exec_close(): return -errno on errors (v2)
[qemu-kvm.git] / hw / cbus.c
blob7216899a093e9c63e8e05c074fb482482a862e85
1 /*
2 * CBUS three-pin bus and the Retu / Betty / Tahvo / Vilma / Avilma /
3 * Hinku / Vinku / Ahne / Pihi chips used in various Nokia platforms.
4 * Based on reverse-engineering of a linux driver.
6 * Copyright (C) 2008 Nokia Corporation
7 * Written by Andrzej Zaborowski <andrew@openedhand.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 or
12 * (at your option) version 3 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-common.h"
24 #include "irq.h"
25 #include "devices.h"
26 #include "sysemu.h"
28 //#define DEBUG
30 typedef struct {
31 void *opaque;
32 void (*io)(void *opaque, int rw, int reg, uint16_t *val);
33 int addr;
34 } CBusSlave;
36 typedef struct {
37 CBus cbus;
39 int sel;
40 int dat;
41 int clk;
42 int bit;
43 int dir;
44 uint16_t val;
45 qemu_irq dat_out;
47 int addr;
48 int reg;
49 int rw;
50 enum {
51 cbus_address,
52 cbus_value,
53 } cycle;
55 CBusSlave *slave[8];
56 } CBusPriv;
58 static void cbus_io(CBusPriv *s)
60 if (s->slave[s->addr])
61 s->slave[s->addr]->io(s->slave[s->addr]->opaque,
62 s->rw, s->reg, &s->val);
63 else
64 hw_error("%s: bad slave address %i\n", __FUNCTION__, s->addr);
67 static void cbus_cycle(CBusPriv *s)
69 switch (s->cycle) {
70 case cbus_address:
71 s->addr = (s->val >> 6) & 7;
72 s->rw = (s->val >> 5) & 1;
73 s->reg = (s->val >> 0) & 0x1f;
75 s->cycle = cbus_value;
76 s->bit = 15;
77 s->dir = !s->rw;
78 s->val = 0;
80 if (s->rw)
81 cbus_io(s);
82 break;
84 case cbus_value:
85 if (!s->rw)
86 cbus_io(s);
88 s->cycle = cbus_address;
89 s->bit = 8;
90 s->dir = 1;
91 s->val = 0;
92 break;
96 static void cbus_clk(void *opaque, int line, int level)
98 CBusPriv *s = (CBusPriv *) opaque;
100 if (!s->sel && level && !s->clk) {
101 if (s->dir)
102 s->val |= s->dat << (s->bit --);
103 else
104 qemu_set_irq(s->dat_out, (s->val >> (s->bit --)) & 1);
106 if (s->bit < 0)
107 cbus_cycle(s);
110 s->clk = level;
113 static void cbus_dat(void *opaque, int line, int level)
115 CBusPriv *s = (CBusPriv *) opaque;
117 s->dat = level;
120 static void cbus_sel(void *opaque, int line, int level)
122 CBusPriv *s = (CBusPriv *) opaque;
124 if (!level) {
125 s->dir = 1;
126 s->bit = 8;
127 s->val = 0;
130 s->sel = level;
133 CBus *cbus_init(qemu_irq dat)
135 CBusPriv *s = (CBusPriv *) g_malloc0(sizeof(*s));
137 s->dat_out = dat;
138 s->cbus.clk = qemu_allocate_irqs(cbus_clk, s, 1)[0];
139 s->cbus.dat = qemu_allocate_irqs(cbus_dat, s, 1)[0];
140 s->cbus.sel = qemu_allocate_irqs(cbus_sel, s, 1)[0];
142 s->sel = 1;
143 s->clk = 0;
144 s->dat = 0;
146 return &s->cbus;
149 void cbus_attach(CBus *bus, void *slave_opaque)
151 CBusSlave *slave = (CBusSlave *) slave_opaque;
152 CBusPriv *s = (CBusPriv *) bus;
154 s->slave[slave->addr] = slave;
