Add -no-virtio-balloon command-line option
[qemu-kvm.git] / vl.c
blob3d213f395def62da8f79e282c453604520da6cf4
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
115 #ifdef CONFIG_SDL
116 #ifdef __APPLE__
117 #include <SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 qemu_main(argc, argv, NULL);
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
162 #include "disas.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
170 #endif
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
174 //#define DEBUG_NET
175 //#define DEBUG_SLIRP
178 #ifdef DEBUG_IOPORT
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
180 #else
181 # define LOG_IOPORT(...) do { } while (0)
182 #endif
184 #define DEFAULT_RAM_SIZE 128
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
195 static const char *data_dir;
196 const char *bios_name = NULL;
197 static void *ioport_opaque[MAX_IOPORTS];
198 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
199 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table[MAX_DRIVES+1];
203 int nb_drives;
204 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
205 static DisplayState *display_state;
206 DisplayType display_type = DT_DEFAULT;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int no_virtio_balloon = 0;
248 int fd_bootchk = 1;
249 int no_reboot = 0;
250 int no_shutdown = 0;
251 int cursor_hide = 1;
252 int graphic_rotate = 0;
253 #ifndef _WIN32
254 int daemonize = 0;
255 #endif
256 WatchdogTimerModel *watchdog = NULL;
257 int watchdog_action = WDT_RESET;
258 const char *option_rom[MAX_OPTION_ROMS];
259 int nb_option_roms;
260 int semihosting_enabled = 0;
261 #ifdef TARGET_ARM
262 int old_param = 0;
263 #endif
264 const char *qemu_name;
265 int alt_grab = 0;
266 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
267 unsigned int nb_prom_envs = 0;
268 const char *prom_envs[MAX_PROM_ENVS];
269 #endif
270 int nb_drives_opt;
271 struct drive_opt drives_opt[MAX_DRIVES];
273 int nb_numa_nodes;
274 uint64_t node_mem[MAX_NODES];
275 uint64_t node_cpumask[MAX_NODES];
277 static CPUState *cur_cpu;
278 static CPUState *next_cpu;
279 static int timer_alarm_pending = 1;
280 /* Conversion factor from emulated instructions to virtual clock ticks. */
281 static int icount_time_shift;
282 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
283 #define MAX_ICOUNT_SHIFT 10
284 /* Compensate for varying guest execution speed. */
285 static int64_t qemu_icount_bias;
286 static QEMUTimer *icount_rt_timer;
287 static QEMUTimer *icount_vm_timer;
288 static QEMUTimer *nographic_timer;
290 uint8_t qemu_uuid[16];
292 /***********************************************************/
293 /* x86 ISA bus support */
295 target_phys_addr_t isa_mem_base = 0;
296 PicState2 *isa_pic;
298 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
299 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
301 static uint32_t ioport_read(int index, uint32_t address)
303 static IOPortReadFunc *default_func[3] = {
304 default_ioport_readb,
305 default_ioport_readw,
306 default_ioport_readl
308 IOPortReadFunc *func = ioport_read_table[index][address];
309 if (!func)
310 func = default_func[index];
311 return func(ioport_opaque[address], address);
314 static void ioport_write(int index, uint32_t address, uint32_t data)
316 static IOPortWriteFunc *default_func[3] = {
317 default_ioport_writeb,
318 default_ioport_writew,
319 default_ioport_writel
321 IOPortWriteFunc *func = ioport_write_table[index][address];
322 if (!func)
323 func = default_func[index];
324 func(ioport_opaque[address], address, data);
327 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
329 #ifdef DEBUG_UNUSED_IOPORT
330 fprintf(stderr, "unused inb: port=0x%04x\n", address);
331 #endif
332 return 0xff;
335 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
337 #ifdef DEBUG_UNUSED_IOPORT
338 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
339 #endif
342 /* default is to make two byte accesses */
343 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
345 uint32_t data;
346 data = ioport_read(0, address);
347 address = (address + 1) & (MAX_IOPORTS - 1);
348 data |= ioport_read(0, address) << 8;
349 return data;
352 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
354 ioport_write(0, address, data & 0xff);
355 address = (address + 1) & (MAX_IOPORTS - 1);
356 ioport_write(0, address, (data >> 8) & 0xff);
359 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
361 #ifdef DEBUG_UNUSED_IOPORT
362 fprintf(stderr, "unused inl: port=0x%04x\n", address);
363 #endif
364 return 0xffffffff;
367 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
369 #ifdef DEBUG_UNUSED_IOPORT
370 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
371 #endif
374 /* size is the word size in byte */
375 int register_ioport_read(int start, int length, int size,
376 IOPortReadFunc *func, void *opaque)
378 int i, bsize;
380 if (size == 1) {
381 bsize = 0;
382 } else if (size == 2) {
383 bsize = 1;
384 } else if (size == 4) {
385 bsize = 2;
386 } else {
387 hw_error("register_ioport_read: invalid size");
388 return -1;
390 for(i = start; i < start + length; i += size) {
391 ioport_read_table[bsize][i] = func;
392 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
393 hw_error("register_ioport_read: invalid opaque");
394 ioport_opaque[i] = opaque;
396 return 0;
399 /* size is the word size in byte */
400 int register_ioport_write(int start, int length, int size,
401 IOPortWriteFunc *func, void *opaque)
403 int i, bsize;
405 if (size == 1) {
406 bsize = 0;
407 } else if (size == 2) {
408 bsize = 1;
409 } else if (size == 4) {
410 bsize = 2;
411 } else {
412 hw_error("register_ioport_write: invalid size");
413 return -1;
415 for(i = start; i < start + length; i += size) {
416 ioport_write_table[bsize][i] = func;
417 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
418 hw_error("register_ioport_write: invalid opaque");
419 ioport_opaque[i] = opaque;
421 return 0;
424 void isa_unassign_ioport(int start, int length)
426 int i;
428 for(i = start; i < start + length; i++) {
429 ioport_read_table[0][i] = default_ioport_readb;
430 ioport_read_table[1][i] = default_ioport_readw;
431 ioport_read_table[2][i] = default_ioport_readl;
433 ioport_write_table[0][i] = default_ioport_writeb;
434 ioport_write_table[1][i] = default_ioport_writew;
435 ioport_write_table[2][i] = default_ioport_writel;
437 ioport_opaque[i] = NULL;
441 /***********************************************************/
443 void cpu_outb(CPUState *env, int addr, int val)
445 LOG_IOPORT("outb: %04x %02x\n", addr, val);
446 ioport_write(0, addr, val);
447 #ifdef CONFIG_KQEMU
448 if (env)
449 env->last_io_time = cpu_get_time_fast();
450 #endif
453 void cpu_outw(CPUState *env, int addr, int val)
455 LOG_IOPORT("outw: %04x %04x\n", addr, val);
456 ioport_write(1, addr, val);
457 #ifdef CONFIG_KQEMU
458 if (env)
459 env->last_io_time = cpu_get_time_fast();
460 #endif
463 void cpu_outl(CPUState *env, int addr, int val)
465 LOG_IOPORT("outl: %04x %08x\n", addr, val);
466 ioport_write(2, addr, val);
467 #ifdef CONFIG_KQEMU
468 if (env)
469 env->last_io_time = cpu_get_time_fast();
470 #endif
473 int cpu_inb(CPUState *env, int addr)
475 int val;
476 val = ioport_read(0, addr);
477 LOG_IOPORT("inb : %04x %02x\n", addr, val);
478 #ifdef CONFIG_KQEMU
479 if (env)
480 env->last_io_time = cpu_get_time_fast();
481 #endif
482 return val;
485 int cpu_inw(CPUState *env, int addr)
487 int val;
488 val = ioport_read(1, addr);
489 LOG_IOPORT("inw : %04x %04x\n", addr, val);
490 #ifdef CONFIG_KQEMU
491 if (env)
492 env->last_io_time = cpu_get_time_fast();
493 #endif
494 return val;
497 int cpu_inl(CPUState *env, int addr)
499 int val;
500 val = ioport_read(2, addr);
501 LOG_IOPORT("inl : %04x %08x\n", addr, val);
502 #ifdef CONFIG_KQEMU
503 if (env)
504 env->last_io_time = cpu_get_time_fast();
505 #endif
506 return val;
509 /***********************************************************/
510 void hw_error(const char *fmt, ...)
