exec_close(): return -errno on errors (v2)
[qemu-kvm.git] / hw / mips_malta.c
blobbb497495695810e14aed15cd9dbb068e480085d8
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "arch_init.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
48 #include "blockdev.h"
49 #include "exec-memory.h"
51 //#define DEBUG_BOARD_INIT
53 #define ENVP_ADDR 0x80002000l
54 #define ENVP_NB_ENTRIES 16
55 #define ENVP_ENTRY_SIZE 256
57 #define MAX_IDE_BUS 2
59 typedef struct {
60 MemoryRegion iomem;
61 MemoryRegion iomem_lo; /* 0 - 0x900 */
62 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
63 uint32_t leds;
64 uint32_t brk;
65 uint32_t gpout;
66 uint32_t i2cin;
67 uint32_t i2coe;
68 uint32_t i2cout;
69 uint32_t i2csel;
70 CharDriverState *display;
71 char display_text[9];
72 SerialState *uart;
73 } MaltaFPGAState;
75 static ISADevice *pit;
77 static struct _loaderparams {
78 int ram_size;
79 const char *kernel_filename;
80 const char *kernel_cmdline;
81 const char *initrd_filename;
82 } loaderparams;
84 /* Malta FPGA */
85 static void malta_fpga_update_display(void *opaque)
87 char leds_text[9];
88 int i;
89 MaltaFPGAState *s = opaque;
91 for (i = 7 ; i >= 0 ; i--) {
92 if (s->leds & (1 << i))
93 leds_text[i] = '#';
94 else
95 leds_text[i] = ' ';
97 leds_text[8] = '\0';
99 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
100 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
104 * EEPROM 24C01 / 24C02 emulation.
106 * Emulation for serial EEPROMs:
107 * 24C01 - 1024 bit (128 x 8)
108 * 24C02 - 2048 bit (256 x 8)
110 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
113 //~ #define DEBUG
115 #if defined(DEBUG)
116 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
117 #else
118 # define logout(fmt, ...) ((void)0)
119 #endif
121 struct _eeprom24c0x_t {
122 uint8_t tick;
123 uint8_t address;
124 uint8_t command;
125 uint8_t ack;
126 uint8_t scl;
127 uint8_t sda;
128 uint8_t data;
129 //~ uint16_t size;
130 uint8_t contents[256];
133 typedef struct _eeprom24c0x_t eeprom24c0x_t;
135 static eeprom24c0x_t eeprom = {
136 .contents = {
137 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
138 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
139 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
140 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
141 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
142 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
145 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
156 static uint8_t eeprom24c0x_read(void)
158 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
159 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
160 return eeprom.sda;
163 static void eeprom24c0x_write(int scl, int sda)
165 if (eeprom.scl && scl && (eeprom.sda != sda)) {
166 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
167 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
168 if (!sda) {
169 eeprom.tick = 1;
170 eeprom.command = 0;
172 } else if (eeprom.tick == 0 && !eeprom.ack) {
173 /* Waiting for start. */
174 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
175 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
176 } else if (!eeprom.scl && scl) {
177 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
178 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
179 if (eeprom.ack) {
180 logout("\ti2c ack bit = 0\n");
181 sda = 0;
182 eeprom.ack = 0;
183 } else if (eeprom.sda == sda) {
184 uint8_t bit = (sda != 0);
185 logout("\ti2c bit = %d\n", bit);
186 if (eeprom.tick < 9) {
187 eeprom.command <<= 1;
188 eeprom.command += bit;
189 eeprom.tick++;
190 if (eeprom.tick == 9) {
191 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
192 eeprom.ack = 1;
194 } else if (eeprom.tick < 17) {
195 if (eeprom.command & 1) {
196 sda = ((eeprom.data & 0x80) != 0);
198 eeprom.address <<= 1;
199 eeprom.address += bit;
200 eeprom.tick++;
201 eeprom.data <<= 1;
202 if (eeprom.tick == 17) {
203 eeprom.data = eeprom.contents[eeprom.address];
204 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
205 eeprom.ack = 1;
206 eeprom.tick = 0;
208 } else if (eeprom.tick >= 17) {
209 sda = 0;
211 } else {
212 logout("\tsda changed with raising scl\n");
214 } else {
215 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
217 eeprom.scl = scl;
218 eeprom.sda = sda;
221 static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr,
222 unsigned size)
224 MaltaFPGAState *s = opaque;
225 uint32_t val = 0;
226 uint32_t saddr;
