Merge commit '731c54f86988d3f28268f184fabfe9b2a32fb5d3' into upstream-merge
[qemu-kvm/amd-iommu.git] / cpu-exec.c
blob8550617af5c303d0f6a2d1f23ba346b2dd2aa093
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #if !defined(TARGET_IA64)
23 #include "tcg.h"
24 #endif
25 #include "kvm.h"
27 #if !defined(CONFIG_SOFTMMU)
28 #undef EAX
29 #undef ECX
30 #undef EDX
31 #undef EBX
32 #undef ESP
33 #undef EBP
34 #undef ESI
35 #undef EDI
36 #undef EIP
37 #include <signal.h>
38 #ifdef __linux__
39 #include <sys/ucontext.h>
40 #endif
41 #endif
43 #include "qemu-kvm.h"
45 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
46 // Work around ugly bugs in glibc that mangle global register contents
47 #undef env
48 #define env cpu_single_env
49 #endif
51 int tb_invalidated_flag;
53 //#define CONFIG_DEBUG_EXEC
54 //#define DEBUG_SIGNAL
56 int qemu_cpu_has_work(CPUState *env)
58 return cpu_has_work(env);
61 void cpu_loop_exit(void)
63 /* NOTE: the register at this point must be saved by hand because
64 longjmp restore them */
65 regs_to_env();
66 longjmp(env->jmp_env, 1);
69 /* exit the current TB from a signal handler. The host registers are
70 restored in a state compatible with the CPU emulator
72 void cpu_resume_from_signal(CPUState *env1, void *puc)
74 #if !defined(CONFIG_SOFTMMU)
75 #ifdef __linux__
76 struct ucontext *uc = puc;
77 #elif defined(__OpenBSD__)
78 struct sigcontext *uc = puc;
79 #endif
80 #endif
82 env = env1;
84 /* XXX: restore cpu registers saved in host registers */
86 #if !defined(CONFIG_SOFTMMU)
87 if (puc) {
88 /* XXX: use siglongjmp ? */
89 #ifdef __linux__
90 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
91 #elif defined(__OpenBSD__)
92 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
93 #endif
95 #endif
96 env->exception_index = -1;
97 longjmp(env->jmp_env, 1);
100 /* Execute the code without caching the generated code. An interpreter
101 could be used if available. */
102 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
104 unsigned long next_tb;
105 TranslationBlock *tb;
107 /* Should never happen.
108 We only end up here when an existing TB is too long. */
109 if (max_cycles > CF_COUNT_MASK)
110 max_cycles = CF_COUNT_MASK;
112 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
113 max_cycles);
114 env->current_tb = tb;
115 /* execute the generated code */
116 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
135 tb_invalidated_flag = 0;
137 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
139 /* find translated block using physical mappings */
140 phys_pc = get_phys_addr_code(env, pc);
141 phys_page1 = phys_pc & TARGET_PAGE_MASK;
142 phys_page2 = -1;
143 h = tb_phys_hash_func(phys_pc);
144 ptb1 = &tb_phys_hash[h];
145 for(;;) {
146 tb = *ptb1;
147 if (!tb)
148 goto not_found;
149 if (tb->pc == pc &&
150 tb->page_addr[0] == phys_page1 &&
151 tb->cs_base == cs_base &&
152 tb->flags == flags) {
153 /* check next page if needed */
154 if (tb->page_addr[1] != -1) {
155 virt_page2 = (pc & TARGET_PAGE_MASK) +
156 TARGET_PAGE_SIZE;
157 phys_page2 = get_phys_addr_code(env, virt_page2);
158 if (tb->page_addr[1] == phys_page2)
159 goto found;
160 } else {
161 goto found;
164 ptb1 = &tb->phys_hash_next;
166 not_found:
167 /* if no translated code available, then translate it now */
168 tb = tb_gen_code(env, pc, cs_base, flags, 0);
170 found:
171 /* we add the TB in the virtual pc hash table */
172 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
173 return tb;
176 static inline TranslationBlock *tb_find_fast(void)
178 TranslationBlock *tb;
179 target_ulong cs_base, pc;
180 int flags;
182 /* we record a subset of the CPU state. It will
183 always be the same before a given translated block
184 is executed. */
185 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
186 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
187 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
188 tb->flags != flags)) {
189 tb = tb_find_slow(pc, cs_base, flags);
191 return tb;
194 static CPUDebugExcpHandler *debug_excp_handler;
196 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
198 CPUDebugExcpHandler *old_handler = debug_excp_handler;
200 debug_excp_handler = handler;
201 return old_handler;
204 static void cpu_handle_debug_exception(CPUState *env)
206 CPUWatchpoint *wp;