512 va_list ap;
513 CPUState *env;
515 va_start(ap, fmt);
516 fprintf(stderr, "qemu: hardware error: ");
517 vfprintf(stderr, fmt, ap);
518 fprintf(stderr, "\n");
519 for(env = first_cpu; env != NULL; env = env->next_cpu) {
520 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
521 #ifdef TARGET_I386
522 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
523 #else
524 cpu_dump_state(env, stderr, fprintf, 0);
525 #endif
527 va_end(ap);
528 abort();
531 /***************/
532 /* ballooning */
534 static QEMUBalloonEvent *qemu_balloon_event;
535 void *qemu_balloon_event_opaque;
537 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
539 qemu_balloon_event = func;
540 qemu_balloon_event_opaque = opaque;
543 void qemu_balloon(ram_addr_t target)
545 if (qemu_balloon_event)
546 qemu_balloon_event(qemu_balloon_event_opaque, target);
549 ram_addr_t qemu_balloon_status(void)
551 if (qemu_balloon_event)
552 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
553 return 0;
556 /***********************************************************/
557 /* keyboard/mouse */
559 static QEMUPutKBDEvent *qemu_put_kbd_event;
560 static void *qemu_put_kbd_event_opaque;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
562 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
564 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
566 qemu_put_kbd_event_opaque = opaque;
567 qemu_put_kbd_event = func;
570 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
571 void *opaque, int absolute,
572 const char *name)
574 QEMUPutMouseEntry *s, *cursor;
576 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
578 s->qemu_put_mouse_event = func;
579 s->qemu_put_mouse_event_opaque = opaque;
580 s->qemu_put_mouse_event_absolute = absolute;
581 s->qemu_put_mouse_event_name = qemu_strdup(name);
582 s->next = NULL;
584 if (!qemu_put_mouse_event_head) {
585 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
586 return s;
589 cursor = qemu_put_mouse_event_head;
590 while (cursor->next != NULL)
591 cursor = cursor->next;
593 cursor->next = s;
594 qemu_put_mouse_event_current = s;
596 return s;
599 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
601 QEMUPutMouseEntry *prev = NULL, *cursor;
603 if (!qemu_put_mouse_event_head || entry == NULL)
604 return;
606 cursor = qemu_put_mouse_event_head;
607 while (cursor != NULL && cursor != entry) {
608 prev = cursor;
609 cursor = cursor->next;
612 if (cursor == NULL) // does not exist or list empty
613 return;
614 else if (prev == NULL) { // entry is head
615 qemu_put_mouse_event_head = cursor->next;
616 if (qemu_put_mouse_event_current == entry)
617 qemu_put_mouse_event_current = cursor->next;
618 qemu_free(entry->qemu_put_mouse_event_name);
619 qemu_free(entry);
620 return;
623 prev->next = entry->next;
625 if (qemu_put_mouse_event_current == entry)
626 qemu_put_mouse_event_current = prev;
628 qemu_free(entry->qemu_put_mouse_event_name);
629 qemu_free(entry);
632 void kbd_put_keycode(int keycode)
634 if (qemu_put_kbd_event) {
635 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
639 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
641 QEMUPutMouseEvent *mouse_event;
642 void *mouse_event_opaque;
643 int width;
645 if (!qemu_put_mouse_event_current) {
646 return;
649 mouse_event =
650 qemu_put_mouse_event_current->qemu_put_mouse_event;
651 mouse_event_opaque =
652 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
654 if (mouse_event) {
655 if (graphic_rotate) {
656 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
657 width = 0x7fff;
658 else
659 width = graphic_width - 1;
660 mouse_event(mouse_event_opaque,
661 width - dy, dx, dz, buttons_state);
662 } else
663 mouse_event(mouse_event_opaque,
664 dx, dy, dz, buttons_state);
668 int kbd_mouse_is_absolute(void)
670 if (!qemu_put_mouse_event_current)
671 return 0;
673 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
676 void do_info_mice(Monitor *mon)
678 QEMUPutMouseEntry *cursor;
679 int index = 0;
681 if (!qemu_put_mouse_event_head) {
682 monitor_printf(mon, "No mouse devices connected\n");
683 return;
686 monitor_printf(mon, "Mouse devices available:\n");
687 cursor = qemu_put_mouse_event_head;
688 while (cursor != NULL) {
689 monitor_printf(mon, "%c Mouse #%d: %s\n",
690 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
691 index, cursor->qemu_put_mouse_event_name);
692 index++;
693 cursor = cursor->next;
697 void do_mouse_set(Monitor *mon, int index)
699 QEMUPutMouseEntry *cursor;
700 int i = 0;
702 if (!qemu_put_mouse_event_head) {
703 monitor_printf(mon, "No mouse devices connected\n");
704 return;
707 cursor = qemu_put_mouse_event_head;
708 while (cursor != NULL && index != i) {
709 i++;
710 cursor = cursor->next;
713 if (cursor != NULL)
714 qemu_put_mouse_event_current = cursor;
715 else
716 monitor_printf(mon, "Mouse at given index not found\n");
719 /* compute with 96 bit intermediate result: (a*b)/c */
720 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
722 union {
723 uint64_t ll;
724 struct {
725 #ifdef WORDS_BIGENDIAN
726 uint32_t high, low;
727 #else
728 uint32_t low, high;
729 #endif
730 } l;
731 } u, res;
732 uint64_t rl, rh;
734 u.ll = a;
735 rl = (uint64_t)u.l.low * (uint64_t)b;
736 rh = (uint64_t)u.l.high * (uint64_t)b;
737 rh += (rl >> 32);
738 res.l.high = rh / c;
739 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
740 return res.ll;
743 /***********************************************************/
744 /* real time host monotonic timer */
746 #define QEMU_TIMER_BASE 1000000000LL
748 #ifdef WIN32
750 static int64_t clock_freq;
752 static void init_get_clock(void)
754 LARGE_INTEGER freq;
755 int ret;
756 ret = QueryPerformanceFrequency(&freq);
757 if (ret == 0) {
758 fprintf(stderr, "Could not calibrate ticks\n");
759 exit(1);
761 clock_freq = freq.QuadPart;
764 static int64_t get_clock(void)
766 LARGE_INTEGER ti;
767 QueryPerformanceCounter(&ti);
768 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
771 #else
773 static int use_rt_clock;
775 static void init_get_clock(void)
777 use_rt_clock = 0;
778 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
779 || defined(__DragonFly__)
781 struct timespec ts;
