.gitignore update
[qemu-kvm.git] / target-sh4 / op_helper.c
blob40547911cd7bf66df7252bdc09d63eb71707f617
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <assert.h>
20 #include <stdlib.h>
21 #include "cpu.h"
22 #include "dyngen-exec.h"
23 #include "helper.h"
25 static void cpu_restore_state_from_retaddr(uintptr_t retaddr)
27 TranslationBlock *tb;
29 if (retaddr) {
30 tb = tb_find_pc(retaddr);
31 if (tb) {
32 /* the PC is inside the translated code. It means that we have
33 a virtual CPU fault */
34 cpu_restore_state(tb, env, retaddr);
39 #ifndef CONFIG_USER_ONLY
40 #include "softmmu_exec.h"
42 #define MMUSUFFIX _mmu
44 #define SHIFT 0
45 #include "softmmu_template.h"
47 #define SHIFT 1
48 #include "softmmu_template.h"
50 #define SHIFT 2
51 #include "softmmu_template.h"
53 #define SHIFT 3
54 #include "softmmu_template.h"
56 void tlb_fill(CPUSH4State *env1, target_ulong addr, int is_write, int mmu_idx,
57 uintptr_t retaddr)
59 CPUSH4State *saved_env;
60 int ret;
62 saved_env = env;
63 env = env1;
64 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx);
65 if (ret) {
66 /* now we have a real cpu fault */
67 cpu_restore_state_from_retaddr(retaddr);
68 cpu_loop_exit(env);
70 env = saved_env;
73 #endif
75 void helper_ldtlb(void)
77 #ifdef CONFIG_USER_ONLY
78 /* XXXXX */
79 cpu_abort(env, "Unhandled ldtlb");
80 #else
81 cpu_load_tlb(env);
82 #endif
85 static inline void raise_exception(int index, uintptr_t retaddr)
87 env->exception_index = index;
88 cpu_restore_state_from_retaddr(retaddr);
89 cpu_loop_exit(env);
92 void helper_raise_illegal_instruction(void)
94 raise_exception(0x180, GETPC());
97 void helper_raise_slot_illegal_instruction(void)
99 raise_exception(0x1a0, GETPC());
102 void helper_raise_fpu_disable(void)
104 raise_exception(0x800, GETPC());
107 void helper_raise_slot_fpu_disable(void)
109 raise_exception(0x820, GETPC());
112 void helper_debug(void)
114 env->exception_index = EXCP_DEBUG;
115 cpu_loop_exit(env);
118 void helper_sleep(uint32_t next_pc)
120 env->halted = 1;
121 env->in_sleep = 1;
122 env->exception_index = EXCP_HLT;
123 env->pc = next_pc;
124 cpu_loop_exit(env);
127 void helper_trapa(uint32_t tra)
129 env->tra = tra << 2;
130 raise_exception(0x160, GETPC());
133 void helper_movcal(uint32_t address, uint32_t value)
135 if (cpu_sh4_is_cached (env, address))
137 memory_content *r = malloc (sizeof(memory_content));
138 r->address = address;
139 r->value = value;
140 r->next = NULL;
142 *(env->movcal_backup_tail) = r;
143 env->movcal_backup_tail = &(r->next);
147 void helper_discard_movcal_backup(void)
149 memory_content *current = env->movcal_backup;
151 while(current)
153 memory_content *next = current->next;
154 free (current);
155 env->movcal_backup = current = next;
156 if (current == NULL)
157 env->movcal_backup_tail = &(env->movcal_backup);
161 void helper_ocbi(uint32_t address)
163 memory_content **current = &(env->movcal_backup);
164 while (*current)
166 uint32_t a = (*current)->address;
167 if ((a & ~0x1F) == (address & ~0x1F))
169 memory_content *next = (*current)->next;
170 stl(a, (*current)->value);
172 if (next == NULL)
174 env->movcal_backup_tail = current;
177 free (*current);
178 *current = next;
179 break;
184 uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
186 uint32_t tmp0, tmp1;
188 tmp1 = arg0 + arg1;
189 tmp0 = arg1;
190 arg1 = tmp1 + (env->sr & 1);
191 if (tmp0 > tmp1)
192 env->sr |= SR_T;
193 else
194 env->sr &= ~SR_T;
195 if (tmp1 > arg1)
196 env->sr |= SR_T;
197 return arg1;
200 uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
202 uint32_t dest, src, ans;
204 if ((int32_t) arg1 >= 0)
205 dest = 0;
206 else
207 dest = 1;
208 if ((int32_t) arg0 >= 0)
209 src = 0;
210 else