228 saddr = (addr & 0xfffff);
230 switch (saddr) {
232 /* SWITCH Register */
233 case 0x00200:
234 val = 0x00000000; /* All switches closed */
235 break;
237 /* STATUS Register */
238 case 0x00208:
239 #ifdef TARGET_WORDS_BIGENDIAN
240 val = 0x00000012;
241 #else
242 val = 0x00000010;
243 #endif
244 break;
246 /* JMPRS Register */
247 case 0x00210:
248 val = 0x00;
249 break;
251 /* LEDBAR Register */
252 case 0x00408:
253 val = s->leds;
254 break;
256 /* BRKRES Register */
257 case 0x00508:
258 val = s->brk;
259 break;
261 /* UART Registers are handled directly by the serial device */
263 /* GPOUT Register */
264 case 0x00a00:
265 val = s->gpout;
266 break;
268 /* XXX: implement a real I2C controller */
270 /* GPINP Register */
271 case 0x00a08:
272 /* IN = OUT until a real I2C control is implemented */
273 if (s->i2csel)
274 val = s->i2cout;
275 else
276 val = 0x00;
277 break;
279 /* I2CINP Register */
280 case 0x00b00:
281 val = ((s->i2cin & ~1) | eeprom24c0x_read());
282 break;
284 /* I2COE Register */
285 case 0x00b08:
286 val = s->i2coe;
287 break;
289 /* I2COUT Register */
290 case 0x00b10:
291 val = s->i2cout;
292 break;
294 /* I2CSEL Register */
295 case 0x00b18:
296 val = s->i2csel;
297 break;
299 default:
300 #if 0
301 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
302 addr);
303 #endif
304 break;
306 return val;
309 static void malta_fpga_write(void *opaque, target_phys_addr_t addr,
310 uint64_t val, unsigned size)
312 MaltaFPGAState *s = opaque;
313 uint32_t saddr;
315 saddr = (addr & 0xfffff);
317 switch (saddr) {
319 /* SWITCH Register */
320 case 0x00200:
321 break;
323 /* JMPRS Register */
324 case 0x00210:
325 break;
327 /* LEDBAR Register */
328 /* XXX: implement a 8-LED array */
329 case 0x00408:
330 s->leds = val & 0xff;
331 break;
333 /* ASCIIWORD Register */
334 case 0x00410:
335 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
336 malta_fpga_update_display(s);
337 break;
339 /* ASCIIPOS0 to ASCIIPOS7 Registers */
340 case 0x00418:
341 case 0x00420:
342 case 0x00428:
343 case 0x00430:
344 case 0x00438:
345 case 0x00440:
346 case 0x00448:
347 case 0x00450:
348 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
349 malta_fpga_update_display(s);
350 break;
352 /* SOFTRES Register */
353 case 0x00500:
354 if (val == 0x42)
355 qemu_system_reset_request ();
356 break;
358 /* BRKRES Register */
359 case 0x00508:
360 s->brk = val & 0xff;
361 break;
363 /* UART Registers are handled directly by the serial device */
365 /* GPOUT Register */
366 case 0x00a00:
367 s->gpout = val & 0xff;
368 break;
370 /* I2COE Register */
371 case 0x00b08:
372 s->i2coe = val & 0x03;
373 break;
375 /* I2COUT Register */
376 case 0x00b10:
377 eeprom24c0x_write(val & 0x02, val & 0x01);
378 s->i2cout = val;
379 break;
381 /* I2CSEL Register */
382 case 0x00b18:
383 s->i2csel = val & 0x01;
384 break;
386 default:
387 #if 0
388 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
389 addr);
390 #endif
391 break;
395 static const MemoryRegionOps malta_fpga_ops = {
396 .read = malta_fpga_read,
397 .write = malta_fpga_write,
398 .endianness = DEVICE_NATIVE_ENDIAN,
401 static void malta_fpga_reset(void *opaque)
403 MaltaFPGAState *s = opaque;
405 s->leds = 0x00;
406 s->brk = 0x0a;
407 s->gpout = 0x00;
408 s->i2cin = 0x3;
409 s->i2coe = 0x0;
410 s->i2cout = 0x3;
411 s->i2csel = 0x1;
413 s->display_text[8] = '\0';
414 snprintf(s->display_text, 9, " ");
417 static void malta_fpga_led_init(CharDriverState *chr)
419 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
420 qemu_chr_fe_printf(chr, "+--------+\r\n");
421 qemu_chr_fe_printf(chr, "+ +\r\n");
422 qemu_chr_fe_printf(chr, "+--------+\r\n");
423 qemu_chr_fe_printf(chr, "\n");
424 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
425 qemu_chr_fe_printf(chr, "+--------+\r\n");
426 qemu_chr_fe_printf(chr, "+ +\r\n");
427 qemu_chr_fe_printf(chr, "+--------+\r\n");
430 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
431 target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
433 MaltaFPGAState *s;
435 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
437 memory_region_init_io(&s->iomem, &malta_fpga_ops, s,
438 "malta-fpga", 0x100000);
439 memory_region_init_alias(&s->iomem_lo, "malta-fpga",
440 &s->iomem, 0, 0x900);
441 memory_region_init_alias(&s->iomem_hi, "malta-fpga",
442 &s->iomem, 0xa00, 0x10000-0xa00);
444 memory_region_add_subregion(address_space, base, &s->iomem_lo);