782 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
783 use_rt_clock = 1;
786 #endif
789 static int64_t get_clock(void)
791 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
792 || defined(__DragonFly__)
793 if (use_rt_clock) {
794 struct timespec ts;
795 clock_gettime(CLOCK_MONOTONIC, &ts);
796 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
797 } else
798 #endif
800 /* XXX: using gettimeofday leads to problems if the date
801 changes, so it should be avoided. */
802 struct timeval tv;
803 gettimeofday(&tv, NULL);
804 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
807 #endif
809 /* Return the virtual CPU time, based on the instruction counter. */
810 static int64_t cpu_get_icount(void)
812 int64_t icount;
813 CPUState *env = cpu_single_env;;
814 icount = qemu_icount;
815 if (env) {
816 if (!can_do_io(env))
817 fprintf(stderr, "Bad clock read\n");
818 icount -= (env->icount_decr.u16.low + env->icount_extra);
820 return qemu_icount_bias + (icount << icount_time_shift);
823 /***********************************************************/
824 /* guest cycle counter */
826 static int64_t cpu_ticks_prev;
827 static int64_t cpu_ticks_offset;
828 static int64_t cpu_clock_offset;
829 static int cpu_ticks_enabled;
831 /* return the host CPU cycle counter and handle stop/restart */
832 int64_t cpu_get_ticks(void)
834 if (use_icount) {
835 return cpu_get_icount();
837 if (!cpu_ticks_enabled) {
838 return cpu_ticks_offset;
839 } else {
840 int64_t ticks;
841 ticks = cpu_get_real_ticks();
842 if (cpu_ticks_prev > ticks) {
843 /* Note: non increasing ticks may happen if the host uses
844 software suspend */
845 cpu_ticks_offset += cpu_ticks_prev - ticks;
847 cpu_ticks_prev = ticks;
848 return ticks + cpu_ticks_offset;
852 /* return the host CPU monotonic timer and handle stop/restart */
853 static int64_t cpu_get_clock(void)
855 int64_t ti;
856 if (!cpu_ticks_enabled) {
857 return cpu_clock_offset;
858 } else {
859 ti = get_clock();
860 return ti + cpu_clock_offset;
864 /* enable cpu_get_ticks() */
865 void cpu_enable_ticks(void)
867 if (!cpu_ticks_enabled) {
868 cpu_ticks_offset -= cpu_get_real_ticks();
869 cpu_clock_offset -= get_clock();
870 cpu_ticks_enabled = 1;
874 /* disable cpu_get_ticks() : the clock is stopped. You must not call
875 cpu_get_ticks() after that. */
876 void cpu_disable_ticks(void)
878 if (cpu_ticks_enabled) {
879 cpu_ticks_offset = cpu_get_ticks();
880 cpu_clock_offset = cpu_get_clock();
881 cpu_ticks_enabled = 0;
885 /***********************************************************/
886 /* timers */
888 #define QEMU_TIMER_REALTIME 0
889 #define QEMU_TIMER_VIRTUAL 1
891 struct QEMUClock {
892 int type;
893 /* XXX: add frequency */
896 struct QEMUTimer {
897 QEMUClock *clock;
898 int64_t expire_time;
899 QEMUTimerCB *cb;
900 void *opaque;
901 struct QEMUTimer *next;
904 struct qemu_alarm_timer {
905 char const *name;
906 unsigned int flags;
908 int (*start)(struct qemu_alarm_timer *t);
909 void (*stop)(struct qemu_alarm_timer *t);
910 void (*rearm)(struct qemu_alarm_timer *t);
911 void *priv;
914 #define ALARM_FLAG_DYNTICKS 0x1
915 #define ALARM_FLAG_EXPIRED 0x2
917 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
919 return t && (t->flags & ALARM_FLAG_DYNTICKS);
922 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
924 if (!alarm_has_dynticks(t))
925 return;
927 t->rearm(t);
930 /* TODO: MIN_TIMER_REARM_US should be optimized */
931 #define MIN_TIMER_REARM_US 250
933 static struct qemu_alarm_timer *alarm_timer;
935 #ifdef _WIN32
937 struct qemu_alarm_win32 {
938 MMRESULT timerId;
939 unsigned int period;
940 } alarm_win32_data = {0, -1};
942 static int win32_start_timer(struct qemu_alarm_timer *t);
943 static void win32_stop_timer(struct qemu_alarm_timer *t);
944 static void win32_rearm_timer(struct qemu_alarm_timer *t);
946 #else
948 static int unix_start_timer(struct qemu_alarm_timer *t);
949 static void unix_stop_timer(struct qemu_alarm_timer *t);
951 #ifdef __linux__
953 static int dynticks_start_timer(struct qemu_alarm_timer *t);
954 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
955 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
957 static int hpet_start_timer(struct qemu_alarm_timer *t);
958 static void hpet_stop_timer(struct qemu_alarm_timer *t);
960 static int rtc_start_timer(struct qemu_alarm_timer *t);
961 static void rtc_stop_timer(struct qemu_alarm_timer *t);
963 #endif /* __linux__ */
965 #endif /* _WIN32 */
967 /* Correlation between real and virtual time is always going to be
968 fairly approximate, so ignore small variation.
969 When the guest is idle real and virtual time will be aligned in
970 the IO wait loop. */
971 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
973 static void icount_adjust(void)
975 int64_t cur_time;
976 int64_t cur_icount;
977 int64_t delta;
978 static int64_t last_delta;
979 /* If the VM is not running, then do nothing. */
980 if (!vm_running)
981 return;
983 cur_time = cpu_get_clock();
984 cur_icount = qemu_get_clock(vm_clock);
985 delta = cur_icount - cur_time;
986 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
987 if (delta > 0
988 && last_delta + ICOUNT_WOBBLE < delta * 2
989 && icount_time_shift > 0) {
990 /* The guest is getting too far ahead. Slow time down. */
991 icount_time_shift--;
993 if (delta < 0
994 && last_delta - ICOUNT_WOBBLE > delta * 2
995 && icount_time_shift < MAX_ICOUNT_SHIFT) {
996 /* The guest is getting too far behind. Speed time up. */
997 icount_time_shift++;
999 last_delta = delta;
1000 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1003 static void icount_adjust_rt(void * opaque)
1005 qemu_mod_timer(icount_rt_timer,
1006 qemu_get_clock(rt_clock) + 1000);
1007 icount_adjust();
1010 static void icount_adjust_vm(void * opaque)
1012 qemu_mod_timer(icount_vm_timer,
1013 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1014 icount_adjust();
1017 static void init_icount_adjust(void)
1019 /* Have both realtime and virtual time triggers for speed adjustment.
1020 The realtime trigger catches emulated time passing too slowly,
1021 the virtual time trigger catches emulated time passing too fast.
