:
1663 return env->cp15.c0_clid;
1664 case 7:
1665 return 0;
1667 goto bad_reg;
1668 case 2:
1669 if (op2 != 0 || crm != 0)
1670 goto bad_reg;
1671 return env->cp15.c0_cssel;
1672 default:
1673 goto bad_reg;
1675 case 1: /* System configuration. */
1676 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1677 op2 = 0;
1678 switch (op2) {
1679 case 0: /* Control register. */
1680 return env->cp15.c1_sys;
1681 case 1: /* Auxiliary control register. */
1682 if (arm_feature(env, ARM_FEATURE_XSCALE))
1683 return env->cp15.c1_xscaleauxcr;
1684 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1685 goto bad_reg;
1686 switch (ARM_CPUID(env)) {
1687 case ARM_CPUID_ARM1026:
1688 return 1;
1689 case ARM_CPUID_ARM1136:
1690 case ARM_CPUID_ARM1136_R2:
1691 return 7;
1692 case ARM_CPUID_ARM11MPCORE:
1693 return 1;
1694 case ARM_CPUID_CORTEXA8:
1695 return 0;
1696 default:
1697 goto bad_reg;
1699 case 2: /* Coprocessor access register. */
1700 if (arm_feature(env, ARM_FEATURE_XSCALE))
1701 goto bad_reg;
1702 return env->cp15.c1_coproc;
1703 default:
1704 goto bad_reg;
1706 case 2: /* MMU Page table control / MPU cache control. */
1707 if (arm_feature(env, ARM_FEATURE_MPU)) {
1708 switch (op2) {
1709 case 0:
1710 return env->cp15.c2_data;
1711 break;
1712 case 1:
1713 return env->cp15.c2_insn;
1714 break;
1715 default:
1716 goto bad_reg;
1718 } else {
1719 switch (op2) {
1720 case 0:
1721 return env->cp15.c2_base0;
1722 case 1:
1723 return env->cp15.c2_base1;
1724 case 2:
1725 return env->cp15.c2_control;
1726 default:
1727 goto bad_reg;
1730 case 3: /* MMU Domain access control / MPU write buffer control. */
1731 return env->cp15.c3;
1732 case 4: /* Reserved. */
1733 goto bad_reg;
1734 case 5: /* MMU Fault status / MPU access permission. */
1735 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1736 op2 = 0;
1737 switch (op2) {
1738 case 0:
1739 if (arm_feature(env, ARM_FEATURE_MPU))
1740 return simple_mpu_ap_bits(env->cp15.c5_data);
1741 return env->cp15.c5_data;
1742 case 1:
1743 if (arm_feature(env, ARM_FEATURE_MPU))
1744 return simple_mpu_ap_bits(env->cp15.c5_data);
1745 return env->cp15.c5_insn;
1746 case 2:
1747 if (!arm_feature(env, ARM_FEATURE_MPU))
1748 goto bad_reg;
1749 return env->cp15.c5_data;
1750 case 3:
1751 if (!arm_feature(env, ARM_FEATURE_MPU))
1752 goto bad_reg;
1753 return env->cp15.c5_insn;
1754 default:
1755 goto bad_reg;
1757 case 6: /* MMU Fault address. */
1758 if (arm_feature(env, ARM_FEATURE_MPU)) {
1759 if (crm >= 8)
1760 goto bad_reg;
1761 return env->cp15.c6_region[crm];
1762 } else {
1763 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1764 op2 = 0;
1765 switch (op2) {
1766 case 0:
1767 return env->cp15.c6_data;
1768 case 1:
1769 if (arm_feature(env, ARM_FEATURE_V6)) {
1770 /* Watchpoint Fault Adrress. */
1771 return 0; /* Not implemented. */
1772 } else {
1773 /* Instruction Fault Adrress. */
1774 /* Arm9 doesn't have an IFAR, but implementing it anyway
1775 shouldn't do any harm. */
1776 return env->cp15.c6_insn;
1778 case 2:
1779 if (arm_feature(env, ARM_FEATURE_V6)) {
1780 /* Instruction Fault Adrress. */
1781 return env->cp15.c6_insn;
1782 } else {
1783 goto bad_reg;
1785 default:
1786 goto bad_reg;
1789 case 7: /* Cache control. */
1790 /* FIXME: Should only clear Z flag if destination is r15. */
1791 env->ZF = 0;
1792 return 0;
1793 case 8: /* MMU TLB control. */
1794 goto bad_reg;
1795 case 9: /* Cache lockdown. */
1796 switch (op1) {
1797 case 0: /* L1 cache. */
1798 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1799 return 0;
1800 switch (op2) {
1801 case 0:
1802 return env->cp15.c9_data;
1803 case 1:
1804 return env->cp15.c9_insn;
1805 default:
1806 goto bad_reg;
1808 case 1: /* L2 cache */
1809 if (crm != 0)
1810 goto bad_reg;
1811 /* L2 Lockdown and Auxiliary control. */
1812 return 0;
1813 default:
1814 goto bad_reg;
1816 case 10: /* MMU TLB lockdown. */
1817 /* ??? TLB lockdown not implemented. */
1818 return 0;
1819 case 11: /* TCM DMA control. */
1820 case 12: /* Reserved. */