157 /* Retu/Vilma */
158 typedef struct {
159 uint16_t irqst;
160 uint16_t irqen;
161 uint16_t cc[2];
162 int channel;
163 uint16_t result[16];
164 uint16_t sample;
165 uint16_t status;
167 struct {
168 uint16_t cal;
169 } rtc;
171 int is_vilma;
172 qemu_irq irq;
173 CBusSlave cbus;
174 } CBusRetu;
176 static void retu_interrupt_update(CBusRetu *s)
178 qemu_set_irq(s->irq, s->irqst & ~s->irqen);
181 #define RETU_REG_ASICR 0x00 /* (RO) ASIC ID & revision */
182 #define RETU_REG_IDR 0x01 /* (T) Interrupt ID */
183 #define RETU_REG_IMR 0x02 /* (RW) Interrupt mask */
184 #define RETU_REG_RTCDSR 0x03 /* (RW) RTC seconds register */
185 #define RETU_REG_RTCHMR 0x04 /* (RO) RTC hours and minutes reg */
186 #define RETU_REG_RTCHMAR 0x05 /* (RW) RTC hours and minutes set reg */
187 #define RETU_REG_RTCCALR 0x06 /* (RW) RTC calibration register */
188 #define RETU_REG_ADCR 0x08 /* (RW) ADC result register */
189 #define RETU_REG_ADCSCR 0x09 /* (RW) ADC sample control register */
190 #define RETU_REG_AFCR 0x0a /* (RW) AFC register */
191 #define RETU_REG_ANTIFR 0x0b /* (RW) AntiF register */
192 #define RETU_REG_CALIBR 0x0c /* (RW) CalibR register*/
193 #define RETU_REG_CCR1 0x0d /* (RW) Common control register 1 */
194 #define RETU_REG_CCR2 0x0e /* (RW) Common control register 2 */
195 #define RETU_REG_RCTRL_CLR 0x0f /* (T) Regulator clear register */
196 #define RETU_REG_RCTRL_SET 0x10 /* (T) Regulator set register */
197 #define RETU_REG_TXCR 0x11 /* (RW) TxC register */
198 #define RETU_REG_STATUS 0x16 /* (RO) Status register */
199 #define RETU_REG_WATCHDOG 0x17 /* (RW) Watchdog register */
200 #define RETU_REG_AUDTXR 0x18 /* (RW) Audio Codec Tx register */
201 #define RETU_REG_AUDPAR 0x19 /* (RW) AudioPA register */
202 #define RETU_REG_AUDRXR1 0x1a /* (RW) Audio receive register 1 */
203 #define RETU_REG_AUDRXR2 0x1b /* (RW) Audio receive register 2 */
204 #define RETU_REG_SGR1 0x1c /* (RW) */
205 #define RETU_REG_SCR1 0x1d /* (RW) */
206 #define RETU_REG_SGR2 0x1e /* (RW) */
207 #define RETU_REG_SCR2 0x1f /* (RW) */
209 /* Retu Interrupt sources */
210 enum {
211 retu_int_pwr = 0, /* Power button */
212 retu_int_char = 1, /* Charger */
213 retu_int_rtcs = 2, /* Seconds */
214 retu_int_rtcm = 3, /* Minutes */
215 retu_int_rtcd = 4, /* Days */
216 retu_int_rtca = 5, /* Alarm */
217 retu_int_hook = 6, /* Hook */
218 retu_int_head = 7, /* Headset */
219 retu_int_adcs = 8, /* ADC sample */
222 /* Retu ADC channel wiring */
223 enum {
224 retu_adc_bsi = 1, /* BSI */
225 retu_adc_batt_temp = 2, /* Battery temperature */
226 retu_adc_chg_volt = 3, /* Charger voltage */
227 retu_adc_head_det = 4, /* Headset detection */
228 retu_adc_hook_det = 5, /* Hook detection */
229 retu_adc_rf_gp = 6, /* RF GP */
230 retu_adc_tx_det = 7, /* Wideband Tx detection */
231 retu_adc_batt_volt = 8, /* Battery voltage */