1022 Realtime triggers occur even when idle, so use them less frequently
1023 than VM triggers. */
1024 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1025 qemu_mod_timer(icount_rt_timer,
1026 qemu_get_clock(rt_clock) + 1000);
1027 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1028 qemu_mod_timer(icount_vm_timer,
1029 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1032 static struct qemu_alarm_timer alarm_timers[] = {
1033 #ifndef _WIN32
1034 #ifdef __linux__
1035 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1036 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1037 /* HPET - if available - is preferred */
1038 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1039 /* ...otherwise try RTC */
1040 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1041 #endif
1042 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1043 #else
1044 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1045 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1046 {"win32", 0, win32_start_timer,
1047 win32_stop_timer, NULL, &alarm_win32_data},
1048 #endif
1049 {NULL, }
1052 static void show_available_alarms(void)
1054 int i;
1056 printf("Available alarm timers, in order of precedence:\n");
1057 for (i = 0; alarm_timers[i].name; i++)
1058 printf("%s\n", alarm_timers[i].name);
1061 static void configure_alarms(char const *opt)
1063 int i;
1064 int cur = 0;
1065 int count = ARRAY_SIZE(alarm_timers) - 1;
1066 char *arg;
1067 char *name;
1068 struct qemu_alarm_timer tmp;
1070 if (!strcmp(opt, "?")) {
1071 show_available_alarms();
1072 exit(0);
1075 arg = strdup(opt);
1077 /* Reorder the array */
1078 name = strtok(arg, ",");
1079 while (name) {
1080 for (i = 0; i < count && alarm_timers[i].name; i++) {
1081 if (!strcmp(alarm_timers[i].name, name))
1082 break;
1085 if (i == count) {
1086 fprintf(stderr, "Unknown clock %s\n", name);
1087 goto next;
1090 if (i < cur)
1091 /* Ignore */
1092 goto next;
1094 /* Swap */
1095 tmp = alarm_timers[i];
1096 alarm_timers[i] = alarm_timers[cur];
1097 alarm_timers[cur] = tmp;
1099 cur++;
1100 next:
1101 name = strtok(NULL, ",");
1104 free(arg);
1106 if (cur) {
1107 /* Disable remaining timers */
1108 for (i = cur; i < count; i++)
1109 alarm_timers[i].name = NULL;
1110 } else {
1111 show_available_alarms();
1112 exit(1);
1116 QEMUClock *rt_clock;
1117 QEMUClock *vm_clock;
1119 static QEMUTimer *active_timers[2];
1121 static QEMUClock *qemu_new_clock(int type)
1123 QEMUClock *clock;
1124 clock = qemu_mallocz(sizeof(QEMUClock));
1125 clock->type = type;
1126 return clock;
1129 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1131 QEMUTimer *ts;
1133 ts = qemu_mallocz(sizeof(QEMUTimer));
1134 ts->clock = clock;
1135 ts->cb = cb;
1136 ts->opaque = opaque;
1137 return ts;
1140 void qemu_free_timer(QEMUTimer *ts)
1142 qemu_free(ts);
1145 /* stop a timer, but do not dealloc it */
1146 void qemu_del_timer(QEMUTimer *ts)
1148 QEMUTimer **pt, *t;
1150 /* NOTE: this code must be signal safe because
1151 qemu_timer_expired() can be called from a signal. */
1152 pt = &active_timers[ts->clock->type];
1153 for(;;) {
1154 t = *pt;
1155 if (!t)
1156 break;
1157 if (t == ts) {
1158 *pt = t->next;
1159 break;
1161 pt = &t->next;
1165 /* modify the current timer so that it will be fired when current_time
1166 >= expire_time. The corresponding callback will be called. */
1167 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1169 QEMUTimer **pt, *t;
1171 qemu_del_timer(ts);
1173 /* add the timer in the sorted list */
1174 /* NOTE: this code must be signal safe because
1175 qemu_timer_expired() can be called from a signal. */
1176 pt = &active_timers[ts->clock->type];
1177 for(;;) {
1178 t = *pt;
1179 if (!t)
1180 break;
1181 if (t->expire_time > expire_time)
1182 break;
1183 pt = &t->next;
1185 ts->expire_time = expire_time;
1186 ts->next = *pt;
1187 *pt = ts;
1189 /* Rearm if necessary */
1190 if (pt == &active_timers[ts->clock->type]) {
1191 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1192 qemu_rearm_alarm_timer(alarm_timer);
1194 /* Interrupt execution to force deadline recalculation. */
1195 if (use_icount)
1196 qemu_notify_event();
1200 int qemu_timer_pending(QEMUTimer *ts)
1202 QEMUTimer *t;
1203 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1204 if (t == ts)
1205 return 1;
1207 return 0;
1210 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1212 if (!timer_head)
1213 return 0;
1214 return (timer_head->expire_time <= current_time);
1217 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1219 QEMUTimer *ts;
1221 for(;;) {
1222 ts = *ptimer_head;
1223 if (!ts || ts->expire_time > current_time)
1224 break;
1225 /* remove timer from the list before calling the callback */
1226 *ptimer_head = ts->next;
1227 ts->next = NULL;
1229 /* run the callback (the timer list can be modified) */
1230 ts->cb(ts->opaque);
1234 int64_t qemu_get_clock(QEMUClock *clock)
1236 switch(clock->type) {
1237 case QEMU_TIMER_REALTIME:
1238 return get_clock() / 1000000;
1239 default:
1240 case QEMU_TIMER_VIRTUAL:
1241 if (use_icount) {
1242 return cpu_get_icount();
1243 } else {
1244 return cpu_get_clock();
1249 static void init_timers(void)
1251 init_get_clock();
1252 ticks_per_sec = QEMU_TIMER_BASE;
1253 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1254 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1257 /* save a timer */
1258 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1260 uint64_t expire_time;
1262 if (qemu_timer_pending(ts)) {
1263 expire_time = ts->expire_time;
1264 } else {
1265 expire_time = -1;
1267 qemu_put_be64(f, expire_time);
1270 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1272 uint64_t expire_time;
1274 expire_time = qemu_get_be64(f);
1275 if (expire_time != -1) {
1276 qemu_mod_timer(ts, expire_time);
1277 } else {
1278 qemu_del_timer(ts);
1282 static void timer_save(QEMUFile *f, void *opaque)
1284 if (cpu_ticks_enabled) {
1285 hw_error("cannot save state if virtual timers are running");
1287 qemu_put_be64(f, cpu_ticks_offset);
1288 qemu_put_be64(f, ticks_per_sec);
1289 qemu_put_be64(f, cpu_clock_offset);
1292 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1294 if (version_id != 1 && version_id != 2)
1295 return -EINVAL;
1296 if (cpu_ticks_enabled) {
1297 return -EINVAL;
1299 cpu_ticks_offset=qemu_get_be64(f);
1300 ticks_per_sec=qemu_get_be64(f);
1301 if (version_id == 2) {
1302 cpu_clock_offset=qemu_get_be64(f);
1304 return 0;
1307 static void qemu_event_increment(void);
