event_notifier: remove event_notifier_test
[qemu-kvm.git] / fpu / softfloat-specialize.h
blob490245004fa0baf2ced09105ecdbaa2e997067b7
1 /*
2 * QEMU float support
4 * Derived from SoftFloat.
5 */
7 /*============================================================================
9 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
10 Arithmetic Package, Release 2b.
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
36 =============================================================================*/
38 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
39 #define SNAN_BIT_IS_ONE 1
40 #else
41 #define SNAN_BIT_IS_ONE 0
42 #endif
44 /*----------------------------------------------------------------------------
45 | The pattern for a default generated half-precision NaN.
46 *----------------------------------------------------------------------------*/
47 #if defined(TARGET_ARM)
48 const float16 float16_default_nan = const_float16(0x7E00);
49 #elif SNAN_BIT_IS_ONE
50 const float16 float16_default_nan = const_float16(0x7DFF);
51 #else
52 const float16 float16_default_nan = const_float16(0xFE00);
53 #endif
55 /*----------------------------------------------------------------------------
56 | The pattern for a default generated single-precision NaN.
57 *----------------------------------------------------------------------------*/
58 #if defined(TARGET_SPARC)
59 const float32 float32_default_nan = const_float32(0x7FFFFFFF);
60 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
61 const float32 float32_default_nan = const_float32(0x7FC00000);
62 #elif SNAN_BIT_IS_ONE
63 const float32 float32_default_nan = const_float32(0x7FBFFFFF);
64 #else
65 const float32 float32_default_nan = const_float32(0xFFC00000);
66 #endif
68 /*----------------------------------------------------------------------------
69 | The pattern for a default generated double-precision NaN.
70 *----------------------------------------------------------------------------*/
71 #if defined(TARGET_SPARC)
72 const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
73 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
74 const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
75 #elif SNAN_BIT_IS_ONE
76 const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
77 #else
78 const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
79 #endif
81 /*----------------------------------------------------------------------------
82 | The pattern for a default generated extended double-precision NaN.
83 *----------------------------------------------------------------------------*/
84 #if SNAN_BIT_IS_ONE
85 #define floatx80_default_nan_high 0x7FFF
86 #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
87 #else
88 #define floatx80_default_nan_high 0xFFFF
89 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
90 #endif
92 const floatx80 floatx80_default_nan
93 = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
95 /*----------------------------------------------------------------------------
96 | The pattern for a default generated quadruple-precision NaN. The `high' and
97 | `low' values hold the most- and least-significant bits, respectively.
98 *----------------------------------------------------------------------------*/
99 #if SNAN_BIT_IS_ONE
100 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
101 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
102 #else
103 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
104 #define float128_default_nan_low LIT64( 0x0000000000000000 )
105 #endif
107 const float128 float128_default_nan
108 = make_float128_init(float128_default_nan_high, float128_default_nan_low);
110 /*----------------------------------------------------------------------------
111 | Raises the exceptions specified by `flags'. Floating-point traps can be
112 | defined here if desired. It is currently not possible for such a trap
113 | to substitute a result value. If traps are not implemented, this routine
114 | should be simply `float_exception_flags |= flags;'.
115 *----------------------------------------------------------------------------*/
117 void float_raise( int8 flags STATUS_PARAM )
119 STATUS(float_exception_flags) |= flags;
122 /*----------------------------------------------------------------------------
123 | Internal canonical NaN format.
124 *----------------------------------------------------------------------------*/
125 typedef struct {
126 flag sign;
127 uint64_t high, low;
128 } commonNaNT;
130 /*----------------------------------------------------------------------------
131 | Returns 1 if the half-precision floating-point value `a' is a quiet
132 | NaN; otherwise returns 0.
133 *----------------------------------------------------------------------------*/
135 int float16_is_quiet_nan(float16 a_)
137 uint16_t a = float16_val(a_);
138 #if SNAN_BIT_IS_ONE
139 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
140 #else
141 return ((a & ~0x8000) >= 0x7c80);
142 #endif
145 /*----------------------------------------------------------------------------
146 | Returns 1 if the half-precision floating-point value `a' is a signaling
147 | NaN; otherwise returns 0.