208 if (!env->watchpoint_hit)
209 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
210 wp->flags &= ~BP_WATCHPOINT_HIT;
212 if (debug_excp_handler)
213 debug_excp_handler(env);
216 /* main execution loop */
218 int cpu_exec(CPUState *env1)
220 #define DECLARE_HOST_REGS 1
221 #include "hostregs_helper.h"
222 int ret, interrupt_request;
223 TranslationBlock *tb;
224 uint8_t *tc_ptr;
225 unsigned long next_tb;
227 if (cpu_halted(env1) == EXCP_HALTED)
228 return EXCP_HALTED;
230 cpu_single_env = env1;
232 /* first we save global registers */
233 #define SAVE_HOST_REGS 1
234 #include "hostregs_helper.h"
235 env = env1;
237 env_to_regs();
238 #if defined(TARGET_I386)
239 /* put eflags in CPU temporary format */
240 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
241 DF = 1 - (2 * ((env->eflags >> 10) & 1));
242 CC_OP = CC_OP_EFLAGS;
243 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
244 #elif defined(TARGET_SPARC)
245 #elif defined(TARGET_M68K)
246 env->cc_op = CC_OP_FLAGS;
247 env->cc_dest = env->sr & 0xf;
248 env->cc_x = (env->sr >> 4) & 1;
249 #elif defined(TARGET_ALPHA)
250 #elif defined(TARGET_ARM)
251 #elif defined(TARGET_PPC)
252 #elif defined(TARGET_MICROBLAZE)
253 #elif defined(TARGET_MIPS)
254 #elif defined(TARGET_SH4)
255 #elif defined(TARGET_CRIS)
256 #elif defined(TARGET_IA64)
257 /* XXXXX */
258 #else
259 #error unsupported target CPU
260 #endif
261 env->exception_index = -1;
263 /* prepare setjmp context for exception handling */
264 for(;;) {
265 if (setjmp(env->jmp_env) == 0) {
266 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
267 #undef env
268 env = cpu_single_env;
269 #define env cpu_single_env
270 #endif
271 env->current_tb = NULL;
272 /* if an exception is pending, we execute it here */
273 if (env->exception_index >= 0) {
274 if (env->exception_index >= EXCP_INTERRUPT) {
275 /* exit request from the cpu execution loop */
276 ret = env->exception_index;
277 if (ret == EXCP_DEBUG)
278 cpu_handle_debug_exception(env);
279 break;
280 } else {
281 #if defined(CONFIG_USER_ONLY)
282 /* if user mode only, we simulate a fake exception
283 which will be handled outside the cpu execution
284 loop */
285 #if defined(TARGET_I386)
286 do_interrupt_user(env->exception_index,
287 env->exception_is_int,
288 env->error_code,
289 env->exception_next_eip);
290 /* successfully delivered */
291 env->old_exception = -1;
292 #endif
293 ret = env->exception_index;
294 break;
295 #else
296 #if defined(TARGET_I386)
297 /* simulate a real cpu exception. On i386, it can
298 trigger new exceptions, but we do not handle
299 double or triple faults yet. */
300 do_interrupt(env->exception_index,
301 env->exception_is_int,
302 env->error_code,
303 env->exception_next_eip, 0);
304 /* successfully delivered */
305 env->old_exception = -1;
306 #elif defined(TARGET_PPC)
307 do_interrupt(env);
308 #elif defined(TARGET_MICROBLAZE)
309 do_interrupt(env);
310 #elif defined(TARGET_MIPS)
311 do_interrupt(env);
312 #elif defined(TARGET_SPARC)
313 do_interrupt(env);
314 #elif defined(TARGET_ARM)
315 do_interrupt(env);
316 #elif defined(TARGET_SH4)
317 do_interrupt(env);
318 #elif defined(TARGET_ALPHA)
319 do_interrupt(env);
320 #elif defined(TARGET_CRIS)
321 do_interrupt(env);
322 #elif defined(TARGET_M68K)
323 do_interrupt(0);
324 #elif defined(TARGET_IA64)
325 do_interrupt(env);
326 #endif
327 #endif
329 env->exception_index = -1;
332 if (kvm_enabled()) {
333 kvm_cpu_exec(env);
334 longjmp(env->jmp_env, 1);
337 next_tb = 0; /* force lookup of first TB */
338 for(;;) {
339 interrupt_request = env->interrupt_request;
340 if (unlikely(interrupt_request)) {
341 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
342 /* Mask out external interrupts for this step. */
343 interrupt_request &= ~(CPU_INTERRUPT_HARD |
344 CPU_INTERRUPT_FIQ |
345 CPU_INTERRUPT_SMI |
346 CPU_INTERRUPT_NMI);
348 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
349 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
350 env->exception_index = EXCP_DEBUG;
351 cpu_loop_exit();
353 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
354 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
355 defined(TARGET_MICROBLAZE)
356 if (interrupt_request & CPU_INTERRUPT_HALT) {
357 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