211 src = 1;
212 src += dest;
213 arg1 += arg0;
214 if ((int32_t) arg1 >= 0)
215 ans = 0;
216 else
217 ans = 1;
218 ans += dest;
219 if (src == 0 || src == 2) {
220 if (ans == 1)
221 env->sr |= SR_T;
222 else
223 env->sr &= ~SR_T;
224 } else
225 env->sr &= ~SR_T;
226 return arg1;
229 #define T (env->sr & SR_T)
230 #define Q (env->sr & SR_Q ? 1 : 0)
231 #define M (env->sr & SR_M ? 1 : 0)
232 #define SETT env->sr |= SR_T
233 #define CLRT env->sr &= ~SR_T
234 #define SETQ env->sr |= SR_Q
235 #define CLRQ env->sr &= ~SR_Q
236 #define SETM env->sr |= SR_M
237 #define CLRM env->sr &= ~SR_M
239 uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
241 uint32_t tmp0, tmp2;
242 uint8_t old_q, tmp1 = 0xff;
244 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
245 old_q = Q;
246 if ((0x80000000 & arg1) != 0)
247 SETQ;
248 else
249 CLRQ;
250 tmp2 = arg0;
251 arg1 <<= 1;
252 arg1 |= T;
253 switch (old_q) {
254 case 0:
255 switch (M) {
256 case 0:
257 tmp0 = arg1;
258 arg1 -= tmp2;
259 tmp1 = arg1 > tmp0;
260 switch (Q) {
261 case 0:
262 if (tmp1)
263 SETQ;
264 else
265 CLRQ;
266 break;
267 case 1:
268 if (tmp1 == 0)
269 SETQ;
270 else
271 CLRQ;
272 break;
274 break;
275 case 1:
276 tmp0 = arg1;
277 arg1 += tmp2;
278 tmp1 = arg1 < tmp0;
279 switch (Q) {
280 case 0:
281 if (tmp1 == 0)
282 SETQ;
283 else
284 CLRQ;
285 break;
286 case 1:
287 if (tmp1)
288 SETQ;
289 else
290 CLRQ;
291 break;
293 break;
295 break;
296 case 1:
297 switch (M) {
298 case 0:
299 tmp0 = arg1;
300 arg1 += tmp2;
301 tmp1 = arg1 < tmp0;
302 switch (Q) {
303 case 0:
304 if (tmp1)
305 SETQ;
306 else
307 CLRQ;
308 break;
309 case 1:
310 if (tmp1 == 0)
311 SETQ;
312 else
313 CLRQ;
314 break;
316 break;
317 case 1:
318 tmp0 = arg1;
319 arg1 -= tmp2;
320 tmp1 = arg1 > tmp0;
321 switch (Q) {
322 case 0:
323 if (tmp1 == 0)
324 SETQ;
325 else
326 CLRQ;
327 break;
328 case 1:
329 if (tmp1)
330 SETQ;
331 else
332 CLRQ;
333 break;
335 break;
337 break;
339 if (Q == M)
340 SETT;
341 else
342 CLRT;
343 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
344 return arg1;
347 void helper_macl(uint32_t arg0, uint32_t arg1)
349 int64_t res;
351 res = ((uint64_t) env->mach << 32) | env->macl;
352 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
353 env->mach = (res >> 32) & 0xffffffff;
354 env->macl = res & 0xffffffff;
355 if (env->sr & SR_S) {
356 if (res < 0)
357 env->mach |= 0xffff0000;
358 else
359 env->mach &= 0x00007fff;
363 void helper_macw(uint32_t arg0, uint32_t arg1)
365 int64_t res;
367 res = ((uint64_t) env->mach << 32) | env->macl;
368 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
369 env->mach = (res >> 32) & 0xffffffff;
370 env->macl = res & 0xffffffff;
371 if (env->sr & SR_S) {
372 if (res < -0x80000000) {
373 env->mach = 1;
374 env->macl = 0x80000000;
375 } else if (res > 0x000000007fffffff) {
376 env->mach = 1;
377 env->macl = 0x7fffffff;
382 uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
384 uint32_t tmp0, tmp1;
386 tmp1 = arg1 - arg0;
387 tmp0 = arg1;
388 arg1 = tmp1 - (env->sr & SR_T);
389 if (tmp0 < tmp1)
390 env->sr |= SR_T;
391 else
392 env->sr &= ~SR_T;
393 if (tmp1 < arg1)
394 env->sr |= SR_T;
395 return arg1;
398 uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
400 int32_t dest, src, ans;
402 if ((int32_t) arg1 >= 0)
403 dest = 0;
404 else
405 dest = 1;
406 if ((int32_t) arg0 >= 0)
407 src = 0;
408 else
409 src = 1;
410 src += dest;
411 arg1 -= arg0;
412 if ((int32_t) arg1 >= 0)
413 ans = 0;
414 else
415 ans = 1;
416 ans += dest;
417 if (src == 1) {
418 if (ans == 1)
419 env->sr |= SR_T;
420 else
421 env->sr &= ~SR_T;
422 } else
423 env->sr &= ~SR_T;
424 return arg1;
427 static inline void set_t(void)
429 env->sr |= SR_T;
432 static inline void clr_t(void)