148 *----------------------------------------------------------------------------*/
150 int float16_is_signaling_nan(float16 a_)
152 uint16_t a = float16_val(a_);
153 #if SNAN_BIT_IS_ONE
154 return ((a & ~0x8000) >= 0x7c80);
155 #else
156 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
157 #endif
160 /*----------------------------------------------------------------------------
161 | Returns a quiet NaN if the half-precision floating point value `a' is a
162 | signaling NaN; otherwise returns `a'.
163 *----------------------------------------------------------------------------*/
164 float16 float16_maybe_silence_nan(float16 a_)
166 if (float16_is_signaling_nan(a_)) {
167 #if SNAN_BIT_IS_ONE
168 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
169 return float16_default_nan;
170 # else
171 # error Rules for silencing a signaling NaN are target-specific
172 # endif
173 #else
174 uint16_t a = float16_val(a_);
175 a |= (1 << 9);
176 return make_float16(a);
177 #endif
179 return a_;
182 /*----------------------------------------------------------------------------
183 | Returns the result of converting the half-precision floating-point NaN
184 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
185 | exception is raised.
186 *----------------------------------------------------------------------------*/
188 static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
190 commonNaNT z;
192 if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
193 z.sign = float16_val(a) >> 15;
194 z.low = 0;
195 z.high = ((uint64_t) float16_val(a))<<54;
196 return z;
199 /*----------------------------------------------------------------------------
200 | Returns the result of converting the canonical NaN `a' to the half-
201 | precision floating-point format.
202 *----------------------------------------------------------------------------*/
204 static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
206 uint16_t mantissa = a.high>>54;
208 if (STATUS(default_nan_mode)) {
209 return float16_default_nan;
212 if (mantissa) {
213 return make_float16(((((uint16_t) a.sign) << 15)
214 | (0x1F << 10) | mantissa));
215 } else {
216 return float16_default_nan;
220 /*----------------------------------------------------------------------------
221 | Returns 1 if the single-precision floating-point value `a' is a quiet
222 | NaN; otherwise returns 0.
223 *----------------------------------------------------------------------------*/
225 int float32_is_quiet_nan( float32 a_ )
227 uint32_t a = float32_val(a_);
228 #if SNAN_BIT_IS_ONE
229 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
230 #else
231 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
232 #endif
235 /*----------------------------------------------------------------------------
236 | Returns 1 if the single-precision floating-point value `a' is a signaling
237 | NaN; otherwise returns 0.
238 *----------------------------------------------------------------------------*/
240 int float32_is_signaling_nan( float32 a_ )
242 uint32_t a = float32_val(a_);
243 #if SNAN_BIT_IS_ONE
244 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
245 #else
246 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
247 #endif
250 /*----------------------------------------------------------------------------
251 | Returns a quiet NaN if the single-precision floating point value `a' is a
252 | signaling NaN; otherwise returns `a'.
253 *----------------------------------------------------------------------------*/
255 float32 float32_maybe_silence_nan( float32 a_ )
257 if (float32_is_signaling_nan(a_)) {
258 #if SNAN_BIT_IS_ONE
259 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
260 return float32_default_nan;
261 # else
262 # error Rules for silencing a signaling NaN are target-specific
263 # endif
264 #else
265 uint32_t a = float32_val(a_);
266 a |= (1 << 22);
267 return make_float32(a);
268 #endif
270 return a_;
273 /*----------------------------------------------------------------------------
274 | Returns the result of converting the single-precision floating-point NaN
275 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
276 | exception is raised.
277 *----------------------------------------------------------------------------*/
279 static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
281 commonNaNT z;
283 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
284 z.sign = float32_val(a)>>31;
285 z.low = 0;
286 z.high = ( (uint64_t) float32_val(a) )<<41;
287 return z;
290 /*----------------------------------------------------------------------------
291 | Returns the result of converting the canonical NaN `a' to the single-
292 | precision floating-point format.
293 *----------------------------------------------------------------------------*/
295 static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
297 uint32_t mantissa = a.high>>41;
299 if ( STATUS(default_nan_mode) ) {
300 return float32_default_nan;
303 if ( mantissa )
304 return make_float32(
305 ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
306 else
307 return float32_default_nan;
310 /*----------------------------------------------------------------------------
311 | Select which NaN to propagate for a two-input operation.
