2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "disas/disas.h"
23 #include "qemu/atomic.h"
24 #include "sysemu/qtest.h"
26 void cpu_loop_exit(CPUState
*cpu
)
28 cpu
->current_tb
= NULL
;
29 siglongjmp(cpu
->jmp_env
, 1);
32 /* exit the current TB from a signal handler. The host registers are
33 restored in a state compatible with the CPU emulator
35 #if defined(CONFIG_SOFTMMU)
36 void cpu_resume_from_signal(CPUState
*cpu
, void *puc
)
38 /* XXX: restore cpu registers saved in host registers */
40 cpu
->exception_index
= -1;
41 siglongjmp(cpu
->jmp_env
, 1);
45 /* Execute a TB, and fix up the CPU state afterwards if necessary */
46 static inline tcg_target_ulong
cpu_tb_exec(CPUState
*cpu
, uint8_t *tb_ptr
)
48 CPUArchState
*env
= cpu
->env_ptr
;
51 #if defined(DEBUG_DISAS)
52 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
53 #if defined(TARGET_I386)
54 log_cpu_state(cpu
, CPU_DUMP_CCOP
);
55 #elif defined(TARGET_M68K)
56 /* ??? Should not modify env state for dumping. */
57 cpu_m68k_flush_flags(env
, env
->cc_op
);
58 env
->cc_op
= CC_OP_FLAGS
;
59 env
->sr
= (env
->sr
& 0xffe0) | env
->cc_dest
| (env
->cc_x
<< 4);
60 log_cpu_state(cpu
, 0);
62 log_cpu_state(cpu
, 0);
65 #endif /* DEBUG_DISAS */
67 next_tb
= tcg_qemu_tb_exec(env
, tb_ptr
);
68 if ((next_tb
& TB_EXIT_MASK
) > TB_EXIT_IDX1
) {
69 /* We didn't start executing this TB (eg because the instruction
70 * counter hit zero); we must restore the guest PC to the address
71 * of the start of the TB.
73 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
74 TranslationBlock
*tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
75 if (cc
->synchronize_from_tb
) {
76 cc
->synchronize_from_tb(cpu
, tb
);
79 cc
->set_pc(cpu
, tb
->pc
);
82 if ((next_tb
& TB_EXIT_MASK
) == TB_EXIT_REQUESTED
) {
83 /* We were asked to stop executing TBs (probably a pending
84 * interrupt. We've now stopped, so clear the flag.
86 cpu
->tcg_exit_req
= 0;
91 /* Execute the code without caching the generated code. An interpreter
92 could be used if available. */
93 static void cpu_exec_nocache(CPUArchState
*env
, int max_cycles
,
94 TranslationBlock
*orig_tb
)
96 CPUState
*cpu
= ENV_GET_CPU(env
);
99 /* Should never happen.
100 We only end up here when an existing TB is too long. */
101 if (max_cycles
> CF_COUNT_MASK
)
102 max_cycles
= CF_COUNT_MASK
;
104 tb
= tb_gen_code(cpu
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
106 cpu
->current_tb
= tb
;
107 /* execute the generated code */
108 cpu_tb_exec(cpu
, tb
->tc_ptr
);
109 cpu
->current_tb
= NULL
;
110 tb_phys_invalidate(tb
, -1);
114 static TranslationBlock
*tb_find_slow(CPUArchState
*env
,
116 target_ulong cs_base
,
119 CPUState
*cpu
= ENV_GET_CPU(env
);
120 TranslationBlock
*tb
, **ptb1
;
122 tb_page_addr_t phys_pc
, phys_page1
;
123 target_ulong virt_page2
;
125 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
127 /* find translated block using physical mappings */
128 phys_pc
= get_page_addr_code(env
, pc
);
129 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
130 h
= tb_phys_hash_func(phys_pc
);
131 ptb1
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
137 tb
->page_addr
[0] == phys_page1
&&
138 tb
->cs_base
== cs_base
&&
139 tb
->flags
== flags
) {
140 /* check next page if needed */
141 if (tb
->page_addr
[1] != -1) {
142 tb_page_addr_t phys_page2
;
144 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
146 phys_page2
= get_page_addr_code(env
, virt_page2
);
147 if (tb
->page_addr
[1] == phys_page2
)
153 ptb1
= &tb
->phys_hash_next
;
156 /* if no translated code available, then translate it now */
157 tb
= tb_gen_code(cpu
, pc
, cs_base
, flags
, 0);
160 /* Move the last found TB to the head of the list */
162 *ptb1
= tb
->phys_hash_next
;
163 tb
->phys_hash_next
= tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
164 tcg_ctx
.tb_ctx
.tb_phys_hash
[h
] = tb
;
166 /* we add the TB in the virtual pc hash table */
167 cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
171 static inline TranslationBlock
*tb_find_fast(CPUArchState
*env
)
173 CPUState
*cpu