1309 #ifdef _WIN32
1310 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1311 DWORD_PTR dwUser, DWORD_PTR dw1,
1312 DWORD_PTR dw2)
1313 #else
1314 static void host_alarm_handler(int host_signum)
1315 #endif
1317 #if 0
1318 #define DISP_FREQ 1000
1320 static int64_t delta_min = INT64_MAX;
1321 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1322 static int count;
1323 ti = qemu_get_clock(vm_clock);
1324 if (last_clock != 0) {
1325 delta = ti - last_clock;
1326 if (delta < delta_min)
1327 delta_min = delta;
1328 if (delta > delta_max)
1329 delta_max = delta;
1330 delta_cum += delta;
1331 if (++count == DISP_FREQ) {
1332 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1333 muldiv64(delta_min, 1000000, ticks_per_sec),
1334 muldiv64(delta_max, 1000000, ticks_per_sec),
1335 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1336 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1337 count = 0;
1338 delta_min = INT64_MAX;
1339 delta_max = 0;
1340 delta_cum = 0;
1343 last_clock = ti;
1345 #endif
1346 if (alarm_has_dynticks(alarm_timer) ||
1347 (!use_icount &&
1348 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1349 qemu_get_clock(vm_clock))) ||
1350 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1351 qemu_get_clock(rt_clock))) {
1352 qemu_event_increment();
1353 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1355 #ifndef CONFIG_IOTHREAD
1356 if (next_cpu) {
1357 /* stop the currently executing cpu because a timer occured */
1358 cpu_exit(next_cpu);
1359 #ifdef CONFIG_KQEMU
1360 if (next_cpu->kqemu_enabled) {
1361 kqemu_cpu_interrupt(next_cpu);
1363 #endif
1365 #endif
1366 timer_alarm_pending = 1;
1367 qemu_notify_event();
1371 static int64_t qemu_next_deadline(void)
1373 int64_t delta;
1375 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1376 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1377 qemu_get_clock(vm_clock);
1378 } else {
1379 /* To avoid problems with overflow limit this to 2^32. */
1380 delta = INT32_MAX;
1383 if (delta < 0)
1384 delta = 0;
1386 return delta;
1389 #if defined(__linux__) || defined(_WIN32)
1390 static uint64_t qemu_next_deadline_dyntick(void)
1392 int64_t delta;
1393 int64_t rtdelta;
1395 if (use_icount)
1396 delta = INT32_MAX;
1397 else
1398 delta = (qemu_next_deadline() + 999) / 1000;
1400 if (active_timers[QEMU_TIMER_REALTIME]) {
1401 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1402 qemu_get_clock(rt_clock))*1000;
1403 if (rtdelta < delta)
1404 delta = rtdelta;
1407 if (delta < MIN_TIMER_REARM_US)
1408 delta = MIN_TIMER_REARM_US;
1410 return delta;
1412 #endif
1414 #ifndef _WIN32
1416 /* Sets a specific flag */
1417 static int fcntl_setfl(int fd, int flag)
1419 int flags;
1421 flags = fcntl(fd, F_GETFL);
1422 if (flags == -1)
1423 return -errno;
1425 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1426 return -errno;
1428 return 0;
1431 #if defined(__linux__)
1433 #define RTC_FREQ 1024
1435 static void enable_sigio_timer(int fd)
1437 struct sigaction act;
1439 /* timer signal */
1440 sigfillset(&act.sa_mask);
1441 act.sa_flags = 0;
1442 act.sa_handler = host_alarm_handler;
1444 sigaction(SIGIO, &act, NULL);
1445 fcntl_setfl(fd, O_ASYNC);
1446 fcntl(fd, F_SETOWN, getpid());
1449 static int hpet_start_timer(struct qemu_alarm_timer *t)
1451 struct hpet_info info;
1452 int r, fd;
1454 fd = open("/dev/hpet", O_RDONLY);
1455 if (fd < 0)
1456 return -1;
1458 /* Set frequency */
1459 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1460 if (r < 0) {
1461 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1462 "error, but for better emulation accuracy type:\n"
1463 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1464 goto fail;
1467 /* Check capabilities */
1468 r = ioctl(fd, HPET_INFO, &info);
1469 if (r < 0)
1470 goto fail;
1472 /* Enable periodic mode */
1473 r = ioctl(fd, HPET_EPI, 0);
1474 if (info.hi_flags && (r < 0))
1475 goto fail;
1477 /* Enable interrupt */
1478 r = ioctl(fd, HPET_IE_ON, 0);
1479 if (r < 0)
1480 goto fail;
1482 enable_sigio_timer(fd);
1483 t->priv = (void *)(long)fd;
1485 return 0;
1486 fail:
1487 close(fd);
1488 return -1;
1491 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1493 int fd = (long)t->priv;
1495 close(fd);
1498 static int rtc_start_timer(struct qemu_alarm_timer *t)
1500 int rtc_fd;
1501 unsigned long current_rtc_freq = 0;
1503 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1504 if (rtc_fd < 0)
1505 return -1;
1506 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1507 if (current_rtc_freq != RTC_FREQ &&
1508 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1509 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1510 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1511 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1512 goto fail;
1514 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1515 fail:
1516 close(rtc_fd);
1517 return -1;
1520 enable_sigio_timer(rtc_fd);
1522 t->priv = (void *)(long)rtc_fd;
1524 return 0;
1527 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1529 int rtc_fd = (long)t->priv;
1531 close(rtc_fd);
1534 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1536 struct sigevent ev;
1537 timer_t host_timer;
1538 struct sigaction act;
1540 sigfillset(&act.sa_mask);
1541 act.sa_flags = 0;
1542 act.sa_handler = host_alarm_handler;
1544 sigaction(SIGALRM, &act, NULL);
1547 * Initialize ev struct to 0 to avoid valgrind complaining
1548 * about uninitialized data in timer_create call
1550 memset(&ev, 0, sizeof(ev));
1551 ev.sigev_value.sival_int = 0;
1552 ev.sigev_notify = SIGEV_SIGNAL;
1553 ev.sigev_signo = SIGALRM;
1555 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1556 perror("timer_create");
1558 /* disable dynticks */
1559 fprintf(stderr, "Dynamic Ticks disabled\n");
1561 return -1;
1564 t->priv = (void *)(long)host_timer;
1566 return 0;
1569 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1571 timer_t host_timer = (timer_t)(long)t->priv;
1573 timer_delete(host_timer);
1576 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1578 timer_t host_timer = (timer_t)(long)t->priv;
1579 struct itimerspec timeout;
1580 int64_t nearest_delta_us = INT64_MAX;
1581 int64_t current_us;
1583 if (!active_timers[QEMU_TIMER_REALTIME] &&
1584 !active_timers[QEMU_TIMER_VIRTUAL])
1585 return;
1587 nearest_delta_us = qemu_next_deadline_dyntick();
1589 /* check whether a timer is already running */
1590 if (timer_gettime(host_timer, &timeout)) {
1591 perror("gettime");