312 | IEEE754 doesn't specify all the details of this, so the
313 | algorithm is target-specific.
314 | The routine is passed various bits of information about the
315 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
316 | Note that signalling NaNs are always squashed to quiet NaNs
317 | by the caller, by calling floatXX_maybe_silence_nan() before
318 | returning them.
320 | aIsLargerSignificand is only valid if both a and b are NaNs
321 | of some kind, and is true if a has the larger significand,
322 | or if both a and b have the same significand but a is
323 | positive but b is negative. It is only needed for the x87
324 | tie-break rule.
325 *----------------------------------------------------------------------------*/
327 #if defined(TARGET_ARM)
328 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
329 flag aIsLargerSignificand)
331 /* ARM mandated NaN propagation rules: take the first of:
332 * 1. A if it is signaling
333 * 2. B if it is signaling
334 * 3. A (quiet)
335 * 4. B (quiet)
336 * A signaling NaN is always quietened before returning it.
338 if (aIsSNaN) {
339 return 0;
340 } else if (bIsSNaN) {
341 return 1;
342 } else if (aIsQNaN) {
343 return 0;
344 } else {
345 return 1;
348 #elif defined(TARGET_MIPS)
349 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
350 flag aIsLargerSignificand)
352 /* According to MIPS specifications, if one of the two operands is
353 * a sNaN, a new qNaN has to be generated. This is done in
354 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
355 * says: "When possible, this QNaN result is one of the operand QNaN
356 * values." In practice it seems that most implementations choose
357 * the first operand if both operands are qNaN. In short this gives
358 * the following rules:
359 * 1. A if it is signaling
360 * 2. B if it is signaling
361 * 3. A (quiet)
362 * 4. B (quiet)
363 * A signaling NaN is always silenced before returning it.
365 if (aIsSNaN) {
366 return 0;
367 } else if (bIsSNaN) {
368 return 1;
369 } else if (aIsQNaN) {
370 return 0;
371 } else {
372 return 1;
375 #elif defined(TARGET_PPC)
376 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
377 flag aIsLargerSignificand)
379 /* PowerPC propagation rules:
380 * 1. A if it sNaN or qNaN
381 * 2. B if it sNaN or qNaN
382 * A signaling NaN is always silenced before returning it.
384 if (aIsSNaN || aIsQNaN) {
385 return 0;
386 } else {
387 return 1;
390 #else
391 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
392 flag aIsLargerSignificand)
394 /* This implements x87 NaN propagation rules:
395 * SNaN + QNaN => return the QNaN
396 * two SNaNs => return the one with the larger significand, silenced
397 * two QNaNs => return the one with the larger significand
398 * SNaN and a non-NaN => return the SNaN, silenced
399 * QNaN and a non-NaN => return the QNaN
401 * If we get down to comparing significands and they are the same,
402 * return the NaN with the positive sign bit (if any).
404 if (aIsSNaN) {
405 if (bIsSNaN) {
406 return aIsLargerSignificand ? 0 : 1;
408 return bIsQNaN ? 1 : 0;
410 else if (aIsQNaN) {
411 if (bIsSNaN || !bIsQNaN)
412 return 0;
413 else {
414 return aIsLargerSignificand ? 0 : 1;
416 } else {
417 return 1;
420 #endif
422 /*----------------------------------------------------------------------------
423 | Select which NaN to propagate for a three-input operation.
424 | For the moment we assume that no CPU needs the 'larger significand'
425 | information.
426 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
427 *----------------------------------------------------------------------------*/
428 #if defined(TARGET_ARM)
429 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
430 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
432 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
433 * the default NaN
435 if (infzero && cIsQNaN) {
436 float_raise(float_flag_invalid STATUS_VAR);
437 return 3;
440 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
441 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
443 if (cIsSNaN) {
444 return 2;
445 } else if (aIsSNaN) {
446 return 0;
447 } else if (bIsSNaN) {
448 return 1;
449 } else if (cIsQNaN) {
450 return 2;
451 } else if (aIsQNaN) {
452 return 0;
453 } else {
454 return 1;
457 #elif defined(TARGET_PPC)
458 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
459 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
461 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
462 * to return an input NaN if we have one (ie c) rather than generating
463 * a default NaN
465 if (infzero) {
466 float_raise(float_flag_invalid STATUS_VAR);
467 return 2;
470 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
471 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
473 if (aIsSNaN || aIsQNaN) {
474 return 0;
475 } else if (cIsSNaN || cIsQNaN) {
476 return 2;
477 } else {
478 return 1;
481 #else
482 /* A default implementation: prefer a to b to c.