358 env->halted = 1;
359 env->exception_index = EXCP_HLT;
360 cpu_loop_exit();
362 #endif
363 #if defined(TARGET_I386)
364 if (interrupt_request & CPU_INTERRUPT_INIT) {
365 svm_check_intercept(SVM_EXIT_INIT);
366 do_cpu_init(env);
367 env->exception_index = EXCP_HALTED;
368 cpu_loop_exit();
369 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
370 do_cpu_sipi(env);
371 } else if (env->hflags2 & HF2_GIF_MASK) {
372 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
373 !(env->hflags & HF_SMM_MASK)) {
374 svm_check_intercept(SVM_EXIT_SMI);
375 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
376 do_smm_enter();
377 next_tb = 0;
378 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
379 !(env->hflags2 & HF2_NMI_MASK)) {
380 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
381 env->hflags2 |= HF2_NMI_MASK;
382 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
383 next_tb = 0;
384 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
385 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
386 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
387 next_tb = 0;
388 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
389 (((env->hflags2 & HF2_VINTR_MASK) &&
390 (env->hflags2 & HF2_HIF_MASK)) ||
391 (!(env->hflags2 & HF2_VINTR_MASK) &&
392 (env->eflags & IF_MASK &&
393 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
394 int intno;
395 svm_check_intercept(SVM_EXIT_INTR);
396 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
397 intno = cpu_get_pic_interrupt(env);
398 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
399 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
400 #undef env
401 env = cpu_single_env;
402 #define env cpu_single_env
403 #endif
404 do_interrupt(intno, 0, 0, 0, 1);
405 /* ensure that no TB jump will be modified as
406 the program flow was changed */
407 next_tb = 0;
408 #if !defined(CONFIG_USER_ONLY)
409 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
410 (env->eflags & IF_MASK) &&
411 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
412 int intno;
413 /* FIXME: this should respect TPR */
414 svm_check_intercept(SVM_EXIT_VINTR);
415 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
416 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
417 do_interrupt(intno, 0, 0, 0, 1);
418 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
419 next_tb = 0;
420 #endif
423 #elif defined(TARGET_PPC)
424 #if 0
425 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
426 cpu_ppc_reset(env);
428 #endif
429 if (interrupt_request & CPU_INTERRUPT_HARD) {
430 ppc_hw_interrupt(env);
431 if (env->pending_interrupts == 0)
432 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
433 next_tb = 0;
435 #elif defined(TARGET_MICROBLAZE)
436 if ((interrupt_request & CPU_INTERRUPT_HARD)
437 && (env->sregs[SR_MSR] & MSR_IE)
438 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
439 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
440 env->exception_index = EXCP_IRQ;
441 do_interrupt(env);
442 next_tb = 0;
444 #elif defined(TARGET_MIPS)
445 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
446 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
447 (env->CP0_Status & (1 << CP0St_IE)) &&
448 !(env->CP0_Status & (1 << CP0St_EXL)) &&
449 !(env->CP0_Status & (1 << CP0St_ERL)) &&
450 !(env->hflags & MIPS_HFLAG_DM)) {
451 /* Raise it */
452 env->exception_index = EXCP_EXT_INTERRUPT;
453 env->error_code = 0;
454 do_interrupt(env);
455 next_tb = 0;
457 #elif defined(TARGET_SPARC)
458 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
459 cpu_interrupts_enabled(env)) {
460 int pil = env->interrupt_index & 15;
461 int type = env->interrupt_index & 0xf0;
463 if (((type == TT_EXTINT) &&
464 (pil == 15 || pil > env->psrpil)) ||
465 type != TT_EXTINT) {
466 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
467 env->exception_index = env->interrupt_index;
468 do_interrupt(env);
469 env->interrupt_index = 0;
470 next_tb = 0;
472 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
473 //do_interrupt(0, 0, 0, 0, 0);
474 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
476 #elif defined(TARGET_ARM)
477 if (interrupt_request & CPU_INTERRUPT_FIQ
478 && !(env->uncached_cpsr & CPSR_F)) {
479 env->exception_index = EXCP_FIQ;
480 do_interrupt(env);
481 next_tb = 0;