445 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
447 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
449 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
450 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
452 malta_fpga_reset(s);
453 qemu_register_reset(malta_fpga_reset, s);
455 return s;
458 /* Network support */
459 static void network_init(void)
461 int i;
463 for(i = 0; i < nb_nics; i++) {
464 NICInfo *nd = &nd_table[i];
465 const char *default_devaddr = NULL;
467 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
468 /* The malta board has a PCNet card using PCI SLOT 11 */
469 default_devaddr = "0b";
471 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
475 /* ROM and pseudo bootloader
477 The following code implements a very very simple bootloader. It first
478 loads the registers a0 to a3 to the values expected by the OS, and
479 then jump at the kernel address.
481 The bootloader should pass the locations of the kernel arguments and
482 environment variables tables. Those tables contain the 32-bit address
483 of NULL terminated strings. The environment variables table should be
484 terminated by a NULL address.
486 For a simpler implementation, the number of kernel arguments is fixed
487 to two (the name of the kernel and the command line), and the two
488 tables are actually the same one.
490 The registers a0 to a3 should contain the following values:
491 a0 - number of kernel arguments
492 a1 - 32-bit address of the kernel arguments table
493 a2 - 32-bit address of the environment variables table
494 a3 - RAM size in bytes
497 static void write_bootloader (CPUState *env, uint8_t *base,
498 int64_t kernel_entry)
500 uint32_t *p;
502 /* Small bootloader */
503 p = (uint32_t *)base;
504 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
505 stl_raw(p++, 0x00000000); /* nop */
507 /* YAMON service vector */
508 stl_raw(base + 0x500, 0xbfc00580); /* start: */
509 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
510 stl_raw(base + 0x520, 0xbfc00580); /* start: */
511 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
512 stl_raw(base + 0x534, 0xbfc00808); /* print: */
513 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
514 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
515 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
516 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
517 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
518 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
519 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
520 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
523 /* Second part of the bootloader */
524 p = (uint32_t *) (base + 0x580);
525 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
526 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
527 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
528 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
529 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
530 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
531 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
532 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
533 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
535 /* Load BAR registers as done by YAMON */
536 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
538 #ifdef TARGET_WORDS_BIGENDIAN
539 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
540 #else
541 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
542 #endif
543 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
545 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
547 #ifdef TARGET_WORDS_BIGENDIAN
548 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
549 #else
550 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
551 #endif
552 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
553 #ifdef TARGET_WORDS_BIGENDIAN
554 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
555 #else
556 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
557 #endif
558 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
560 #ifdef TARGET_WORDS_BIGENDIAN
561 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
562 #else
563 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
564 #endif
565 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
566 #ifdef TARGET_WORDS_BIGENDIAN
567 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
568 #else
569 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