1821 goto bad_reg;
1822 case 13: /* Process ID. */
1823 switch (op2) {
1824 case 0:
1825 return env->cp15.c13_fcse;
1826 case 1:
1827 return env->cp15.c13_context;
1828 case 2:
1829 return env->cp15.c13_tls1;
1830 case 3:
1831 return env->cp15.c13_tls2;
1832 case 4:
1833 return env->cp15.c13_tls3;
1834 default:
1835 goto bad_reg;
1837 case 14: /* Reserved. */
1838 goto bad_reg;
1839 case 15: /* Implementation specific. */
1840 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1841 if (op2 == 0 && crm == 1)
1842 return env->cp15.c15_cpar;
1844 goto bad_reg;
1846 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1847 switch (crm) {
1848 case 0:
1849 return 0;
1850 case 1: /* Read TI925T configuration. */
1851 return env->cp15.c15_ticonfig;
1852 case 2: /* Read I_max. */
1853 return env->cp15.c15_i_max;
1854 case 3: /* Read I_min. */
1855 return env->cp15.c15_i_min;
1856 case 4: /* Read thread-ID. */
1857 return env->cp15.c15_threadid;
1858 case 8: /* TI925T_status */
1859 return 0;
1861 /* TODO: Peripheral port remap register:
1862 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1863 * controller base address at $rn & ~0xfff and map size of
1864 * 0x200 << ($rn & 0xfff), when MMU is off. */
1865 goto bad_reg;
1867 return 0;
1869 bad_reg:
1870 /* ??? For debugging only. Should raise illegal instruction exception. */
1871 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1872 (insn >> 16) & 0xf, crm, op1, op2);
1873 return 0;
1876 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1878 env->banked_r13[bank_number(mode)] = val;
1881 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1883 return env->banked_r13[bank_number(mode)];
1886 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1888 switch (reg) {
1889 case 0: /* APSR */
1890 return xpsr_read(env) & 0xf8000000;
1891 case 1: /* IAPSR */
1892 return xpsr_read(env) & 0xf80001ff;
1893 case 2: /* EAPSR */
1894 return xpsr_read(env) & 0xff00fc00;
1895 case 3: /* xPSR */
1896 return xpsr_read(env) & 0xff00fdff;
1897 case 5: /* IPSR */
1898 return xpsr_read(env) & 0x000001ff;
1899 case 6: /* EPSR */
1900 return xpsr_read(env) & 0x0700fc00;
1901 case 7: /* IEPSR */
1902 return xpsr_read(env) & 0x0700edff;
1903 case 8: /* MSP */
1904 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1905 case 9: /* PSP */
1906 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1907 case 16: /* PRIMASK */
1908 return (env->uncached_cpsr & CPSR_I) != 0;
1909 case 17: /* FAULTMASK */
1910 return (env->uncached_cpsr & CPSR_F) != 0;
1911 case 18: /* BASEPRI */
1912 case 19: /* BASEPRI_MAX */
1913 return env->v7m.basepri;
1914 case 20: /* CONTROL */
1915 return env->v7m.control;
1916 default:
1917 /* ??? For debugging only. */
1918 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1919 return 0;
1923 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1925 switch (reg) {
1926 case 0: /* APSR */
1927 xpsr_write(env, val, 0xf8000000);
1928 break;
1929 case 1: /* IAPSR */
1930 xpsr_write(env, val, 0xf8000000);
1931 break;
1932 case 2: /* EAPSR */
1933 xpsr_write(env, val, 0xfe00fc00);
1934 break;
1935 case 3: /* xPSR */
1936 xpsr_write(env, val, 0xfe00fc00);
1937 break;
1938 case 5: /* IPSR */
1939 /* IPSR bits are readonly. */
1940 break;
1941 case 6: /* EPSR */
1942 xpsr_write(env, val, 0x0600fc00);
1943 break;
1944 case 7: /* IEPSR */
1945 xpsr_write(env, val, 0x0600fc00);
1946 break;
1947 case 8: /* MSP */
1948 if (env->v7m.current_sp)
1949 env->v7m.other_sp = val;
1950 else
1951 env->regs[13] = val;
1952 break;
1953 case 9: /* PSP */
1954 if (env->v7m.current_sp)
1955 env->regs[13] = val;
1956 else
1957 env->v7m.other_sp = val;
1958 break;
1959 case 16: /* PRIMASK */
1960 if (val & 1)
1961 env->uncached_cpsr |= CPSR_I;
1962 else
1963 env->uncached_cpsr &= ~CPSR_I;
1964 break;
1965 case 17: /* FAULTMASK */
1966 if (val & 1)
1967 env->uncached_cpsr |= CPSR_F;
1968 else
1969 env->uncached_cpsr &= ~CPSR_F;
1970 break;
1971 case 18: /* BASEPRI */
1972 env->v7m.basepri = val & 0xff;
1973 break;