483 /* ARMv7-M interrupt return works by loading a magic value
484 into the PC. On real hardware the load causes the
485 return to occur. The qemu implementation performs the
486 jump normally, then does the exception return when the
487 CPU tries to execute code at the magic address.
488 This will cause the magic PC value to be pushed to
489 the stack if an interrupt occured at the wrong time.
490 We avoid this by disabling interrupts when
491 pc contains a magic address. */
492 if (interrupt_request & CPU_INTERRUPT_HARD
493 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
494 || !(env->uncached_cpsr & CPSR_I))) {
495 env->exception_index = EXCP_IRQ;
496 do_interrupt(env);
497 next_tb = 0;
499 #elif defined(TARGET_SH4)
500 if (interrupt_request & CPU_INTERRUPT_HARD) {
501 do_interrupt(env);
502 next_tb = 0;
504 #elif defined(TARGET_ALPHA)
505 if (interrupt_request & CPU_INTERRUPT_HARD) {
506 do_interrupt(env);
507 next_tb = 0;
509 #elif defined(TARGET_CRIS)
510 if (interrupt_request & CPU_INTERRUPT_HARD
511 && (env->pregs[PR_CCS] & I_FLAG)) {
512 env->exception_index = EXCP_IRQ;
513 do_interrupt(env);
514 next_tb = 0;
516 if (interrupt_request & CPU_INTERRUPT_NMI
517 && (env->pregs[PR_CCS] & M_FLAG)) {
518 env->exception_index = EXCP_NMI;
519 do_interrupt(env);
520 next_tb = 0;
522 #elif defined(TARGET_M68K)
523 if (interrupt_request & CPU_INTERRUPT_HARD
524 && ((env->sr & SR_I) >> SR_I_SHIFT)
525 < env->pending_level) {
526 /* Real hardware gets the interrupt vector via an
527 IACK cycle at this point. Current emulated
528 hardware doesn't rely on this, so we
529 provide/save the vector when the interrupt is
530 first signalled. */
531 env->exception_index = env->pending_vector;
532 do_interrupt(1);
533 next_tb = 0;
535 #endif
536 /* Don't use the cached interupt_request value,
537 do_interrupt may have updated the EXITTB flag. */
538 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
539 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
540 /* ensure that no TB jump will be modified as
541 the program flow was changed */
542 next_tb = 0;
545 if (unlikely(env->exit_request)) {
546 env->exit_request = 0;
547 env->exception_index = EXCP_INTERRUPT;
548 cpu_loop_exit();
550 #ifdef CONFIG_DEBUG_EXEC
551 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
552 /* restore flags in standard format */
553 regs_to_env();
554 #if defined(TARGET_I386)
555 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
556 log_cpu_state(env, X86_DUMP_CCOP);
557 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
558 #elif defined(TARGET_ARM)
559 log_cpu_state(env, 0);
560 #elif defined(TARGET_SPARC)
561 log_cpu_state(env, 0);
562 #elif defined(TARGET_PPC)
563 log_cpu_state(env, 0);
564 #elif defined(TARGET_M68K)
565 cpu_m68k_flush_flags(env, env->cc_op);
566 env->cc_op = CC_OP_FLAGS;
567 env->sr = (env->sr & 0xffe0)
568 | env->cc_dest | (env->cc_x << 4);
569 log_cpu_state(env, 0);
570 #elif defined(TARGET_MICROBLAZE)
571 log_cpu_state(env, 0);
572 #elif defined(TARGET_MIPS)
573 log_cpu_state(env, 0);
574 #elif defined(TARGET_SH4)
575 log_cpu_state(env, 0);
576 #elif defined(TARGET_ALPHA)
577 log_cpu_state(env, 0);
578 #elif defined(TARGET_CRIS)
579 log_cpu_state(env, 0);
580 #else
581 #error unsupported target CPU
582 #endif
584 #endif
585 spin_lock(&tb_lock);
586 tb = tb_find_fast();
587 /* Note: we do it here to avoid a gcc bug on Mac OS X when
588 doing it in tb_find_slow */
589 if (tb_invalidated_flag) {
590 /* as some TB could have been invalidated because
591 of memory exceptions while generating the code, we
592 must recompute the hash index here */
593 next_tb = 0;
594 tb_invalidated_flag = 0;
596 #ifdef CONFIG_DEBUG_EXEC
597 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
598 (long)tb->tc_ptr, tb->pc,
599 lookup_symbol(tb->pc));
600 #endif
601 /* see if we can patch the calling TB. When the TB
602 spans two pages, we cannot safely do a direct