570 #endif
571 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
573 #ifdef TARGET_WORDS_BIGENDIAN
574 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
575 #else
576 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
577 #endif
578 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
579 #ifdef TARGET_WORDS_BIGENDIAN
580 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
581 #else
582 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
583 #endif
584 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
586 /* Jump to kernel code */
587 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
588 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
589 stl_raw(p++, 0x03e00008); /* jr ra */
590 stl_raw(p++, 0x00000000); /* nop */
592 /* YAMON subroutines */
593 p = (uint32_t *) (base + 0x800);
594 stl_raw(p++, 0x03e00008); /* jr ra */
595 stl_raw(p++, 0x24020000); /* li v0,0 */
596 /* 808 YAMON print */
597 stl_raw(p++, 0x03e06821); /* move t5,ra */
598 stl_raw(p++, 0x00805821); /* move t3,a0 */
599 stl_raw(p++, 0x00a05021); /* move t2,a1 */
600 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
601 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
602 stl_raw(p++, 0x10800005); /* beqz a0,834 */
603 stl_raw(p++, 0x00000000); /* nop */
604 stl_raw(p++, 0x0ff0021c); /* jal 870 */
605 stl_raw(p++, 0x00000000); /* nop */
606 stl_raw(p++, 0x08000205); /* j 814 */
607 stl_raw(p++, 0x00000000); /* nop */
608 stl_raw(p++, 0x01a00008); /* jr t5 */
609 stl_raw(p++, 0x01602021); /* move a0,t3 */
610 /* 0x83c YAMON print_count */
611 stl_raw(p++, 0x03e06821); /* move t5,ra */
612 stl_raw(p++, 0x00805821); /* move t3,a0 */
613 stl_raw(p++, 0x00a05021); /* move t2,a1 */
614 stl_raw(p++, 0x00c06021); /* move t4,a2 */
615 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
616 stl_raw(p++, 0x0ff0021c); /* jal 870 */
617 stl_raw(p++, 0x00000000); /* nop */
618 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
619 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
620 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
621 stl_raw(p++, 0x00000000); /* nop */
622 stl_raw(p++, 0x01a00008); /* jr t5 */
623 stl_raw(p++, 0x01602021); /* move a0,t3 */
624 /* 0x870 */
625 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
626 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
627 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
628 stl_raw(p++, 0x00000000); /* nop */
629 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
630 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
631 stl_raw(p++, 0x00000000); /* nop */
632 stl_raw(p++, 0x03e00008); /* jr ra */
633 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
637 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
638 const char *string, ...)
640 va_list ap;
641 int32_t table_addr;
643 if (index >= ENVP_NB_ENTRIES)
644 return;
646 if (string == NULL) {
647 prom_buf[index] = 0;
648 return;
651 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
652 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
654 va_start(ap, string);
655 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
656 va_end(ap);
659 /* Kernel */
660 static int64_t load_kernel (void)
662 int64_t kernel_entry, kernel_high;
663 long initrd_size;
664 ram_addr_t initrd_offset;
665 int big_endian;
666 uint32_t *prom_buf;
667 long prom_size;
668 int prom_index = 0;
670 #ifdef TARGET_WORDS_BIGENDIAN
671 big_endian = 1;
672 #else
673 big_endian = 0;
674 #endif
676 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
677 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
678 big_endian, ELF_MACHINE, 1) < 0) {
679 fprintf(stderr, "qemu: could not load kernel '%s'\n",
680 loaderparams.kernel_filename);
681 exit(1);
684 /* load initrd */
685 initrd_size = 0;
686 initrd_offset = 0;
687 if (loaderparams.initrd_filename) {
688 initrd_size = get_image_size (loaderparams.initrd_filename);
689 if (initrd_size > 0) {
690 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
691 if (initrd_offset + initrd_size > ram_size) {
692 fprintf(stderr,
693 "qemu: memory too small for initial ram disk '%s'\n",
694 loaderparams.initrd_filename);
695 exit(1);
697 initrd_size = load_image_targphys(loaderparams.initrd_filename,
698 initrd_offset,
699 ram_size - initrd_offset);
701 if (initrd_size == (target_ulong) -1) {
702 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
703 loaderparams.initrd_filename);