1592 fprintf(stderr, "Internal timer error: aborting\n");
1593 exit(1);
1595 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1596 if (current_us && current_us <= nearest_delta_us)
1597 return;
1599 timeout.it_interval.tv_sec = 0;
1600 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1601 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1602 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1603 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1604 perror("settime");
1605 fprintf(stderr, "Internal timer error: aborting\n");
1606 exit(1);
1610 #endif /* defined(__linux__) */
1612 static int unix_start_timer(struct qemu_alarm_timer *t)
1614 struct sigaction act;
1615 struct itimerval itv;
1616 int err;
1618 /* timer signal */
1619 sigfillset(&act.sa_mask);
1620 act.sa_flags = 0;
1621 act.sa_handler = host_alarm_handler;
1623 sigaction(SIGALRM, &act, NULL);
1625 itv.it_interval.tv_sec = 0;
1626 /* for i386 kernel 2.6 to get 1 ms */
1627 itv.it_interval.tv_usec = 999;
1628 itv.it_value.tv_sec = 0;
1629 itv.it_value.tv_usec = 10 * 1000;
1631 err = setitimer(ITIMER_REAL, &itv, NULL);
1632 if (err)
1633 return -1;
1635 return 0;
1638 static void unix_stop_timer(struct qemu_alarm_timer *t)
1640 struct itimerval itv;
1642 memset(&itv, 0, sizeof(itv));
1643 setitimer(ITIMER_REAL, &itv, NULL);
1646 #endif /* !defined(_WIN32) */
1649 #ifdef _WIN32
1651 static int win32_start_timer(struct qemu_alarm_timer *t)
1653 TIMECAPS tc;
1654 struct qemu_alarm_win32 *data = t->priv;
1655 UINT flags;
1657 memset(&tc, 0, sizeof(tc));
1658 timeGetDevCaps(&tc, sizeof(tc));
1660 if (data->period < tc.wPeriodMin)
1661 data->period = tc.wPeriodMin;
1663 timeBeginPeriod(data->period);
1665 flags = TIME_CALLBACK_FUNCTION;
1666 if (alarm_has_dynticks(t))
1667 flags |= TIME_ONESHOT;
1668 else
1669 flags |= TIME_PERIODIC;
1671 data->timerId = timeSetEvent(1, // interval (ms)
1672 data->period, // resolution
1673 host_alarm_handler, // function
1674 (DWORD)t, // parameter
1675 flags);
1677 if (!data->timerId) {
1678 perror("Failed to initialize win32 alarm timer");
1679 timeEndPeriod(data->period);
1680 return -1;
1683 return 0;
1686 static void win32_stop_timer(struct qemu_alarm_timer *t)
1688 struct qemu_alarm_win32 *data = t->priv;
1690 timeKillEvent(data->timerId);
1691 timeEndPeriod(data->period);
1694 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1696 struct qemu_alarm_win32 *data = t->priv;
1697 uint64_t nearest_delta_us;
1699 if (!active_timers[QEMU_TIMER_REALTIME] &&
1700 !active_timers[QEMU_TIMER_VIRTUAL])
1701 return;
1703 nearest_delta_us = qemu_next_deadline_dyntick();
1704 nearest_delta_us /= 1000;
1706 timeKillEvent(data->timerId);
1708 data->timerId = timeSetEvent(1,
1709 data->period,
1710 host_alarm_handler,
1711 (DWORD)t,
1712 TIME_ONESHOT | TIME_PERIODIC);
1714 if (!data->timerId) {
1715 perror("Failed to re-arm win32 alarm timer");
1717 timeEndPeriod(data->period);
1718 exit(1);
1722 #endif /* _WIN32 */
1724 static int init_timer_alarm(void)
1726 struct qemu_alarm_timer *t = NULL;
1727 int i, err = -1;
1729 for (i = 0; alarm_timers[i].name; i++) {
1730 t = &alarm_timers[i];
1732 err = t->start(t);
1733 if (!err)
1734 break;
1737 if (err) {
1738 err = -ENOENT;
1739 goto fail;
1742 alarm_timer = t;
1744 return 0;
1746 fail:
1747 return err;
1750 static void quit_timers(void)
1752 alarm_timer->stop(alarm_timer);
1753 alarm_timer = NULL;
1756 /***********************************************************/
1757 /* host time/date access */
1758 void qemu_get_timedate(struct tm *tm, int offset)
1760 time_t ti;
1761 struct tm *ret;
1763 time(&ti);
1764 ti += offset;
1765 if (rtc_date_offset == -1) {
1766 if (rtc_utc)
1767 ret = gmtime(&ti);
1768 else
1769 ret = localtime(&ti);
1770 } else {
1771 ti -= rtc_date_offset;
1772 ret = gmtime(&ti);
1775 memcpy(tm, ret, sizeof(struct tm));
1778 int qemu_timedate_diff(struct tm *tm)
1780 time_t seconds;
1782 if (rtc_date_offset == -1)
1783 if (rtc_utc)
1784 seconds = mktimegm(tm);
1785 else
1786 seconds = mktime(tm);
1787 else
1788 seconds = mktimegm(tm) + rtc_date_offset;
1790 return seconds - time(NULL);
1793 #ifdef _WIN32
1794 static void socket_cleanup(void)
1796 WSACleanup();
1799 static int socket_init(void)
1801 WSADATA Data;
1802 int ret, err;
1804 ret = WSAStartup(MAKEWORD(2,2), &Data);
1805 if (ret != 0) {
1806 err = WSAGetLastError();
1807 fprintf(stderr, "WSAStartup: %d\n", err);
1808 return -1;
1810 atexit(socket_cleanup);
1811 return 0;
1813 #endif
1815 int get_param_value(char *buf, int buf_size,
1816 const char *tag, const char *str)
1818 const char *p;
1819 char option[128];
1821 p = str;
1822 for(;;) {
1823 p = get_opt_name(option, sizeof(option), p, '=');
1824 if (*p != '=')
1825 break;
1826 p++;
1827 if (!strcmp(tag, option)) {
1828 (void)get_opt_value(buf, buf_size, p);
1829 return strlen(buf);
1830 } else {
1831 p = get_opt_value(NULL, 0, p);
1833 if (*p != ',')
1834 break;
1835 p++;
1837 return 0;
1840 int check_params(char *buf, int buf_size,
1841 const char * const *params, const char *str)
1843 const char *p;
1844 int i;
1846 p = str;
1847 while (*p != '\0') {
1848 p = get_opt_name(buf, buf_size, p, '=');
1849 if (*p != '=') {
1850 return -1;
1852 p++;
1853 for (i = 0; params[i] != NULL; i++) {
1854 if (!strcmp(params[i], buf)) {
1855 break;
1858 if (params[i] == NULL) {
1859 return -1;
1861 p = get_opt_value(NULL, 0, p);
1862 if (*p != ',') {
1863 break;
1865 p++;
1867 return 0;
1870 /***********************************************************/
1871 /* Bluetooth support */
1872 static int nb_hcis;
1873 static int cur_hci;
1874 static struct HCIInfo *hci_table[MAX_NICS];
1876 static struct bt_vlan_s {
1877 struct bt_scatternet_s net;
1878 int id;
1879 struct bt_vlan_s *next;
1880 } *first_bt_vlan;
1882 /* find or alloc a new bluetooth "VLAN" */
1883 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1885 struct bt_vlan_s **pvlan, *vlan;
1886 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1887 if (vlan->id == id)
1888 return &vlan->net;
1890 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1891 vlan->id = id;
1892 pvlan = &first_bt_vlan;
1893 while (*pvlan != NULL)
1894 pvlan = &(*pvlan)->next;
1895 *pvlan = vlan;
1896 return &vlan->net;
1899 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1903 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1905 return -ENOTSUP;
1908 static struct HCIInfo null_hci = {
1909 .cmd_send = null_hci_send,
1910 .sco_send = null_hci_send,
1911 .acl_send = null_hci_send,