= ENV_GET_CPU(env
);
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(env
, pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 void cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 debug_excp_handler
= handler
;
197 static void cpu_handle_debug_exception(CPUArchState
*env
)
199 CPUState
*cpu
= ENV_GET_CPU(env
);
202 if (!cpu
->watchpoint_hit
) {
203 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
204 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
207 if (debug_excp_handler
) {
208 debug_excp_handler(env
);
212 /* main execution loop */
214 volatile sig_atomic_t exit_request
;
216 int cpu_exec(CPUArchState
*env
)
218 CPUState
*cpu
= ENV_GET_CPU(env
);
219 #if !(defined(CONFIG_USER_ONLY) && \
220 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
221 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
224 X86CPU
*x86_cpu
= X86_CPU(cpu
);
226 int ret
, interrupt_request
;
227 TranslationBlock
*tb
;
232 if (!cpu_has_work(cpu
)) {
241 /* As long as current_cpu is null, up to the assignment just above,
242 * requests by other threads to exit the execution loop are expected to
243 * be issued using the exit_request global. We must make sure that our
244 * evaluation of the global value is performed past the current_cpu
245 * value transition point, which requires a memory barrier as well as
246 * an instruction scheduling constraint on modern architectures. */
249 if (unlikely(exit_request
)) {
250 cpu
->exit_request
= 1;
253 #if defined(TARGET_I386)
254 /* put eflags in CPU temporary format */
255 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
256 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
257 CC_OP
= CC_OP_EFLAGS
;
258 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
259 #elif defined(TARGET_SPARC)
260 #elif defined(TARGET_M68K)
261 env
->cc_op
= CC_OP_FLAGS
;
262 env
->cc_dest
= env
->sr
& 0xf;
263 env
->cc_x
= (env
->sr
>> 4) & 1;
264 #elif defined(TARGET_ALPHA)
265 #elif defined(TARGET_ARM)
266 #elif defined(TARGET_UNICORE32)
267 #elif defined(TARGET_PPC)
268 env
->reserve_addr
= -1;
269 #elif defined(TARGET_LM32)
270 #elif defined(TARGET_MICROBLAZE)
271 #elif defined(TARGET_MIPS)
272 #elif defined(TARGET_MOXIE)
273 #elif defined(TARGET_OPENRISC)
274 #elif defined(TARGET_SH4)
275 #elif defined(TARGET_CRIS)
276 #elif defined(TARGET_S390X)
277 #elif defined(TARGET_XTENSA)
280 #error unsupported target CPU
282 cpu
->exception_index
= -1;
284 /* prepare setjmp context for exception handling */
286 if (sigsetjmp(cpu
->jmp_env
, 0) == 0) {
287 /* if an exception is pending, we execute it here */
288 if (cpu
->exception_index
>= 0) {
289 if (cpu
->exception_index
>= EXCP_INTERRUPT
) {
290 /* exit request from the cpu execution loop */
291 ret
= cpu
->exception_index
;
292 if (ret
== EXCP_DEBUG
) {
293 cpu_handle_debug_exception(env
);
297 #if defined(CONFIG_USER_ONLY)
298 /* if user mode only, we simulate a fake exception
299 which will be handled outside the cpu execution
301 #if defined(TARGET_I386)
302 cc
->do_interrupt(cpu
);
304 ret
= cpu
->exception_index
;
307 cc
->do_interrupt(cpu
);
308 cpu
->exception_index
= -1;
313 next_tb
= 0; /* force lookup of first TB */
315 interrupt_request
= cpu
->interrupt_request
;
316 if (unlikely(interrupt_request
)) {
317 if (unlikely(cpu
->singlestep_enabled
& SSTEP_NOIRQ
)) {
318 /* Mask out external interrupts for this step. */
319 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
321 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
322 cpu
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
323 cpu
->exception_index
= EXCP_DEBUG
;
326 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
327 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
328 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
329 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
330 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
332 cpu
->exception_index
= EXCP_HLT
;
336 #if defined(TARGET_I386)
337 #if !defined(CONFIG_USER_ONLY)
338 if (interrupt_request
& CPU_INTERRUPT_POLL
) {
339 cpu