603 jump. */
605 if (next_tb != 0 && tb->page_addr[1] == -1) {
606 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
609 spin_unlock(&tb_lock);
610 env->current_tb = tb;
612 /* cpu_interrupt might be called while translating the
613 TB, but before it is linked into a potentially
614 infinite loop and becomes env->current_tb. Avoid
615 starting execution if there is a pending interrupt. */
616 if (unlikely (env->exit_request))
617 env->current_tb = NULL;
619 while (env->current_tb) {
620 tc_ptr = tb->tc_ptr;
621 /* execute the generated code */
622 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
623 #undef env
624 env = cpu_single_env;
625 #define env cpu_single_env
626 #endif
627 next_tb = tcg_qemu_tb_exec(tc_ptr);
628 env->current_tb = NULL;
629 if ((next_tb & 3) == 2) {
630 /* Instruction counter expired. */
631 int insns_left;
632 tb = (TranslationBlock *)(long)(next_tb & ~3);
633 /* Restore PC. */
634 cpu_pc_from_tb(env, tb);
635 insns_left = env->icount_decr.u32;
636 if (env->icount_extra && insns_left >= 0) {
637 /* Refill decrementer and continue execution. */
638 env->icount_extra += insns_left;
639 if (env->icount_extra > 0xffff) {
640 insns_left = 0xffff;
641 } else {
642 insns_left = env->icount_extra;
644 env->icount_extra -= insns_left;
645 env->icount_decr.u16.low = insns_left;
646 } else {
647 if (insns_left > 0) {
648 /* Execute remaining instructions. */
649 cpu_exec_nocache(insns_left, tb);
651 env->exception_index = EXCP_INTERRUPT;
652 next_tb = 0;
653 cpu_loop_exit();
657 /* reset soft MMU for next block (it can currently
658 only be set by a memory fault) */
659 } /* for(;;) */
660 } else {
661 env_to_regs();
663 } /* for(;;) */
666 #if defined(TARGET_I386)
667 /* restore flags in standard format */
668 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
669 #elif defined(TARGET_ARM)
670 /* XXX: Save/restore host fpu exception state?. */
671 #elif defined(TARGET_SPARC)
672 #elif defined(TARGET_PPC)
673 #elif defined(TARGET_M68K)
674 cpu_m68k_flush_flags(env, env->cc_op);
675 env->cc_op = CC_OP_FLAGS;
676 env->sr = (env->sr & 0xffe0)
677 | env->cc_dest | (env->cc_x << 4);
678 #elif defined(TARGET_MICROBLAZE)
679 #elif defined(TARGET_MIPS)
680 #elif defined(TARGET_SH4)
681 #elif defined(TARGET_IA64)
682 #elif defined(TARGET_ALPHA)
683 #elif defined(TARGET_CRIS)
684 /* XXXXX */
685 #else
686 #error unsupported target CPU
687 #endif
689 /* restore global registers */
690 #include "hostregs_helper.h"
692 /* fail safe : never use cpu_single_env outside cpu_exec() */
693 cpu_single_env = NULL;
694 return ret;
697 /* must only be called from the generated code as an exception can be
698 generated */
699 void tb_invalidate_page_range(target_ulong start, target_ulong end)
701 /* XXX: cannot enable it yet because it yields to MMU exception
702 where NIP != read address on PowerPC */
703 #if 0
704 target_ulong phys_addr;
705 phys_addr = get_phys_addr_code(env, start);
706 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
707 #endif
710 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
712 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
714 CPUX86State *saved_env;
716 saved_env = env;
717 env = s;
718 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
719 selector &= 0xffff;
720 cpu_x86_load_seg_cache(env, seg_reg, selector,
721 (selector << 4), 0xffff, 0);
722 } else {
723 helper_load_seg(seg_reg, selector);
725 env = saved_env;
728 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
730 CPUX86State *saved_env;
732 saved_env = env;
733 env = s;
735 helper_fsave(ptr, data32);
737 env = saved_env;
740 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
742 CPUX86State *saved_env;
744 saved_env = env;
745 env = s;
747 helper_frstor(ptr, data32);
749 env = saved_env;
752 #endif /* TARGET_I386 */
754 #if !defined(CONFIG_SOFTMMU)
756 #if defined(TARGET_I386)
757 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
758 #else