232 retu_adc_sens = 10, /* Light sensor */
233 retu_adc_sens_temp = 11, /* Light sensor temperature */
234 retu_adc_bbatt_volt = 12, /* Backup battery voltage */
235 retu_adc_self_temp = 13, /* RETU temperature */
238 static inline uint16_t retu_read(CBusRetu *s, int reg)
240 #ifdef DEBUG
241 printf("RETU read at %02x\n", reg);
242 #endif
244 switch (reg) {
245 case RETU_REG_ASICR:
246 return 0x0215 | (s->is_vilma << 7);
248 case RETU_REG_IDR: /* TODO: Or is this ffs(s->irqst)? */
249 return s->irqst;
251 case RETU_REG_IMR:
252 return s->irqen;
254 case RETU_REG_RTCDSR:
255 case RETU_REG_RTCHMR:
256 case RETU_REG_RTCHMAR:
257 /* TODO */
258 return 0x0000;
260 case RETU_REG_RTCCALR:
261 return s->rtc.cal;
263 case RETU_REG_ADCR:
264 return (s->channel << 10) | s->result[s->channel];
265 case RETU_REG_ADCSCR:
266 return s->sample;
268 case RETU_REG_AFCR:
269 case RETU_REG_ANTIFR:
270 case RETU_REG_CALIBR:
271 /* TODO */
272 return 0x0000;
274 case RETU_REG_CCR1:
275 return s->cc[0];
276 case RETU_REG_CCR2:
277 return s->cc[1];
279 case RETU_REG_RCTRL_CLR:
280 case RETU_REG_RCTRL_SET:
281 case RETU_REG_TXCR:
282 /* TODO */
283 return 0x0000;
285 case RETU_REG_STATUS:
286 return s->status;
288 case RETU_REG_WATCHDOG:
289 case RETU_REG_AUDTXR:
290 case RETU_REG_AUDPAR:
291 case RETU_REG_AUDRXR1:
292 case RETU_REG_AUDRXR2:
293 case RETU_REG_SGR1:
294 case RETU_REG_SCR1:
295 case RETU_REG_SGR2:
296 case RETU_REG_SCR2:
297 /* TODO */
298 return 0x0000;
300 default:
301 hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
305 static inline void retu_write(CBusRetu *s, int reg, uint16_t val)
307 #ifdef DEBUG
308 printf("RETU write of %04x at %02x\n", val, reg);
309 #endif
311 switch (reg) {
312 case RETU_REG_IDR:
313 s->irqst ^= val;
314 retu_interrupt_update(s);
315 break;
317 case RETU_REG_IMR:
318 s->irqen = val;
319 retu_interrupt_update(s);
320 break;
322 case RETU_REG_RTCDSR:
323 case RETU_REG_RTCHMAR:
324 /* TODO */
325 break;
327 case RETU_REG_RTCCALR:
328 s->rtc.cal = val;
329 break;
331 case RETU_REG_ADCR:
332 s->channel = (val >> 10) & 0xf;
333 s->irqst |= 1 << retu_int_adcs;
334 retu_interrupt_update(s);
335 break;
336 case RETU_REG_ADCSCR:
337 s->sample &= ~val;
338 break;
340 case RETU_REG_AFCR:
341 case RETU_REG_ANTIFR:
342 case RETU_REG_CALIBR:
344 case RETU_REG_CCR1:
345 s->cc[0] = val;
346 break;
347 case RETU_REG_CCR2:
348 s->cc[1] = val;
349 break;
351 case RETU_REG_RCTRL_CLR:
352 case RETU_REG_RCTRL_SET:
353 /* TODO */
354 break;
356 case RETU_REG_WATCHDOG:
357 if (val == 0 && (s->cc[0] & 2))
358 qemu_system_shutdown_request();
359 break;
361 case RETU_REG_TXCR:
362 case RETU_REG_AUDTXR:
363 case RETU_REG_AUDPAR:
364 case RETU_REG_AUDRXR1:
365 case RETU_REG_AUDRXR2:
366 case RETU_REG_SGR1:
367 case RETU_REG_SCR1:
368 case RETU_REG_SGR2:
369 case RETU_REG_SCR2:
370 /* TODO */