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
340 apic_poll_irq(x86_cpu
->apic_state
);
343 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
344 cpu_svm_check_intercept_param(env
, SVM_EXIT_INIT
,
346 do_cpu_init(x86_cpu
);
347 cpu
->exception_index
= EXCP_HALTED
;
349 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
350 do_cpu_sipi(x86_cpu
);
351 } else if (env
->hflags2
& HF2_GIF_MASK
) {
352 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
353 !(env
->hflags
& HF_SMM_MASK
)) {
354 cpu_svm_check_intercept_param(env
, SVM_EXIT_SMI
,
356 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
357 do_smm_enter(x86_cpu
);
359 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
360 !(env
->hflags2
& HF2_NMI_MASK
)) {
361 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
362 env
->hflags2
|= HF2_NMI_MASK
;
363 do_interrupt_x86_hardirq(env
, EXCP02_NMI
, 1);
365 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
366 cpu
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
367 do_interrupt_x86_hardirq(env
, EXCP12_MCHK
, 0);
369 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
370 (((env
->hflags2
& HF2_VINTR_MASK
) &&
371 (env
->hflags2
& HF2_HIF_MASK
)) ||
372 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
373 (env
->eflags
& IF_MASK
&&
374 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
376 cpu_svm_check_intercept_param(env
, SVM_EXIT_INTR
,
378 cpu
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
380 intno
= cpu_get_pic_interrupt(env
);
381 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
382 do_interrupt_x86_hardirq(env
, intno
, 1);
383 /* ensure that no TB jump will be modified as
384 the program flow was changed */
386 #if !defined(CONFIG_USER_ONLY)
387 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
388 (env
->eflags
& IF_MASK
) &&
389 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
391 /* FIXME: this should respect TPR */
392 cpu_svm_check_intercept_param(env
, SVM_EXIT_VINTR
,
394 intno
= ldl_phys(cpu
->as
,
396 + offsetof(struct vmcb
,
397 control
.int_vector
));
398 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
399 do_interrupt_x86_hardirq(env
, intno
, 1);
400 cpu
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
405 #elif defined(TARGET_PPC)
406 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
409 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
410 ppc_hw_interrupt(env
);
411 if (env
->pending_interrupts
== 0) {
412 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
416 #elif defined(TARGET_LM32)
417 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
418 && (env
->ie
& IE_IE
)) {
419 cpu
->exception_index
= EXCP_IRQ
;
420 cc
->do_interrupt(cpu
);
423 #elif defined(TARGET_MICROBLAZE)
424 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
425 && (env
->sregs
[SR_MSR
] & MSR_IE
)
426 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
427 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
428 cpu
->exception_index
= EXCP_IRQ
;
429 cc
->do_interrupt(cpu
);
432 #elif defined(TARGET_MIPS)
433 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
434 cpu_mips_hw_interrupts_pending(env
)) {
436 cpu
->exception_index
= EXCP_EXT_INTERRUPT
;
438 cc
->do_interrupt(cpu
);
441 #elif defined(TARGET_OPENRISC)
444 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
445 && (env
->sr
& SR_IEE
)) {
448 if ((interrupt_request
& CPU_INTERRUPT_TIMER
)
449 && (env
->sr
& SR_TEE
)) {
453 cpu
->exception_index
= idx
;
454 cc
->do_interrupt(cpu
);
458 #elif defined(TARGET_SPARC)
459 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
460 if (cpu_interrupts_enabled(env
) &&
461 env
->interrupt_index
> 0) {
462 int pil
= env
->interrupt_index
& 0xf;
463 int type
= env
->interrupt_index
& 0xf0;
465 if (((type
== TT_EXTINT
) &&
466 cpu_pil_allowed(env
, pil
)) ||
468 cpu
->exception_index
= env
->interrupt_index
;
469 cc
->do_interrupt(cpu
);
474 #elif defined(TARGET_ARM)
475 if (interrupt_request
& CPU_INTERRUPT_FIQ
476 && !(env
->daif
& PSTATE_F
)) {
477 cpu
->exception_index
= EXCP_FIQ
;
478 cc
->do_interrupt(cpu
);