1912 .bdaddr_set = null_hci_addr_set,
1915 struct HCIInfo *qemu_next_hci(void)
1917 if (cur_hci == nb_hcis)
1918 return &null_hci;
1920 return hci_table[cur_hci++];
1923 static struct HCIInfo *hci_init(const char *str)
1925 char *endp;
1926 struct bt_scatternet_s *vlan = 0;
1928 if (!strcmp(str, "null"))
1929 /* null */
1930 return &null_hci;
1931 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1932 /* host[:hciN] */
1933 return bt_host_hci(str[4] ? str + 5 : "hci0");
1934 else if (!strncmp(str, "hci", 3)) {
1935 /* hci[,vlan=n] */
1936 if (str[3]) {
1937 if (!strncmp(str + 3, ",vlan=", 6)) {
1938 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1939 if (*endp)
1940 vlan = 0;
1942 } else
1943 vlan = qemu_find_bt_vlan(0);
1944 if (vlan)
1945 return bt_new_hci(vlan);
1948 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1950 return 0;
1953 static int bt_hci_parse(const char *str)
1955 struct HCIInfo *hci;
1956 bdaddr_t bdaddr;
1958 if (nb_hcis >= MAX_NICS) {
1959 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1960 return -1;
1963 hci = hci_init(str);
1964 if (!hci)
1965 return -1;
1967 bdaddr.b[0] = 0x52;
1968 bdaddr.b[1] = 0x54;
1969 bdaddr.b[2] = 0x00;
1970 bdaddr.b[3] = 0x12;
1971 bdaddr.b[4] = 0x34;
1972 bdaddr.b[5] = 0x56 + nb_hcis;
1973 hci->bdaddr_set(hci, bdaddr.b);
1975 hci_table[nb_hcis++] = hci;
1977 return 0;
1980 static void bt_vhci_add(int vlan_id)
1982 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1984 if (!vlan->slave)
1985 fprintf(stderr, "qemu: warning: adding a VHCI to "
1986 "an empty scatternet %i\n", vlan_id);
1988 bt_vhci_init(bt_new_hci(vlan));
1991 static struct bt_device_s *bt_device_add(const char *opt)
1993 struct bt_scatternet_s *vlan;
1994 int vlan_id = 0;
1995 char *endp = strstr(opt, ",vlan=");
1996 int len = (endp ? endp - opt : strlen(opt)) + 1;
1997 char devname[10];
1999 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2001 if (endp) {
2002 vlan_id = strtol(endp + 6, &endp, 0);
2003 if (*endp) {
2004 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2005 return 0;
2009 vlan = qemu_find_bt_vlan(vlan_id);
2011 if (!vlan->slave)
2012 fprintf(stderr, "qemu: warning: adding a slave device to "
2013 "an empty scatternet %i\n", vlan_id);
2015 if (!strcmp(devname, "keyboard"))
2016 return bt_keyboard_init(vlan);
2018 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2019 return 0;
2022 static int bt_parse(const char *opt)
2024 const char *endp, *p;
2025 int vlan;
2027 if (strstart(opt, "hci", &endp)) {
2028 if (!*endp || *endp == ',') {
2029 if (*endp)
2030 if (!strstart(endp, ",vlan=", 0))
2031 opt = endp + 1;
2033 return bt_hci_parse(opt);
2035 } else if (strstart(opt, "vhci", &endp)) {
2036 if (!*endp || *endp == ',') {
2037 if (*endp) {
2038 if (strstart(endp, ",vlan=", &p)) {
2039 vlan = strtol(p, (char **) &endp, 0);
2040 if (*endp) {
2041 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2042 return 1;
2044 } else {
2045 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2046 return 1;
2048 } else
2049 vlan = 0;
2051 bt_vhci_add(vlan);
2052 return 0;
2054 } else if (strstart(opt, "device:", &endp))
2055 return !bt_device_add(endp);
2057 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2058 return 1;
2061 /***********************************************************/
2062 /* QEMU Block devices */
2064 #define HD_ALIAS "index=%d,media=disk"
2065 #define CDROM_ALIAS "index=2,media=cdrom"
2066 #define FD_ALIAS "index=%d,if=floppy"
2067 #define PFLASH_ALIAS "if=pflash"
2068 #define MTD_ALIAS "if=mtd"
2069 #define SD_ALIAS "index=0,if=sd"
2071 static int drive_opt_get_free_idx(void)
2073 int index;
2075 for (index = 0; index < MAX_DRIVES; index++)
2076 if (!drives_opt[index].used) {
2077 drives_opt[index].used = 1;
2078 return index;
2081 return -1;
2084 static int drive_get_free_idx(void)
2086 int index;
2088 for (index = 0; index < MAX_DRIVES; index++)
2089 if (!drives_table[index].used) {
2090 drives_table[index].used = 1;
2091 return index;
2094 return -1;
2097 int drive_add(const char *file, const char *fmt, ...)
2099 va_list ap;
2100 int index = drive_opt_get_free_idx();
2102 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2103 fprintf(stderr, "qemu: too many drives\n");
2104 return -1;
2107 drives_opt[index].file = file;
2108 va_start(ap, fmt);
2109 vsnprintf(drives_opt[index].opt,
2110 sizeof(drives_opt[0].opt), fmt, ap);
2111 va_end(ap);
2113 nb_drives_opt++;
2114 return index;
2117 void drive_remove(int index)
2119 drives_opt[index].used = 0;
2120 nb_drives_opt--;
2123 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2125 int index;
2127 /* seek interface, bus and unit */
2129 for (index = 0; index < MAX_DRIVES; index++)
2130 if (drives_table[index].type == type &&
2131 drives_table[index].bus == bus &&
2132 drives_table[index].unit == unit &&
2133 drives_table[index].used)
2134 return index;
2136 return -1;
2139 int drive_get_max_bus(BlockInterfaceType type)
2141 int max_bus;
2142 int index;
2144 max_bus = -1;
2145 for (index = 0; index < nb_drives; index++) {
2146 if(drives_table[index].type == type &&
2147 drives_table[index].bus > max_bus)
2148 max_bus = drives_table[index].bus;
2150 return max_bus;
2153 const char *drive_get_serial(BlockDriverState *bdrv)
2155 int index;
2157 for (index = 0; index < nb_drives; index++)
2158 if (drives_table[index].bdrv == bdrv)
2159 return drives_table[index].serial;
2161 return "\0";
2164 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2166 int index;
2168 for (index = 0; index < nb_drives; index++)
2169 if (drives_table[index].bdrv == bdrv)
2170 return drives_table[index].onerror;
2172 return BLOCK_ERR_STOP_ENOSPC;
2175 static void bdrv_format_print(void *opaque, const char *name)
2177 fprintf(stderr, " %s", name);
2180 void drive_uninit(BlockDriverState *bdrv)
2182 int i;
2184 for (i = 0; i < MAX_DRIVES; i++)
2185 if (drives_table[i].bdrv == bdrv) {
2186 drives_table[i].bdrv = NULL;
2187 drives_table[i].used = 0;
2188 drive_remove(drives_table[i].drive_opt_idx);
2189 nb_drives--;
2190 break;
2194 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2196 char buf[128];
2197 char file[1024];
2198 char devname[128];
2199 char serial[21];
2200 const char *mediastr = "";
2201 BlockInterfaceType type;
2202 enum { MEDIA_DISK, MEDIA_CDROM } media;
2203 int bus_id, unit_id;
2204 int cyls, heads, secs, translation;
2205 BlockDriverState *bdrv;
2206 BlockDriver *drv = NULL;
2207 QEMUMachine *machine = opaque;
2208 int max_devs;