483 * This is unlikely to actually match any real implementation.
485 static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
486 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
488 if (aIsSNaN || aIsQNaN) {
489 return 0;
490 } else if (bIsSNaN || bIsQNaN) {
491 return 1;
492 } else {
493 return 2;
496 #endif
498 /*----------------------------------------------------------------------------
499 | Takes two single-precision floating-point values `a' and `b', one of which
500 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
501 | signaling NaN, the invalid exception is raised.
502 *----------------------------------------------------------------------------*/
504 static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
506 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
507 flag aIsLargerSignificand;
508 uint32_t av, bv;
510 aIsQuietNaN = float32_is_quiet_nan( a );
511 aIsSignalingNaN = float32_is_signaling_nan( a );
512 bIsQuietNaN = float32_is_quiet_nan( b );
513 bIsSignalingNaN = float32_is_signaling_nan( b );
514 av = float32_val(a);
515 bv = float32_val(b);
517 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
519 if ( STATUS(default_nan_mode) )
520 return float32_default_nan;
522 if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
523 aIsLargerSignificand = 0;
524 } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
525 aIsLargerSignificand = 1;
526 } else {
527 aIsLargerSignificand = (av < bv) ? 1 : 0;
530 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
531 aIsLargerSignificand)) {
532 return float32_maybe_silence_nan(b);
533 } else {
534 return float32_maybe_silence_nan(a);
538 /*----------------------------------------------------------------------------
539 | Takes three single-precision floating-point values `a', `b' and `c', one of
540 | which is a NaN, and returns the appropriate NaN result. If any of `a',
541 | `b' or `c' is a signaling NaN, the invalid exception is raised.
542 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
543 | obviously c is a NaN, and whether to propagate c or some other NaN is
544 | implementation defined).
545 *----------------------------------------------------------------------------*/
547 static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
548 float32 c, flag infzero STATUS_PARAM)
550 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
551 cIsQuietNaN, cIsSignalingNaN;
552 int which;
554 aIsQuietNaN = float32_is_quiet_nan(a);
555 aIsSignalingNaN = float32_is_signaling_nan(a);
556 bIsQuietNaN = float32_is_quiet_nan(b);
557 bIsSignalingNaN = float32_is_signaling_nan(b);
558 cIsQuietNaN = float32_is_quiet_nan(c);
559 cIsSignalingNaN = float32_is_signaling_nan(c);
561 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
562 float_raise(float_flag_invalid STATUS_VAR);
565 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
566 bIsQuietNaN, bIsSignalingNaN,
567 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
569 if (STATUS(default_nan_mode)) {
570 /* Note that this check is after pickNaNMulAdd so that function
571 * has an opportunity to set the Invalid flag.
573 return float32_default_nan;
576 switch (which) {
577 case 0:
578 return float32_maybe_silence_nan(a);
579 case 1:
580 return float32_maybe_silence_nan(b);
581 case 2:
582 return float32_maybe_silence_nan(c);
583 case 3:
584 default:
585 return float32_default_nan;
589 /*----------------------------------------------------------------------------
590 | Returns 1 if the double-precision floating-point value `a' is a quiet
591 | NaN; otherwise returns 0.
592 *----------------------------------------------------------------------------*/
594 int float64_is_quiet_nan( float64 a_ )
596 uint64_t a = float64_val(a_);
597 #if SNAN_BIT_IS_ONE
598 return
599 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
600 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
601 #else
602 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
603 #endif
606 /*----------------------------------------------------------------------------
607 | Returns 1 if the double-precision floating-point value `a' is a signaling
608 | NaN; otherwise returns 0.