1974 case 19: /* BASEPRI_MAX */
1975 val &= 0xff;
1976 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1977 env->v7m.basepri = val;
1978 break;
1979 case 20: /* CONTROL */
1980 env->v7m.control = val & 3;
1981 switch_v7m_sp(env, (val & 2) != 0);
1982 break;
1983 default:
1984 /* ??? For debugging only. */
1985 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1986 return;
1990 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1991 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1992 void *opaque)
1994 if (cpnum < 0 || cpnum > 14) {
1995 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1996 return;
1999 env->cp[cpnum].cp_read = cp_read;
2000 env->cp[cpnum].cp_write = cp_write;
2001 env->cp[cpnum].opaque = opaque;
2004 #endif
2006 /* Note that signed overflow is undefined in C. The following routines are
2007 careful to use unsigned types where modulo arithmetic is required.
2008 Failure to do so _will_ break on newer gcc. */
2010 /* Signed saturating arithmetic. */
2012 /* Perform 16-bit signed saturating addition. */
2013 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2015 uint16_t res;
2017 res = a + b;
2018 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2019 if (a & 0x8000)
2020 res = 0x8000;
2021 else
2022 res = 0x7fff;
2024 return res;
2027 /* Perform 8-bit signed saturating addition. */
2028 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2030 uint8_t res;
2032 res = a + b;
2033 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2034 if (a & 0x80)
2035 res = 0x80;
2036 else
2037 res = 0x7f;
2039 return res;
2042 /* Perform 16-bit signed saturating subtraction. */
2043 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2045 uint16_t res;
2047 res = a - b;
2048 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2049 if (a & 0x8000)
2050 res = 0x8000;
2051 else
2052 res = 0x7fff;
2054 return res;
2057 /* Perform 8-bit signed saturating subtraction. */
2058 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2060 uint8_t res;
2062 res = a - b;
2063 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2064 if (a & 0x80)
2065 res = 0x80;
2066 else
2067 res = 0x7f;
2069 return res;
2072 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2073 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2074 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2075 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2076 #define PFX q
2078 #include "op_addsub.h"
2080 /* Unsigned saturating arithmetic. */
2081 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2083 uint16_t res;
2084 res = a + b;
2085 if (res < a)
2086 res = 0xffff;
2087 return res;
2090 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2092 if (a < b)
2093 return a - b;
2094 else
2095 return 0;
2098 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2100 uint8_t res;
2101 res = a + b;
2102 if (res < a)
2103 res = 0xff;
2104 return res;
2107 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2109 if (a < b)
2110 return a - b;
2111 else
2112 return 0;
2115 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2116 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2117 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2118 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2119 #define PFX uq
2121 #include "op_addsub.h"
2123 /* Signed modulo arithmetic. */
2124 #define SARITH16(a, b, n, op) do { \
2125 int32_t sum; \
2126 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2127 RESULT(sum, n, 16); \
2128 if (sum >= 0) \
2129 ge |= 3 << (n * 2); \
2130 } while(0)
2132 #define SARITH8(a, b, n, op) do { \
2133 int32_t sum; \
2134 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2135 RESULT(sum, n, 8); \
2136 if (sum >= 0) \
2137 ge |= 1 << n; \
2138 } while(0)
2141 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2142 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2143 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2144 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2145 #define PFX s