704 exit(1);
708 /* Setup prom parameters. */
709 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
710 prom_buf = g_malloc(prom_size);
712 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
713 if (initrd_size > 0) {
714 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
715 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
716 loaderparams.kernel_cmdline);
717 } else {
718 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
721 prom_set(prom_buf, prom_index++, "memsize");
722 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
723 prom_set(prom_buf, prom_index++, "modetty0");
724 prom_set(prom_buf, prom_index++, "38400n8r");
725 prom_set(prom_buf, prom_index++, NULL);
727 rom_add_blob_fixed("prom", prom_buf, prom_size,
728 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
730 return kernel_entry;
733 static void malta_mips_config(CPUState *env)
735 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
736 ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC);
739 static void main_cpu_reset(void *opaque)
741 CPUState *env = opaque;
742 cpu_reset(env);
744 /* The bootloader does not need to be rewritten as it is located in a
745 read only location. The kernel location and the arguments table
746 location does not change. */
747 if (loaderparams.kernel_filename) {
748 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
751 malta_mips_config(env);
754 static void cpu_request_exit(void *opaque, int irq, int level)
756 CPUState *env = cpu_single_env;
758 if (env && level) {
759 cpu_exit(env);
763 static
764 void mips_malta_init (ram_addr_t ram_size,
765 const char *boot_device,
766 const char *kernel_filename, const char *kernel_cmdline,
767 const char *initrd_filename, const char *cpu_model)
769 char *filename;
770 pflash_t *fl;
771 MemoryRegion *system_memory = get_system_memory();
772 MemoryRegion *ram = g_new(MemoryRegion, 1);
773 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
774 target_long bios_size;
775 int64_t kernel_entry;
776 PCIBus *pci_bus;
777 CPUState *env;
778 qemu_irq *i8259 = NULL, *isa_irq;
779 qemu_irq *cpu_exit_irq;
780 int piix4_devfn;
781 i2c_bus *smbus;
782 int i;
783 DriveInfo *dinfo;
784 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
785 DriveInfo *fd[MAX_FD];
786 int fl_idx = 0;
787 int fl_sectors = 0;
788 int be;
790 /* Make sure the first 3 serial ports are associated with a device. */
791 for(i = 0; i < 3; i++) {
792 if (!serial_hds[i]) {
793 char label[32];
794 snprintf(label, sizeof(label), "serial%d", i);
795 serial_hds[i] = qemu_chr_new(label, "null", NULL);
799 /* init CPUs */
800 if (cpu_model == NULL) {
801 #ifdef TARGET_MIPS64
802 cpu_model = "20Kc";
803 #else
804 cpu_model = "24Kf";
805 #endif
808 for (i = 0; i < smp_cpus; i++) {
809 env = cpu_init(cpu_model);
810 if (!env) {
811 fprintf(stderr, "Unable to find CPU definition\n");
812 exit(1);
814 /* Init internal devices */
815 cpu_mips_irq_init_cpu(env);
816 cpu_mips_clock_init(env);
817 qemu_register_reset(main_cpu_reset, env);
819 env = first_cpu;
821 /* allocate RAM */
822 if (ram_size > (256 << 20)) {
823 fprintf(stderr,
824 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
825 ((unsigned int)ram_size / (1 << 20)));
826 exit(1);
828 memory_region_init_ram(ram, NULL, "mips_malta.ram", ram_size);
829 memory_region_add_subregion(system_memory, 0, ram);
831 #ifdef TARGET_WORDS_BIGENDIAN
832 be = 1;
833 #else
834 be = 0;
835 #endif
836 /* FPGA */
837 malta_fpga_init(system_memory, 0x1f000000LL, env->irq[2], serial_hds[2]);
839 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
840 if (kernel_filename) {
841 /* Write a small bootloader to the flash location. */
842 bios = g_new(MemoryRegion, 1);
843 memory_region_init_ram(bios, NULL, "mips_malta.bios", BIOS_SIZE);
844 memory_region_set_readonly(bios, true);
845 memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE);
846 /* Map the bios at two physical locations, as on the real board. */
847 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
848 memory_region_add_subregion(system_memory, 0x1fc00000LL, bios_alias);
849 loaderparams.ram_size = ram_size;
850 loaderparams.kernel_filename = kernel_filename;
851 loaderparams.kernel_cmdline = kernel_cmdline;
852 loaderparams.initrd_filename = initrd_filename;
853 kernel_entry = load_kernel();
854 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
855 } else {
856 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