434 env->sr &= ~SR_T;
437 void helper_ld_fpscr(uint32_t val)
439 env->fpscr = val & FPSCR_MASK;
440 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
441 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
442 } else {
443 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
445 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
448 static void update_fpscr(uintptr_t retaddr)
450 int xcpt, cause, enable;
452 xcpt = get_float_exception_flags(&env->fp_status);
454 /* Clear the flag entries */
455 env->fpscr &= ~FPSCR_FLAG_MASK;
457 if (unlikely(xcpt)) {
458 if (xcpt & float_flag_invalid) {
459 env->fpscr |= FPSCR_FLAG_V;
461 if (xcpt & float_flag_divbyzero) {
462 env->fpscr |= FPSCR_FLAG_Z;
464 if (xcpt & float_flag_overflow) {
465 env->fpscr |= FPSCR_FLAG_O;
467 if (xcpt & float_flag_underflow) {
468 env->fpscr |= FPSCR_FLAG_U;
470 if (xcpt & float_flag_inexact) {
471 env->fpscr |= FPSCR_FLAG_I;
474 /* Accumulate in cause entries */
475 env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
476 << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
478 /* Generate an exception if enabled */
479 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
480 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
481 if (cause & enable) {
482 cpu_restore_state_from_retaddr(retaddr);
483 env->exception_index = 0x120;
484 cpu_loop_exit(env);
489 float32 helper_fabs_FT(float32 t0)
491 return float32_abs(t0);
494 float64 helper_fabs_DT(float64 t0)
496 return float64_abs(t0);
499 float32 helper_fadd_FT(float32 t0, float32 t1)
501 set_float_exception_flags(0, &env->fp_status);
502 t0 = float32_add(t0, t1, &env->fp_status);
503 update_fpscr(GETPC());
504 return t0;
507 float64 helper_fadd_DT(float64 t0, float64 t1)
509 set_float_exception_flags(0, &env->fp_status);
510 t0 = float64_add(t0, t1, &env->fp_status);
511 update_fpscr(GETPC());
512 return t0;
515 void helper_fcmp_eq_FT(float32 t0, float32 t1)
517 int relation;
519 set_float_exception_flags(0, &env->fp_status);
520 relation = float32_compare(t0, t1, &env->fp_status);
521 if (unlikely(relation == float_relation_unordered)) {
522 update_fpscr(GETPC());
523 } else if (relation == float_relation_equal) {
524 set_t();
525 } else {
526 clr_t();
530 void helper_fcmp_eq_DT(float64 t0, float64 t1)
532 int relation;
534 set_float_exception_flags(0, &env->fp_status);
535 relation = float64_compare(t0, t1, &env->fp_status);
536 if (unlikely(relation == float_relation_unordered)) {
537 update_fpscr(GETPC());
538 } else if (relation == float_relation_equal) {
539 set_t();
540 } else {
541 clr_t();
545 void helper_fcmp_gt_FT(float32 t0, float32 t1)
547 int relation;
549 set_float_exception_flags(0, &env->fp_status);
550 relation = float32_compare(t0, t1, &env->fp_status);
551 if (unlikely(relation == float_relation_unordered)) {
552 update_fpscr(GETPC());
553 } else if (relation == float_relation_greater) {
554 set_t();
555 } else {
556 clr_t();
560 void helper_fcmp_gt_DT(float64 t0, float64 t1)
562 int relation;
564 set_float_exception_flags(0, &env->fp_status);
565 relation = float64_compare(t0, t1, &env->fp_status);
566 if (unlikely(relation == float_relation_unordered)) {
567 update_fpscr(GETPC());
568 } else if (relation == float_relation_greater) {
569 set_t();
570 } else {
571 clr_t();
575 float64 helper_fcnvsd_FT_DT(float32 t0)
577 float64 ret;
578 set_float_exception_flags(0, &env->fp_status);
579 ret = float32_to_float64(t0, &env->fp_status);
580 update_fpscr(GETPC());
581 return ret;
584 float32 helper_fcnvds_DT_FT(float64 t0)
586 float32 ret;
587 set_float_exception_flags(0, &env->fp_status);
588 ret = float64_to_float32(t0, &env->fp_status);
589 update_fpscr(GETPC());