759 #define EXCEPTION_ACTION cpu_loop_exit()
760 #endif
762 /* 'pc' is the host PC at which the exception was raised. 'address' is
763 the effective address of the memory exception. 'is_write' is 1 if a
764 write caused the exception and otherwise 0'. 'old_set' is the
765 signal set which should be restored */
766 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
767 int is_write, sigset_t *old_set,
768 void *puc)
770 TranslationBlock *tb;
771 int ret;
773 if (cpu_single_env)
774 env = cpu_single_env; /* XXX: find a correct solution for multithread */
775 #if defined(DEBUG_SIGNAL)
776 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
777 pc, address, is_write, *(unsigned long *)old_set);
778 #endif
779 /* XXX: locking issue */
780 if (is_write && page_unprotect(h2g(address), pc, puc)) {
781 return 1;
784 /* see if it is an MMU fault */
785 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
786 if (ret < 0)
787 return 0; /* not an MMU fault */
788 if (ret == 0)
789 return 1; /* the MMU fault was handled without causing real CPU fault */
790 /* now we have a real cpu fault */
791 tb = tb_find_pc(pc);
792 if (tb) {
793 /* the PC is inside the translated code. It means that we have
794 a virtual CPU fault */
795 cpu_restore_state(tb, env, pc, puc);
798 /* we restore the process signal mask as the sigreturn should
799 do it (XXX: use sigsetjmp) */
800 sigprocmask(SIG_SETMASK, old_set, NULL);
801 EXCEPTION_ACTION;
803 /* never comes here */
804 return 1;
807 #if defined(__i386__)
809 #if defined(__APPLE__)
810 # include <sys/ucontext.h>
812 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
813 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
814 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
815 # define MASK_sig(context) ((context)->uc_sigmask)
816 #elif defined(__OpenBSD__)
817 # define EIP_sig(context) ((context)->sc_eip)
818 # define TRAP_sig(context) ((context)->sc_trapno)
819 # define ERROR_sig(context) ((context)->sc_err)
820 # define MASK_sig(context) ((context)->sc_mask)
821 #else
822 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
823 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
824 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
825 # define MASK_sig(context) ((context)->uc_sigmask)
826 #endif
828 int cpu_signal_handler(int host_signum, void *pinfo,
829 void *puc)
831 siginfo_t *info = pinfo;
832 #if defined(__OpenBSD__)
833 struct sigcontext *uc = puc;
834 #else
835 struct ucontext *uc = puc;
836 #endif
837 unsigned long pc;
838 int trapno;
840 #ifndef REG_EIP
841 /* for glibc 2.1 */
842 #define REG_EIP EIP
843 #define REG_ERR ERR
844 #define REG_TRAPNO TRAPNO
845 #endif
846 pc = EIP_sig(uc);
847 trapno = TRAP_sig(uc);
848 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
849 trapno == 0xe ?
850 (ERROR_sig(uc) >> 1) & 1 : 0,
851 &MASK_sig(uc), puc);
854 #elif defined(__x86_64__)
856 #ifdef __NetBSD__
857 #define PC_sig(context) _UC_MACHINE_PC(context)
858 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
859 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
860 #define MASK_sig(context) ((context)->uc_sigmask)
861 #elif defined(__OpenBSD__)
862 #define PC_sig(context) ((context)->sc_rip)
863 #define TRAP_sig(context) ((context)->sc_trapno)
864 #define ERROR_sig(context) ((context)->sc_err)
865 #define MASK_sig(context) ((context)->sc_mask)
866 #else
867 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
868 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
869 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
870 #define MASK_sig(context) ((context)->uc_sigmask)
871 #endif
873 int cpu_signal_handler(int host_signum, void *pinfo,
874 void *puc)
876 siginfo_t *info = pinfo;
877 unsigned long pc;
878 #ifdef __NetBSD__
879 ucontext_t *uc = puc;
880 #elif defined(__OpenBSD__)
881 struct sigcontext *uc = puc;
882 #else
883 struct ucontext *uc = puc;
884 #endif
886 pc = PC_sig(uc);