857 if (dinfo) {
858 /* Load firmware from flash. */
859 bios_size = 0x400000;
860 fl_sectors = bios_size >> 16;
861 #ifdef DEBUG_BOARD_INIT
862 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
863 "addr %08llx '%s' %x\n",
864 fl_idx, bios_size, 0x1e000000LL,
865 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
866 #endif
867 fl = pflash_cfi01_register(0x1e000000LL,
868 NULL, "mips_malta.bios", BIOS_SIZE,
869 dinfo->bdrv, 65536, fl_sectors,
870 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
871 bios = pflash_cfi01_get_memory(fl);
872 /* Map the bios at two physical locations, as on the real board. */
873 memory_region_init_alias(bios_alias, "bios.1fc",
874 bios, 0, BIOS_SIZE);
875 memory_region_add_subregion(system_memory, 0x1fc00000LL,
876 bios_alias);
877 fl_idx++;
878 } else {
879 bios = g_new(MemoryRegion, 1);
880 memory_region_init_ram(bios, NULL, "mips_malta.bios", BIOS_SIZE);
881 memory_region_set_readonly(bios, true);
882 memory_region_init_alias(bios_alias, "bios.1fc",
883 bios, 0, BIOS_SIZE);
884 /* Map the bios at two physical locations, as on the real board. */
885 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
886 memory_region_add_subregion(system_memory, 0x1fc00000LL,
887 bios_alias);
888 /* Load a BIOS image. */
889 if (bios_name == NULL)
890 bios_name = BIOS_FILENAME;
891 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
892 if (filename) {
893 bios_size = load_image_targphys(filename, 0x1fc00000LL,
894 BIOS_SIZE);
895 g_free(filename);
896 } else {
897 bios_size = -1;
899 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
900 fprintf(stderr,
901 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
902 bios_name);
903 exit(1);
906 /* In little endian mode the 32bit words in the bios are swapped,
907 a neat trick which allows bi-endian firmware. */
908 #ifndef TARGET_WORDS_BIGENDIAN
910 uint32_t *addr = memory_region_get_ram_ptr(bios);
911 uint32_t *end = addr + bios_size;
912 while (addr < end) {
913 bswap32s(addr);
916 #endif
919 /* Board ID = 0x420 (Malta Board with CoreLV)
920 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
921 map to the board ID. */
922 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
924 /* Init internal devices */
925 cpu_mips_irq_init_cpu(env);
926 cpu_mips_clock_init(env);
929 * We have a circular dependency problem: pci_bus depends on isa_irq,
930 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
931 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
932 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
933 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
935 isa_irq = qemu_irq_proxy(&i8259, 16);
937 /* Northbridge */
938 pci_bus = gt64120_register(isa_irq);
940 /* Southbridge */
941 ide_drive_get(hd, MAX_IDE_BUS);
943 piix4_devfn = piix4_init(pci_bus, 80);
945 /* Interrupt controller */
946 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
947 i8259 = i8259_init(env->irq[2]);
949 isa_bus_irqs(i8259);
950 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
951 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
952 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_get_irq(9),
953 NULL, NULL, 0);
954 /* TODO: Populate SPD eeprom data. */
955 smbus_eeprom_init(smbus, 8, NULL, 0);
956 pit = pit_init(0x40, 0);
957 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
958 DMA_init(0, cpu_exit_irq);
960 /* Super I/O */
961 isa_create_simple("i8042");
963 rtc_init(2000, NULL);
964 serial_isa_init(0, serial_hds[0]);
965 serial_isa_init(1, serial_hds[1]);
966 if (parallel_hds[0])
967 parallel_init(0, parallel_hds[0]);
968 for(i = 0; i < MAX_FD; i++) {
969 fd[i] = drive_get(IF_FLOPPY, 0, i);
971 fdctrl_init_isa(fd);
973 /* Sound card */
974 audio_init(NULL, pci_bus);
976 /* Network card */
977 network_init();
979 /* Optional PCI video card */
980 if (cirrus_vga_enabled) {
981 pci_cirrus_vga_init(pci_bus);
982 } else if (vmsvga_enabled) {
983 if (!pci_vmsvga_init(pci_bus)) {
984 fprintf(stderr, "Warning: vmware_vga not available,"
985 " using standard VGA instead\n");
986 pci_vga_init(pci_bus);
988 } else if (std_vga_enabled) {
989 pci_vga_init(pci_bus);
993 static QEMUMachine mips_malta_machine = {
994 .name = "malta",
995 .desc = "MIPS Malta Core LV",
996 .init = mips_malta_init,
997 .max_cpus = 16,
998 .is_default = 1,
1001 static void mips_malta_machine_init(void)
1003 qemu_register_machine(&mips_malta_machine);
1006 machine_init(mips_malta_machine_init);