590 return ret;
593 float32 helper_fdiv_FT(float32 t0, float32 t1)
595 set_float_exception_flags(0, &env->fp_status);
596 t0 = float32_div(t0, t1, &env->fp_status);
597 update_fpscr(GETPC());
598 return t0;
601 float64 helper_fdiv_DT(float64 t0, float64 t1)
603 set_float_exception_flags(0, &env->fp_status);
604 t0 = float64_div(t0, t1, &env->fp_status);
605 update_fpscr(GETPC());
606 return t0;
609 float32 helper_float_FT(uint32_t t0)
611 float32 ret;
612 set_float_exception_flags(0, &env->fp_status);
613 ret = int32_to_float32(t0, &env->fp_status);
614 update_fpscr(GETPC());
615 return ret;
618 float64 helper_float_DT(uint32_t t0)
620 float64 ret;
621 set_float_exception_flags(0, &env->fp_status);
622 ret = int32_to_float64(t0, &env->fp_status);
623 update_fpscr(GETPC());
624 return ret;
627 float32 helper_fmac_FT(float32 t0, float32 t1, float32 t2)
629 set_float_exception_flags(0, &env->fp_status);
630 t0 = float32_mul(t0, t1, &env->fp_status);
631 t0 = float32_add(t0, t2, &env->fp_status);
632 update_fpscr(GETPC());
633 return t0;
636 float32 helper_fmul_FT(float32 t0, float32 t1)
638 set_float_exception_flags(0, &env->fp_status);
639 t0 = float32_mul(t0, t1, &env->fp_status);
640 update_fpscr(GETPC());
641 return t0;
644 float64 helper_fmul_DT(float64 t0, float64 t1)
646 set_float_exception_flags(0, &env->fp_status);
647 t0 = float64_mul(t0, t1, &env->fp_status);
648 update_fpscr(GETPC());
649 return t0;
652 float32 helper_fneg_T(float32 t0)
654 return float32_chs(t0);
657 float32 helper_fsqrt_FT(float32 t0)
659 set_float_exception_flags(0, &env->fp_status);
660 t0 = float32_sqrt(t0, &env->fp_status);
661 update_fpscr(GETPC());
662 return t0;
665 float64 helper_fsqrt_DT(float64 t0)
667 set_float_exception_flags(0, &env->fp_status);
668 t0 = float64_sqrt(t0, &env->fp_status);
669 update_fpscr(GETPC());
670 return t0;
673 float32 helper_fsub_FT(float32 t0, float32 t1)
675 set_float_exception_flags(0, &env->fp_status);
676 t0 = float32_sub(t0, t1, &env->fp_status);
677 update_fpscr(GETPC());
678 return t0;
681 float64 helper_fsub_DT(float64 t0, float64 t1)
683 set_float_exception_flags(0, &env->fp_status);
684 t0 = float64_sub(t0, t1, &env->fp_status);
685 update_fpscr(GETPC());
686 return t0;
689 uint32_t helper_ftrc_FT(float32 t0)
691 uint32_t ret;
692 set_float_exception_flags(0, &env->fp_status);
693 ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
694 update_fpscr(GETPC());
695 return ret;
698 uint32_t helper_ftrc_DT(float64 t0)
700 uint32_t ret;
701 set_float_exception_flags(0, &env->fp_status);
702 ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
703 update_fpscr(GETPC());
704 return ret;
707 void helper_fipr(uint32_t m, uint32_t n)
709 int bank, i;
710 float32 r, p;
712 bank = (env->sr & FPSCR_FR) ? 16 : 0;
713 r = float32_zero;
714 set_float_exception_flags(0, &env->fp_status);
716 for (i = 0 ; i < 4 ; i++) {
717 p = float32_mul(env->fregs[bank + m + i],
718 env->fregs[bank + n + i],
719 &env->fp_status);
720 r = float32_add(r, p, &env->fp_status);
722 update_fpscr(GETPC());
724 env->fregs[bank + n + 3] = r;
727 void helper_ftrv(uint32_t n)
729 int bank_matrix, bank_vector;
730 int i, j;
731 float32 r[4];
732 float32 p;
734 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
735 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
736 set_float_exception_flags(0, &env->fp_status);
737 for (i = 0 ; i < 4 ; i++) {
738 r[i] = float32_zero;
739 for (j = 0 ; j < 4 ; j++) {
740 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
741 env->fregs[bank_vector + j],
742 &env->fp_status);
743 r[i] = float32_add(r[i], p, &env->fp_status);
746 update_fpscr(GETPC());
748 for (i = 0 ; i < 4 ; i++) {
749 env->fregs[bank_vector + i] = r[i];