481 /* ARMv7-M interrupt return works by loading a magic value
482 into the PC. On real hardware the load causes the
483 return to occur. The qemu implementation performs the
484 jump normally, then does the exception return when the
485 CPU tries to execute code at the magic address.
486 This will cause the magic PC value to be pushed to
487 the stack if an interrupt occurred at the wrong time.
488 We avoid this by disabling interrupts when
489 pc contains a magic address. */
490 if (interrupt_request
& CPU_INTERRUPT_HARD
491 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
492 || !(env
->daif
& PSTATE_I
))) {
493 cpu
->exception_index
= EXCP_IRQ
;
494 cc
->do_interrupt(cpu
);
497 #elif defined(TARGET_UNICORE32)
498 if (interrupt_request
& CPU_INTERRUPT_HARD
499 && !(env
->uncached_asr
& ASR_I
)) {
500 cpu
->exception_index
= UC32_EXCP_INTR
;
501 cc
->do_interrupt(cpu
);
504 #elif defined(TARGET_SH4)
505 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
506 cc
->do_interrupt(cpu
);
509 #elif defined(TARGET_ALPHA)
512 /* ??? This hard-codes the OSF/1 interrupt levels. */
513 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
515 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
516 idx
= EXCP_DEV_INTERRUPT
;
520 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
521 idx
= EXCP_CLK_INTERRUPT
;
525 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
526 idx
= EXCP_SMP_INTERRUPT
;
530 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
535 cpu
->exception_index
= idx
;
537 cc
->do_interrupt(cpu
);
541 #elif defined(TARGET_CRIS)
542 if (interrupt_request
& CPU_INTERRUPT_HARD
543 && (env
->pregs
[PR_CCS
] & I_FLAG
)
544 && !env
->locked_irq
) {
545 cpu
->exception_index
= EXCP_IRQ
;
546 cc
->do_interrupt(cpu
);
549 if (interrupt_request
& CPU_INTERRUPT_NMI
) {
550 unsigned int m_flag_archval
;
551 if (env
->pregs
[PR_VR
] < 32) {
552 m_flag_archval
= M_FLAG_V10
;
554 m_flag_archval
= M_FLAG_V32
;
556 if ((env
->pregs
[PR_CCS
] & m_flag_archval
)) {
557 cpu
->exception_index
= EXCP_NMI
;
558 cc
->do_interrupt(cpu
);
562 #elif defined(TARGET_M68K)
563 if (interrupt_request
& CPU_INTERRUPT_HARD
564 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
565 < env
->pending_level
) {
566 /* Real hardware gets the interrupt vector via an
567 IACK cycle at this point. Current emulated
568 hardware doesn't rely on this, so we
569 provide/save the vector when the interrupt is
571 cpu
->exception_index
= env
->pending_vector
;
572 do_interrupt_m68k_hardirq(env
);
575 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
576 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
577 (env
->psw
.mask
& PSW_MASK_EXT
)) {
578 cc
->do_interrupt(cpu
);
581 #elif defined(TARGET_XTENSA)
582 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
583 cpu
->exception_index
= EXC_IRQ
;
584 cc
->do_interrupt(cpu
);
588 /* Don't use the cached interrupt_request value,
589 do_interrupt may have updated the EXITTB flag. */
590 if (cpu
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
591 cpu
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
592 /* ensure that no TB jump will be modified as
593 the program flow was changed */
597 if (unlikely(cpu
->exit_request
)) {
598 cpu
->exit_request
= 0;
599 cpu
->exception_index
= EXCP_INTERRUPT
;
602 spin_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
603 tb
= tb_find_fast(env
);
604 /* Note: we do it here to avoid a gcc bug on Mac OS X when
605 doing it in tb_find_slow */
606 if (tcg_ctx