2146 #define ARITH_GE
2148 #include "op_addsub.h"
2150 /* Unsigned modulo arithmetic. */
2151 #define ADD16(a, b, n) do { \
2152 uint32_t sum; \
2153 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2154 RESULT(sum, n, 16); \
2155 if ((sum >> 16) == 1) \
2156 ge |= 3 << (n * 2); \
2157 } while(0)
2159 #define ADD8(a, b, n) do { \
2160 uint32_t sum; \
2161 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2162 RESULT(sum, n, 8); \
2163 if ((sum >> 8) == 1) \
2164 ge |= 1 << n; \
2165 } while(0)
2167 #define SUB16(a, b, n) do { \
2168 uint32_t sum; \
2169 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2170 RESULT(sum, n, 16); \
2171 if ((sum >> 16) == 0) \
2172 ge |= 3 << (n * 2); \
2173 } while(0)
2175 #define SUB8(a, b, n) do { \
2176 uint32_t sum; \
2177 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2178 RESULT(sum, n, 8); \
2179 if ((sum >> 8) == 0) \
2180 ge |= 1 << n; \
2181 } while(0)
2183 #define PFX u
2184 #define ARITH_GE
2186 #include "op_addsub.h"
2188 /* Halved signed arithmetic. */
2189 #define ADD16(a, b, n) \
2190 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2191 #define SUB16(a, b, n) \
2192 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2193 #define ADD8(a, b, n) \
2194 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2195 #define SUB8(a, b, n) \
2196 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2197 #define PFX sh
2199 #include "op_addsub.h"
2201 /* Halved unsigned arithmetic. */
2202 #define ADD16(a, b, n) \
2203 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2204 #define SUB16(a, b, n) \
2205 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2206 #define ADD8(a, b, n) \
2207 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2208 #define SUB8(a, b, n) \
2209 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2210 #define PFX uh
2212 #include "op_addsub.h"
2214 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2216 if (a > b)
2217 return a - b;
2218 else
2219 return b - a;
2222 /* Unsigned sum of absolute byte differences. */
2223 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2225 uint32_t sum;
2226 sum = do_usad(a, b);
2227 sum += do_usad(a >> 8, b >> 8);
2228 sum += do_usad(a >> 16, b >>16);
2229 sum += do_usad(a >> 24, b >> 24);
2230 return sum;
2233 /* For ARMv6 SEL instruction. */
2234 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2236 uint32_t mask;
2238 mask = 0;
2239 if (flags & 1)
2240 mask |= 0xff;
2241 if (flags & 2)
2242 mask |= 0xff00;
2243 if (flags & 4)
2244 mask |= 0xff0000;
2245 if (flags & 8)
2246 mask |= 0xff000000;
2247 return (a & mask) | (b & ~mask);
2250 uint32_t HELPER(logicq_cc)(uint64_t val)
2252 return (val >> 32) | (val != 0);
2255 /* VFP support. We follow the convention used for VFP instrunctions:
2256 Single precition routines have a "s" suffix, double precision a
2257 "d" suffix. */
2259 /* Convert host exception flags to vfp form. */
2260 static inline int vfp_exceptbits_from_host(int host_bits)
2262 int target_bits = 0;
2264 if (host_bits & float_flag_invalid)
2265 target_bits |= 1;
2266 if (host_bits & float_flag_divbyzero)
2267 target_bits |= 2;
2268 if (host_bits & float_flag_overflow)
2269 target_bits |= 4;
2270 if (host_bits & float_flag_underflow)
2271 target_bits |= 8;
2272 if (host_bits & float_flag_inexact)
2273 target_bits |= 0x10;
2274 return target_bits;
2277 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2279 int i;
2280 uint32_t fpscr;
2282 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2283 | (env->vfp.vec_len << 16)
2284 | (env->vfp.vec_stride << 20);
2285 i = get_float_exception_flags(&env->vfp.fp_status);
2286 fpscr |= vfp_exceptbits_from_host(i);
2287 return fpscr;
2290 /* Convert vfp exception flags to target form. */
2291 static inline int vfp_exceptbits_to_host(int target_bits)
2293 int host_bits = 0;
2295 if (target_bits & 1)
2296 host_bits |= float_flag_invalid;
2297 if (target_bits & 2)
2298 host_bits |= float_flag_divbyzero;
2299 if (target_bits & 4)
2300 host_bits |= float_flag_overflow;