887 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
888 TRAP_sig(uc) == 0xe ?
889 (ERROR_sig(uc) >> 1) & 1 : 0,
890 &MASK_sig(uc), puc);
893 #elif defined(_ARCH_PPC)
895 /***********************************************************************
896 * signal context platform-specific definitions
897 * From Wine
899 #ifdef linux
900 /* All Registers access - only for local access */
901 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
902 /* Gpr Registers access */
903 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
904 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
905 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
906 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
907 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
908 # define LR_sig(context) REG_sig(link, context) /* Link register */
909 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
910 /* Float Registers access */
911 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
912 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
913 /* Exception Registers access */
914 # define DAR_sig(context) REG_sig(dar, context)
915 # define DSISR_sig(context) REG_sig(dsisr, context)
916 # define TRAP_sig(context) REG_sig(trap, context)
917 #endif /* linux */
919 #ifdef __APPLE__
920 # include <sys/ucontext.h>
921 typedef struct ucontext SIGCONTEXT;
922 /* All Registers access - only for local access */
923 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
924 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
925 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
926 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
927 /* Gpr Registers access */
928 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
929 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
930 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
931 # define CTR_sig(context) REG_sig(ctr, context)
932 # define XER_sig(context) REG_sig(xer, context) /* Link register */
933 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
934 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
935 /* Float Registers access */
936 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
937 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
938 /* Exception Registers access */
939 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
940 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
941 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
942 #endif /* __APPLE__ */
944 int cpu_signal_handler(int host_signum, void *pinfo,
945 void *puc)
947 siginfo_t *info = pinfo;
948 struct ucontext *uc = puc;
949 unsigned long pc;
950 int is_write;
952 pc = IAR_sig(uc);
953 is_write = 0;
954 #if 0
955 /* ppc 4xx case */
956 if (DSISR_sig(uc) & 0x00800000)
957 is_write = 1;
958 #else
959 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
960 is_write = 1;
961 #endif
962 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
963 is_write, &uc->uc_sigmask, puc);
966 #elif defined(__alpha__)
968 int cpu_signal_handler(int host_signum, void *pinfo,
969 void *puc)
971 siginfo_t *info = pinfo;
972 struct ucontext *uc = puc;
973 uint32_t *pc = uc->uc_mcontext.sc_pc;
974 uint32_t insn = *pc;
975 int is_write = 0;
977 /* XXX: need kernel patch to get write flag faster */
978 switch (insn >> 26) {
979 case 0x0d: // stw
980 case 0x0e: // stb
981 case 0x0f: // stq_u
982 case 0x24: // stf
983 case 0x25: // stg
984 case 0x26: // sts
985 case 0x27: // stt
986 case 0x2c: // stl
987 case 0x2d: // stq
988 case 0x2e: // stl_c
989 case 0x2f: // stq_c
990 is_write = 1;
993 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
994 is_write, &uc->uc_sigmask, puc);
996 #elif defined(__sparc__)
998 int cpu_signal_handler(int host_signum, void *pinfo,
999 void *puc)
1001 siginfo_t *info = pinfo;
1002 int is_write;
1003 uint32_t insn;
1004 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1005 uint32_t *regs = (uint32_t *)(info + 1);
1006 void *sigmask = (regs + 20);
1007 /* XXX: is there a standard glibc define ? */