609 *----------------------------------------------------------------------------*/
611 int float64_is_signaling_nan( float64 a_ )
613 uint64_t a = float64_val(a_);
614 #if SNAN_BIT_IS_ONE
615 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
616 #else
617 return
618 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
619 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
620 #endif
623 /*----------------------------------------------------------------------------
624 | Returns a quiet NaN if the double-precision floating point value `a' is a
625 | signaling NaN; otherwise returns `a'.
626 *----------------------------------------------------------------------------*/
628 float64 float64_maybe_silence_nan( float64 a_ )
630 if (float64_is_signaling_nan(a_)) {
631 #if SNAN_BIT_IS_ONE
632 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
633 return float64_default_nan;
634 # else
635 # error Rules for silencing a signaling NaN are target-specific
636 # endif
637 #else
638 uint64_t a = float64_val(a_);
639 a |= LIT64( 0x0008000000000000 );
640 return make_float64(a);
641 #endif
643 return a_;
646 /*----------------------------------------------------------------------------
647 | Returns the result of converting the double-precision floating-point NaN
648 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
649 | exception is raised.
650 *----------------------------------------------------------------------------*/
652 static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
654 commonNaNT z;
656 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
657 z.sign = float64_val(a)>>63;
658 z.low = 0;
659 z.high = float64_val(a)<<12;
660 return z;
663 /*----------------------------------------------------------------------------
664 | Returns the result of converting the canonical NaN `a' to the double-
665 | precision floating-point format.
666 *----------------------------------------------------------------------------*/
668 static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
670 uint64_t mantissa = a.high>>12;
672 if ( STATUS(default_nan_mode) ) {
673 return float64_default_nan;
676 if ( mantissa )
677 return make_float64(
678 ( ( (uint64_t) a.sign )<<63 )
679 | LIT64( 0x7FF0000000000000 )
680 | ( a.high>>12 ));
681 else
682 return float64_default_nan;
685 /*----------------------------------------------------------------------------
686 | Takes two double-precision floating-point values `a' and `b', one of which
687 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
688 | signaling NaN, the invalid exception is raised.
689 *----------------------------------------------------------------------------*/
691 static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
693 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
694 flag aIsLargerSignificand;
695 uint64_t av, bv;
697 aIsQuietNaN = float64_is_quiet_nan( a );
698 aIsSignalingNaN = float64_is_signaling_nan( a );
699 bIsQuietNaN = float64_is_quiet_nan( b );
700 bIsSignalingNaN = float64_is_signaling_nan( b );
701 av = float64_val(a);
702 bv = float64_val(b);
704 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
706 if ( STATUS(default_nan_mode) )
707 return float64_default_nan;
709 if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
710 aIsLargerSignificand = 0;
711 } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
712 aIsLargerSignificand = 1;
713 } else {
714 aIsLargerSignificand = (av < bv) ? 1 : 0;
717 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
718 aIsLargerSignificand)) {
719 return float64_maybe_silence_nan(b);
720 } else {
721 return float64_maybe_silence_nan(a);
725 /*----------------------------------------------------------------------------
726 | Takes three double-precision floating-point values `a', `b' and `c', one of
727 | which is a NaN, and returns the appropriate NaN result. If any of `a',
728 | `b' or `c' is a signaling NaN, the invalid exception is raised.
729 | The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
730 | obviously c is a NaN, and whether to propagate c or some other NaN is
731 | implementation defined).
732 *----------------------------------------------------------------------------*/
734 static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
735 float64 c, flag infzero STATUS_PARAM)
737 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
738 cIsQuietNaN, cIsSignalingNaN;
739 int which;
741 aIsQuietNaN = float64_is_quiet_nan(a);
742 aIsSignalingNaN = float64_is_signaling_nan(a);
743 bIsQuietNaN = float64_is_quiet_nan(b);
744 bIsSignalingNaN = float64_is_signaling_nan(b);
745 cIsQuietNaN = float64_is_quiet_nan(c);
746 cIsSignalingNaN = float64_is_signaling_nan(c);
748 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
749 float_raise(float_flag_invalid STATUS_VAR);
752 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
753 bIsQuietNaN, bIsSignalingNaN,
754 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
756 if (STATUS(default_nan_mode)) {
757 /* Note that this check is after pickNaNMulAdd so that function
758 * has an opportunity to set the Invalid flag.