2301 if (target_bits & 8)
2302 host_bits |= float_flag_underflow;
2303 if (target_bits & 0x10)
2304 host_bits |= float_flag_inexact;
2305 return host_bits;
2308 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2310 int i;
2311 uint32_t changed;
2313 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2314 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2315 env->vfp.vec_len = (val >> 16) & 7;
2316 env->vfp.vec_stride = (val >> 20) & 3;
2318 changed ^= val;
2319 if (changed & (3 << 22)) {
2320 i = (val >> 22) & 3;
2321 switch (i) {
2322 case 0:
2323 i = float_round_nearest_even;
2324 break;
2325 case 1:
2326 i = float_round_up;
2327 break;
2328 case 2:
2329 i = float_round_down;
2330 break;
2331 case 3:
2332 i = float_round_to_zero;
2333 break;
2335 set_float_rounding_mode(i, &env->vfp.fp_status);
2337 if (changed & (1 << 24))
2338 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2339 if (changed & (1 << 25))
2340 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2342 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2343 set_float_exception_flags(i, &env->vfp.fp_status);
2346 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2348 #define VFP_BINOP(name) \
2349 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2351 return float32_ ## name (a, b, &env->vfp.fp_status); \
2353 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2355 return float64_ ## name (a, b, &env->vfp.fp_status); \
2357 VFP_BINOP(add)
2358 VFP_BINOP(sub)
2359 VFP_BINOP(mul)
2360 VFP_BINOP(div)
2361 #undef VFP_BINOP
2363 float32 VFP_HELPER(neg, s)(float32 a)
2365 return float32_chs(a);
2368 float64 VFP_HELPER(neg, d)(float64 a)
2370 return float64_chs(a);
2373 float32 VFP_HELPER(abs, s)(float32 a)
2375 return float32_abs(a);
2378 float64 VFP_HELPER(abs, d)(float64 a)
2380 return float64_abs(a);
2383 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2385 return float32_sqrt(a, &env->vfp.fp_status);
2388 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2390 return float64_sqrt(a, &env->vfp.fp_status);
2393 /* XXX: check quiet/signaling case */
2394 #define DO_VFP_cmp(p, type) \
2395 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2397 uint32_t flags; \
2398 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2399 case 0: flags = 0x6; break; \
2400 case -1: flags = 0x8; break; \
2401 case 1: flags = 0x2; break; \
2402 default: case 2: flags = 0x3; break; \
2404 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2405 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2407 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2409 uint32_t flags; \
2410 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2411 case 0: flags = 0x6; break; \
2412 case -1: flags = 0x8; break; \
2413 case 1: flags = 0x2; break; \
2414 default: case 2: flags = 0x3; break; \
2416 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2417 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2419 DO_VFP_cmp(s, float32)
2420 DO_VFP_cmp(d, float64)
2421 #undef DO_VFP_cmp
2423 /* Helper routines to perform bitwise copies between float and int. */
2424 static inline float32 vfp_itos(uint32_t i)
2426 union {
2427 uint32_t i;
2428 float32 s;
2429 } v;
2431 v.i = i;
2432 return v.s;
2435 static inline uint32_t vfp_stoi(float32 s)
2437 union {
2438 uint32_t i;
2439 float32 s;
2440 } v;
2442 v.s = s;
2443 return v.i;
2446 static inline float64 vfp_itod(uint64_t i)
2448 union {
2449 uint64_t i;
2450 float64 d;
2451 } v;
2453 v.i = i;
2454 return v.d;
2457 static inline uint64_t vfp_dtoi(float64 d)
2459 union {
2460 uint64_t i;
2461 float64 d;
2462 } v;
2464 v.d = d;
2465 return v.i;
2468 /* Integer to float conversion. */
2469 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2471 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2474 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2476 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2479 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2481 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2484 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2486 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2489 /* Float to integer conversion. */