371 break;
373 default:
374 hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
378 static void retu_io(void *opaque, int rw, int reg, uint16_t *val)
380 CBusRetu *s = (CBusRetu *) opaque;
382 if (rw)
383 *val = retu_read(s, reg);
384 else
385 retu_write(s, reg, *val);
388 void *retu_init(qemu_irq irq, int vilma)
390 CBusRetu *s = (CBusRetu *) g_malloc0(sizeof(*s));
392 s->irq = irq;
393 s->irqen = 0xffff;
394 s->irqst = 0x0000;
395 s->status = 0x0020;
396 s->is_vilma = !!vilma;
397 s->rtc.cal = 0x01;
398 s->result[retu_adc_bsi] = 0x3c2;
399 s->result[retu_adc_batt_temp] = 0x0fc;
400 s->result[retu_adc_chg_volt] = 0x165;
401 s->result[retu_adc_head_det] = 123;
402 s->result[retu_adc_hook_det] = 1023;
403 s->result[retu_adc_rf_gp] = 0x11;
404 s->result[retu_adc_tx_det] = 0x11;
405 s->result[retu_adc_batt_volt] = 0x250;
406 s->result[retu_adc_sens] = 2;
407 s->result[retu_adc_sens_temp] = 0x11;
408 s->result[retu_adc_bbatt_volt] = 0x3d0;
409 s->result[retu_adc_self_temp] = 0x330;
411 s->cbus.opaque = s;
412 s->cbus.io = retu_io;
413 s->cbus.addr = 1;
415 return &s->cbus;
418 void retu_key_event(void *retu, int state)
420 CBusSlave *slave = (CBusSlave *) retu;
421 CBusRetu *s = (CBusRetu *) slave->opaque;
423 s->irqst |= 1 << retu_int_pwr;
424 retu_interrupt_update(s);
426 if (state)
427 s->status &= ~(1 << 5);
428 else
429 s->status |= 1 << 5;
432 #if 0
433 static void retu_head_event(void *retu, int state)
435 CBusSlave *slave = (CBusSlave *) retu;
436 CBusRetu *s = (CBusRetu *) slave->opaque;
438 if ((s->cc[0] & 0x500) == 0x500) { /* TODO: Which bits? */
439 /* TODO: reissue the interrupt every 100ms or so. */
440 s->irqst |= 1 << retu_int_head;
441 retu_interrupt_update(s);
444 if (state)
445 s->result[retu_adc_head_det] = 50;
446 else
447 s->result[retu_adc_head_det] = 123;
450 static void retu_hook_event(void *retu, int state)
452 CBusSlave *slave = (CBusSlave *) retu;
453 CBusRetu *s = (CBusRetu *) slave->opaque;
455 if ((s->cc[0] & 0x500) == 0x500) {
456 /* TODO: reissue the interrupt every 100ms or so. */
457 s->irqst |= 1 << retu_int_hook;
458 retu_interrupt_update(s);
461 if (state)
462 s->result[retu_adc_hook_det] = 50;
463 else
464 s->result[retu_adc_hook_det] = 123;
466 #endif
468 /* Tahvo/Betty */
469 typedef struct {
470 uint16_t irqst;
471 uint16_t irqen;
472 uint8_t charger;
473 uint8_t backlight;
474 uint16_t usbr;
475 uint16_t power;
477 int is_betty;
478 qemu_irq irq;
479 CBusSlave cbus;
480 } CBusTahvo;
482 static void tahvo_interrupt_update(CBusTahvo *s)
484 qemu_set_irq(s->irq, s->irqst & ~s->irqen);
487 #define TAHVO_REG_ASICR 0x00 /* (RO) ASIC ID & revision */
488 #define TAHVO_REG_IDR 0x01 /* (T) Interrupt ID */
489 #define TAHVO_REG_IDSR 0x02 /* (RO) Interrupt status */
490 #define TAHVO_REG_IMR 0x03 /* (RW) Interrupt mask */