.tb_ctx
.tb_invalidated_flag
) {
607 /* as some TB could have been invalidated because
608 of memory exceptions while generating the code, we
609 must recompute the hash index here */
611 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
613 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
614 qemu_log("Trace %p [" TARGET_FMT_lx
"] %s\n",
615 tb
->tc_ptr
, tb
->pc
, lookup_symbol(tb
->pc
));
617 /* see if we can patch the calling TB. When the TB
618 spans two pages, we cannot safely do a direct
620 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
621 tb_add_jump((TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
),
622 next_tb
& TB_EXIT_MASK
, tb
);
624 spin_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
626 /* cpu_interrupt might be called while translating the
627 TB, but before it is linked into a potentially
628 infinite loop and becomes env->current_tb. Avoid
629 starting execution if there is a pending interrupt. */
630 cpu
->current_tb
= tb
;
632 if (likely(!cpu
->exit_request
)) {
634 /* execute the generated code */
635 next_tb
= cpu_tb_exec(cpu
, tc_ptr
);
636 switch (next_tb
& TB_EXIT_MASK
) {
637 case TB_EXIT_REQUESTED
:
638 /* Something asked us to stop executing
639 * chained TBs; just continue round the main
640 * loop. Whatever requested the exit will also
641 * have set something else (eg exit_request or
642 * interrupt_request) which we will handle
643 * next time around the loop.
645 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
648 case TB_EXIT_ICOUNT_EXPIRED
:
650 /* Instruction counter expired. */
652 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
653 insns_left
= cpu
->icount_decr
.u32
;
654 if (cpu
->icount_extra
&& insns_left
>= 0) {
655 /* Refill decrementer and continue execution. */
656 cpu
->icount_extra
+= insns_left
;
657 if (cpu
->icount_extra
> 0xffff) {
660 insns_left
= cpu
->icount_extra
;
662 cpu
->icount_extra
-= insns_left
;
663 cpu
->icount_decr
.u16
.low
= insns_left
;
665 if (insns_left
> 0) {
666 /* Execute remaining instructions. */
667 cpu_exec_nocache(env
, insns_left
, tb
);
669 cpu
->exception_index
= EXCP_INTERRUPT
;
679 cpu
->current_tb
= NULL
;
680 /* reset soft MMU for next block (it can currently
681 only be set by a memory fault) */
684 /* Reload env after longjmp - the compiler may have smashed all
685 * local variables as longjmp is marked 'noreturn'. */
688 #if !(defined(CONFIG_USER_ONLY) && \
689 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
690 cc
= CPU_GET_CLASS(cpu
);
693 x86_cpu
= X86_CPU(cpu
);
699 #if defined(TARGET_I386)
700 /* restore flags in standard format */
701 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
702 | (env
->df
& DF_MASK
);
703 #elif defined(TARGET_ARM)
704 /* XXX: Save/restore host fpu exception state?. */
705 #elif defined(TARGET_UNICORE32)
706 #elif defined(TARGET_SPARC)
707 #elif defined(TARGET_PPC)
708 #elif defined(TARGET_LM32)
709 #elif defined(TARGET_M68K)
710 cpu_m68k_flush_flags(env
, env
->cc_op
);
711 env
->cc_op
= CC_OP_FLAGS
;
712 env
->sr
= (env
->sr
& 0xffe0)
713 | env
->cc_dest
| (env
->cc_x
<< 4);
714 #elif defined(TARGET_MICROBLAZE)
715 #elif defined(TARGET_MIPS)
716 #elif defined(TARGET_MOXIE)
717 #elif defined(TARGET_OPENRISC)
718 #elif defined(TARGET_SH4)
719 #elif defined(TARGET_ALPHA)
720 #elif defined(TARGET_CRIS)
721 #elif defined(TARGET_S390X)
722 #elif defined(TARGET_XTENSA)
725 #error unsupported target CPU
728 /* fail safe : never use current_cpu outside cpu_exec() */