760 return float64_default_nan;
763 switch (which) {
764 case 0:
765 return float64_maybe_silence_nan(a);
766 case 1:
767 return float64_maybe_silence_nan(b);
768 case 2:
769 return float64_maybe_silence_nan(c);
770 case 3:
771 default:
772 return float64_default_nan;
776 /*----------------------------------------------------------------------------
777 | Returns 1 if the extended double-precision floating-point value `a' is a
778 | quiet NaN; otherwise returns 0. This slightly differs from the same
779 | function for other types as floatx80 has an explicit bit.
780 *----------------------------------------------------------------------------*/
782 int floatx80_is_quiet_nan( floatx80 a )
784 #if SNAN_BIT_IS_ONE
785 uint64_t aLow;
787 aLow = a.low & ~ LIT64( 0x4000000000000000 );
788 return
789 ( ( a.high & 0x7FFF ) == 0x7FFF )
790 && (uint64_t) ( aLow<<1 )
791 && ( a.low == aLow );
792 #else
793 return ( ( a.high & 0x7FFF ) == 0x7FFF )
794 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
795 #endif
798 /*----------------------------------------------------------------------------
799 | Returns 1 if the extended double-precision floating-point value `a' is a
800 | signaling NaN; otherwise returns 0. This slightly differs from the same
801 | function for other types as floatx80 has an explicit bit.
802 *----------------------------------------------------------------------------*/
804 int floatx80_is_signaling_nan( floatx80 a )
806 #if SNAN_BIT_IS_ONE
807 return ( ( a.high & 0x7FFF ) == 0x7FFF )
808 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
809 #else
810 uint64_t aLow;
812 aLow = a.low & ~ LIT64( 0x4000000000000000 );
813 return
814 ( ( a.high & 0x7FFF ) == 0x7FFF )
815 && (uint64_t) ( aLow<<1 )
816 && ( a.low == aLow );
817 #endif
820 /*----------------------------------------------------------------------------
821 | Returns a quiet NaN if the extended double-precision floating point value
822 | `a' is a signaling NaN; otherwise returns `a'.
823 *----------------------------------------------------------------------------*/
825 floatx80 floatx80_maybe_silence_nan( floatx80 a )
827 if (floatx80_is_signaling_nan(a)) {
828 #if SNAN_BIT_IS_ONE
829 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
830 a.low = floatx80_default_nan_low;
831 a.high = floatx80_default_nan_high;
832 # else
833 # error Rules for silencing a signaling NaN are target-specific
834 # endif
835 #else
836 a.low |= LIT64( 0xC000000000000000 );
837 return a;
838 #endif
840 return a;
843 /*----------------------------------------------------------------------------
844 | Returns the result of converting the extended double-precision floating-
845 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
846 | invalid exception is raised.
847 *----------------------------------------------------------------------------*/
849 static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
851 commonNaNT z;
853 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
854 if ( a.low >> 63 ) {
855 z.sign = a.high >> 15;
856 z.low = 0;
857 z.high = a.low << 1;
858 } else {
859 z.sign = floatx80_default_nan_high >> 15;
860 z.low = 0;
861 z.high = floatx80_default_nan_low << 1;
863 return z;
866 /*----------------------------------------------------------------------------
867 | Returns the result of converting the canonical NaN `a' to the extended
868 | double-precision floating-point format.
869 *----------------------------------------------------------------------------*/
871 static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
873 floatx80 z;
875 if ( STATUS(default_nan_mode) ) {
876 z.low = floatx80_default_nan_low;
877 z.high = floatx80_default_nan_high;
878 return z;
881 if (a.high >> 1) {
882 z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
883 z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
884 } else {
885 z.low = floatx80_default_nan_low;
886 z.high = floatx80_default_nan_high;
889 return z;
892 /*----------------------------------------------------------------------------
893 | Takes two extended double-precision floating-point values `a' and `b', one
894 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
895 | `b' is a signaling NaN, the invalid exception is raised.