1008 unsigned long pc = regs[1];
1009 #else
1010 #ifdef __linux__
1011 struct sigcontext *sc = puc;
1012 unsigned long pc = sc->sigc_regs.tpc;
1013 void *sigmask = (void *)sc->sigc_mask;
1014 #elif defined(__OpenBSD__)
1015 struct sigcontext *uc = puc;
1016 unsigned long pc = uc->sc_pc;
1017 void *sigmask = (void *)(long)uc->sc_mask;
1018 #endif
1019 #endif
1021 /* XXX: need kernel patch to get write flag faster */
1022 is_write = 0;
1023 insn = *(uint32_t *)pc;
1024 if ((insn >> 30) == 3) {
1025 switch((insn >> 19) & 0x3f) {
1026 case 0x05: // stb
1027 case 0x15: // stba
1028 case 0x06: // sth
1029 case 0x16: // stha
1030 case 0x04: // st
1031 case 0x14: // sta
1032 case 0x07: // std
1033 case 0x17: // stda
1034 case 0x0e: // stx
1035 case 0x1e: // stxa
1036 case 0x24: // stf
1037 case 0x34: // stfa
1038 case 0x27: // stdf
1039 case 0x37: // stdfa
1040 case 0x26: // stqf
1041 case 0x36: // stqfa
1042 case 0x25: // stfsr
1043 case 0x3c: // casa
1044 case 0x3e: // casxa
1045 is_write = 1;
1046 break;
1049 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1050 is_write, sigmask, NULL);
1053 #elif defined(__arm__)
1055 int cpu_signal_handler(int host_signum, void *pinfo,
1056 void *puc)
1058 siginfo_t *info = pinfo;
1059 struct ucontext *uc = puc;
1060 unsigned long pc;
1061 int is_write;
1063 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1064 pc = uc->uc_mcontext.gregs[R15];
1065 #else
1066 pc = uc->uc_mcontext.arm_pc;
1067 #endif
1068 /* XXX: compute is_write */
1069 is_write = 0;
1070 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1071 is_write,
1072 &uc->uc_sigmask, puc);
1075 #elif defined(__mc68000)
1077 int cpu_signal_handler(int host_signum, void *pinfo,
1078 void *puc)
1080 siginfo_t *info = pinfo;
1081 struct ucontext *uc = puc;
1082 unsigned long pc;
1083 int is_write;
1085 pc = uc->uc_mcontext.gregs[16];
1086 /* XXX: compute is_write */
1087 is_write = 0;
1088 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1089 is_write,
1090 &uc->uc_sigmask, puc);
1093 #elif defined(__ia64)
1095 #ifndef __ISR_VALID
1096 /* This ought to be in <bits/siginfo.h>... */
1097 # define __ISR_VALID 1
1098 #endif
1100 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1102 siginfo_t *info = pinfo;
1103 struct ucontext *uc = puc;
1104 unsigned long ip;
1105 int is_write = 0;
1107 ip = uc->uc_mcontext.sc_ip;
1108 switch (host_signum) {
1109 case SIGILL:
1110 case SIGFPE:
1111 case SIGSEGV:
1112 case SIGBUS:
1113 case SIGTRAP:
1114 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1115 /* ISR.W (write-access) is bit 33: */
1116 is_write = (info->si_isr >> 33) & 1;
1117 break;
1119 default:
1120 break;
1122 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1123 is_write,
1124 &uc->uc_sigmask, puc);
1127 #elif defined(__s390__)
1129 int cpu_signal_handler(int host_signum, void *pinfo,
1130 void *puc)
1132 siginfo_t *info = pinfo;
1133 struct ucontext *uc = puc;
1134 unsigned long pc;
1135 int is_write;
1137 pc = uc->uc_mcontext.psw.addr;
1138 /* XXX: compute is_write */
1139 is_write = 0;
1140 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1141 is_write, &uc->uc_sigmask, puc);
1144 #elif defined(__mips__)
1146 int cpu_signal_handler(int host_signum, void *pinfo,
1147 void *puc)
1149 siginfo_t *info = pinfo;
1150 struct ucontext *uc = puc;
1151 greg_t pc = uc->uc_mcontext.pc;
1152 int is_write;
1154 /* XXX: compute is_write */
1155 is_write = 0;
1156 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1157 is_write, &uc->uc_sigmask, puc);
1160 #elif defined(__hppa__)
1162 int cpu_signal_handler(int host_signum, void *pinfo,
1163 void *puc)
1165 struct siginfo *info = pinfo;
1166 struct ucontext *uc = puc;
1167 unsigned long pc;
1168 int is_write;
1170 pc = uc->uc_mcontext.sc_iaoq[0];
1171 /* FIXME: compute is_write */
1172 is_write = 0;
1173 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1174 is_write,
1175 &uc->uc_sigmask, puc);
1178 #else
1180 #error host CPU specific signal handler needed
1182 #endif
1184 #endif /* !defined(CONFIG_SOFTMMU) */