2490 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2492 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2495 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2497 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2500 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2502 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2505 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2507 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2510 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2512 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2515 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2517 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2520 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2522 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2525 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2527 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2530 /* floating point conversion */
2531 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2533 return float32_to_float64(x, &env->vfp.fp_status);
2536 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2538 return float64_to_float32(x, &env->vfp.fp_status);
2541 /* VFP3 fixed point conversion. */
2542 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2543 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2545 ftype tmp; \
2546 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2547 &env->vfp.fp_status); \
2548 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2550 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2552 ftype tmp; \
2553 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2554 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2555 &env->vfp.fp_status)); \
2558 VFP_CONV_FIX(sh, d, float64, int16, )
2559 VFP_CONV_FIX(sl, d, float64, int32, )
2560 VFP_CONV_FIX(uh, d, float64, uint16, u)
2561 VFP_CONV_FIX(ul, d, float64, uint32, u)
2562 VFP_CONV_FIX(sh, s, float32, int16, )
2563 VFP_CONV_FIX(sl, s, float32, int32, )
2564 VFP_CONV_FIX(uh, s, float32, uint16, u)
2565 VFP_CONV_FIX(ul, s, float32, uint32, u)
2566 #undef VFP_CONV_FIX
2568 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2570 float_status *s = &env->vfp.fp_status;
2571 float32 two = int32_to_float32(2, s);
2572 return float32_sub(two, float32_mul(a, b, s), s);
2575 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2577 float_status *s = &env->vfp.fp_status;
2578 float32 three = int32_to_float32(3, s);
2579 return float32_sub(three, float32_mul(a, b, s), s);
2582 /* NEON helpers. */
2584 /* TODO: The architecture specifies the value that the estimate functions
2585 should return. We return the exact reciprocal/root instead. */
2586 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2588 float_status *s = &env->vfp.fp_status;
2589 float32 one = int32_to_float32(1, s);
2590 return float32_div(one, a, s);
2593 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2595 float_status *s = &env->vfp.fp_status;
2596 float32 one = int32_to_float32(1, s);
2597 return float32_div(one, float32_sqrt(a, s), s);
2600 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2602 float_status *s = &env->vfp.fp_status;
2603 float32 tmp;
2604 tmp = int32_to_float32(a, s);
2605 tmp = float32_scalbn(tmp, -32, s);
2606 tmp = helper_recpe_f32(tmp, env);
2607 tmp = float32_scalbn(tmp, 31, s);
2608 return float32_to_int32(tmp, s);
2611 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2613 float_status *s = &env->vfp.fp_status;
2614 float32 tmp;
2615 tmp = int32_to_float32(a, s);
2616 tmp = float32_scalbn(tmp, -32, s);
2617 tmp = helper_rsqrte_f32(tmp, env);
2618 tmp = float32_scalbn(tmp, 31, s);
2619 return float32_to_int32(tmp, s);
2622 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2624 val &= 1;
2625 if (env->teecr != val) {
2626 env->teecr = val;
2627 tb_flush(env);