896 *----------------------------------------------------------------------------*/
898 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
900 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
901 flag aIsLargerSignificand;
903 aIsQuietNaN = floatx80_is_quiet_nan( a );
904 aIsSignalingNaN = floatx80_is_signaling_nan( a );
905 bIsQuietNaN = floatx80_is_quiet_nan( b );
906 bIsSignalingNaN = floatx80_is_signaling_nan( b );
908 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
910 if ( STATUS(default_nan_mode) ) {
911 a.low = floatx80_default_nan_low;
912 a.high = floatx80_default_nan_high;
913 return a;
916 if (a.low < b.low) {
917 aIsLargerSignificand = 0;
918 } else if (b.low < a.low) {
919 aIsLargerSignificand = 1;
920 } else {
921 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
924 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
925 aIsLargerSignificand)) {
926 return floatx80_maybe_silence_nan(b);
927 } else {
928 return floatx80_maybe_silence_nan(a);
932 /*----------------------------------------------------------------------------
933 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
934 | NaN; otherwise returns 0.
935 *----------------------------------------------------------------------------*/
937 int float128_is_quiet_nan( float128 a )
939 #if SNAN_BIT_IS_ONE
940 return
941 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
942 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
943 #else
944 return
945 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
946 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
947 #endif
950 /*----------------------------------------------------------------------------
951 | Returns 1 if the quadruple-precision floating-point value `a' is a
952 | signaling NaN; otherwise returns 0.
953 *----------------------------------------------------------------------------*/
955 int float128_is_signaling_nan( float128 a )
957 #if SNAN_BIT_IS_ONE
958 return
959 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
960 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
961 #else
962 return
963 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
964 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
965 #endif
968 /*----------------------------------------------------------------------------
969 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
970 | a signaling NaN; otherwise returns `a'.
971 *----------------------------------------------------------------------------*/
973 float128 float128_maybe_silence_nan( float128 a )
975 if (float128_is_signaling_nan(a)) {
976 #if SNAN_BIT_IS_ONE
977 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
978 a.low = float128_default_nan_low;
979 a.high = float128_default_nan_high;
980 # else
981 # error Rules for silencing a signaling NaN are target-specific
982 # endif
983 #else
984 a.high |= LIT64( 0x0000800000000000 );
985 return a;
986 #endif
988 return a;
991 /*----------------------------------------------------------------------------
992 | Returns the result of converting the quadruple-precision floating-point NaN
993 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
994 | exception is raised.
995 *----------------------------------------------------------------------------*/
997 static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
999 commonNaNT z;
1001 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
1002 z.sign = a.high>>63;
1003 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
1004 return z;
1007 /*----------------------------------------------------------------------------
1008 | Returns the result of converting the canonical NaN `a' to the quadruple-
1009 | precision floating-point format.
1010 *----------------------------------------------------------------------------*/
1012 static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
1014 float128 z;
1016 if ( STATUS(default_nan_mode) ) {
1017 z.low = float128_default_nan_low;
1018 z.high = float128_default_nan_high;
1019 return z;
1022 shift128Right( a.high, a.low, 16, &z.high, &z.low );
1023 z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
1024 return z;
1027 /*----------------------------------------------------------------------------
1028 | Takes two quadruple-precision floating-point values `a' and `b', one of
1029 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1030 | `b' is a signaling NaN, the invalid exception is raised.
1031 *----------------------------------------------------------------------------*/
1033 static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
1035 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1036 flag aIsLargerSignificand;
1038 aIsQuietNaN = float128_is_quiet_nan( a );
1039 aIsSignalingNaN = float128_is_signaling_nan( a );
1040 bIsQuietNaN = float128_is_quiet_nan( b );
1041 bIsSignalingNaN = float128_is_signaling_nan( b );
1043 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
1045 if ( STATUS(default_nan_mode) ) {
1046 a.low = float128_default_nan_low;
1047 a.high = float128_default_nan_high;
1048 return a;
1051 if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
1052 aIsLargerSignificand = 0;
1053 } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
1054 aIsLargerSignificand = 1;
1055 } else {
1056 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1059 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1060 aIsLargerSignificand)) {
1061 return float128_maybe_silence_nan(b);
1062 } else {
1063 return float128_maybe_silence_nan(a);