491 #define TAHVO_REG_CHAPWMR 0x04 /* (RW) Charger PWM */
492 #define TAHVO_REG_LEDPWMR 0x05 /* (RW) LED PWM */
493 #define TAHVO_REG_USBR 0x06 /* (RW) USB control */
494 #define TAHVO_REG_RCR 0x07 /* (RW) Some kind of power management */
495 #define TAHVO_REG_CCR1 0x08 /* (RW) Common control register 1 */
496 #define TAHVO_REG_CCR2 0x09 /* (RW) Common control register 2 */
497 #define TAHVO_REG_TESTR1 0x0a /* (RW) Test register 1 */
498 #define TAHVO_REG_TESTR2 0x0b /* (RW) Test register 2 */
499 #define TAHVO_REG_NOPR 0x0c /* (RW) Number of periods */
500 #define TAHVO_REG_FRR 0x0d /* (RO) FR */
502 static inline uint16_t tahvo_read(CBusTahvo *s, int reg)
504 #ifdef DEBUG
505 printf("TAHVO read at %02x\n", reg);
506 #endif
508 switch (reg) {
509 case TAHVO_REG_ASICR:
510 return 0x0021 | (s->is_betty ? 0x0b00 : 0x0300); /* 22 in N810 */
512 case TAHVO_REG_IDR:
513 case TAHVO_REG_IDSR: /* XXX: what does this do? */
514 return s->irqst;
516 case TAHVO_REG_IMR:
517 return s->irqen;
519 case TAHVO_REG_CHAPWMR:
520 return s->charger;
522 case TAHVO_REG_LEDPWMR:
523 return s->backlight;
525 case TAHVO_REG_USBR:
526 return s->usbr;
528 case TAHVO_REG_RCR:
529 return s->power;
531 case TAHVO_REG_CCR1:
532 case TAHVO_REG_CCR2:
533 case TAHVO_REG_TESTR1:
534 case TAHVO_REG_TESTR2:
535 case TAHVO_REG_NOPR:
536 case TAHVO_REG_FRR:
537 return 0x0000;
539 default:
540 hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
544 static inline void tahvo_write(CBusTahvo *s, int reg, uint16_t val)
546 #ifdef DEBUG
547 printf("TAHVO write of %04x at %02x\n", val, reg);
548 #endif
550 switch (reg) {
551 case TAHVO_REG_IDR:
552 s->irqst ^= val;
553 tahvo_interrupt_update(s);
554 break;
556 case TAHVO_REG_IMR:
557 s->irqen = val;
558 tahvo_interrupt_update(s);
559 break;
561 case TAHVO_REG_CHAPWMR:
562 s->charger = val;
563 break;
565 case TAHVO_REG_LEDPWMR:
566 if (s->backlight != (val & 0x7f)) {
567 s->backlight = val & 0x7f;
568 printf("%s: LCD backlight now at %i / 127\n",
569 __FUNCTION__, s->backlight);
571 break;
573 case TAHVO_REG_USBR:
574 s->usbr = val;
575 break;
577 case TAHVO_REG_RCR:
578 s->power = val;
579 break;
581 case TAHVO_REG_CCR1:
582 case TAHVO_REG_CCR2:
583 case TAHVO_REG_TESTR1:
584 case TAHVO_REG_TESTR2:
585 case TAHVO_REG_NOPR:
586 case TAHVO_REG_FRR:
587 break;
589 default:
590 hw_error("%s: bad register %02x\n", __FUNCTION__, reg);
594 static void tahvo_io(void *opaque, int rw, int reg, uint16_t *val)
596 CBusTahvo *s = (CBusTahvo *) opaque;
598 if (rw)
599 *val = tahvo_read(s, reg);
600 else
601 tahvo_write(s, reg, *val);
604 void *tahvo_init(qemu_irq irq, int betty)
606 CBusTahvo *s = (CBusTahvo *) g_malloc0(sizeof(*s));
608 s->irq = irq;
609 s->irqen = 0xffff;
610 s->irqst = 0x0000;
611 s->is_betty = !!betty;
613 s->cbus.opaque = s;
614 s->cbus.io = tahvo_io;
615 s->cbus.addr = 2;
617 return &s->cbus;