2209 int index;
2210 int cache;
2211 int bdrv_flags, onerror;
2212 int drives_table_idx;
2213 char *str = arg->opt;
2214 static const char * const params[] = { "bus", "unit", "if", "index",
2215 "cyls", "heads", "secs", "trans",
2216 "media", "snapshot", "file",
2217 "cache", "format", "serial", "werror",
2218 NULL };
2220 if (check_params(buf, sizeof(buf), params, str) < 0) {
2221 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2222 buf, str);
2223 return -1;
2226 file[0] = 0;
2227 cyls = heads = secs = 0;
2228 bus_id = 0;
2229 unit_id = -1;
2230 translation = BIOS_ATA_TRANSLATION_AUTO;
2231 index = -1;
2232 cache = 3;
2234 if (machine->use_scsi) {
2235 type = IF_SCSI;
2236 max_devs = MAX_SCSI_DEVS;
2237 pstrcpy(devname, sizeof(devname), "scsi");
2238 } else {
2239 type = IF_IDE;
2240 max_devs = MAX_IDE_DEVS;
2241 pstrcpy(devname, sizeof(devname), "ide");
2243 media = MEDIA_DISK;
2245 /* extract parameters */
2247 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2248 bus_id = strtol(buf, NULL, 0);
2249 if (bus_id < 0) {
2250 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2251 return -1;
2255 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2256 unit_id = strtol(buf, NULL, 0);
2257 if (unit_id < 0) {
2258 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2259 return -1;
2263 if (get_param_value(buf, sizeof(buf), "if", str)) {
2264 pstrcpy(devname, sizeof(devname), buf);
2265 if (!strcmp(buf, "ide")) {
2266 type = IF_IDE;
2267 max_devs = MAX_IDE_DEVS;
2268 } else if (!strcmp(buf, "scsi")) {
2269 type = IF_SCSI;
2270 max_devs = MAX_SCSI_DEVS;
2271 } else if (!strcmp(buf, "floppy")) {
2272 type = IF_FLOPPY;
2273 max_devs = 0;
2274 } else if (!strcmp(buf, "pflash")) {
2275 type = IF_PFLASH;
2276 max_devs = 0;
2277 } else if (!strcmp(buf, "mtd")) {
2278 type = IF_MTD;
2279 max_devs = 0;
2280 } else if (!strcmp(buf, "sd")) {
2281 type = IF_SD;
2282 max_devs = 0;
2283 } else if (!strcmp(buf, "virtio")) {
2284 type = IF_VIRTIO;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "xen")) {
2287 type = IF_XEN;
2288 max_devs = 0;
2289 } else {
2290 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2291 return -1;
2295 if (get_param_value(buf, sizeof(buf), "index", str)) {
2296 index = strtol(buf, NULL, 0);
2297 if (index < 0) {
2298 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2299 return -1;
2303 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2304 cyls = strtol(buf, NULL, 0);
2307 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2308 heads = strtol(buf, NULL, 0);
2311 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2312 secs = strtol(buf, NULL, 0);
2315 if (cyls || heads || secs) {
2316 if (cyls < 1 || cyls > 16383) {
2317 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2318 return -1;
2320 if (heads < 1 || heads > 16) {
2321 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2322 return -1;
2324 if (secs < 1 || secs > 63) {
2325 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2326 return -1;
2330 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2331 if (!cyls) {
2332 fprintf(stderr,
2333 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2334 str);
2335 return -1;
2337 if (!strcmp(buf, "none"))
2338 translation = BIOS_ATA_TRANSLATION_NONE;
2339 else if (!strcmp(buf, "lba"))
2340 translation = BIOS_ATA_TRANSLATION_LBA;
2341 else if (!strcmp(buf, "auto"))
2342 translation = BIOS_ATA_TRANSLATION_AUTO;
2343 else {
2344 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2345 return -1;
2349 if (get_param_value(buf, sizeof(buf), "media", str)) {
2350 if (!strcmp(buf, "disk")) {
2351 media = MEDIA_DISK;
2352 } else if (!strcmp(buf, "cdrom")) {
2353 if (cyls || secs || heads) {
2354 fprintf(stderr,
2355 "qemu: '%s' invalid physical CHS format\n", str);
2356 return -1;
2358 media = MEDIA_CDROM;
2359 } else {
2360 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2361 return -1;
2365 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2366 if (!strcmp(buf, "on"))
2367 snapshot = 1;
2368 else if (!strcmp(buf, "off"))
2369 snapshot = 0;
2370 else {
2371 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2372 return -1;
2376 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2377 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2378 cache = 0;
2379 else if (!strcmp(buf, "writethrough"))
2380 cache = 1;
2381 else if (!strcmp(buf, "writeback"))
2382 cache = 2;
2383 else {
2384 fprintf(stderr, "qemu: invalid cache option\n");
2385 return -1;
2389 if (get_param_value(buf, sizeof(buf), "format", str)) {
2390 if (strcmp(buf, "?") == 0) {
2391 fprintf(stderr, "qemu: Supported formats:");
2392 bdrv_iterate_format(bdrv_format_print, NULL);
2393 fprintf(stderr, "\n");
2394 return -1;
2396 drv = bdrv_find_format(buf);
2397 if (!drv) {
2398 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2399 return -1;
2403 if (arg->file == NULL)
2404 get_param_value(file, sizeof(file), "file", str);
2405 else
2406 pstrcpy(file, sizeof(file), arg->file);
2408 if (!get_param_value(serial, sizeof(serial), "serial", str))
2409 memset(serial, 0, sizeof(serial));
2411 onerror = BLOCK_ERR_STOP_ENOSPC;
2412 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2413 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2414 fprintf(stderr, "werror is no supported by this format\n");
2415 return -1;
2417 if (!strcmp(buf, "ignore"))
2418 onerror = BLOCK_ERR_IGNORE;
2419 else if (!strcmp(buf, "enospc"))
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 else if (!strcmp(buf, "stop"))
2422 onerror = BLOCK_ERR_STOP_ANY;
2423 else if (!strcmp(buf, "report"))
2424 onerror = BLOCK_ERR_REPORT;
2425 else {
2426 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2427 return -1;
2431 /* compute bus and unit according index */
2433 if (index != -1) {
2434 if (bus_id != 0 || unit_id != -1) {
2435 fprintf(stderr,
2436 "qemu: '%s' index cannot be used with bus and unit\n", str);
2437 return -1;
2439 if (max_devs == 0)
2441 unit_id = index;
2442 bus_id = 0;
2443 } else {
2444 unit_id = index % max_devs;
2445 bus_id = index / max_devs;
2449 /* if user doesn't specify a unit_id,
2450 * try to find the first free
2453 if (unit_id == -1) {
2454 unit_id = 0;
2455 while (drive_get_index(type, bus_id, unit_id) != -1) {
2456 unit_id++;
2457 if (max_devs && unit_id >= max_devs) {
2458 unit_id -= max_devs;
2459 bus_id++;
2464 /* check unit id */
2466 if (max_devs && unit_id >= max_devs) {
2467 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2468 str, unit_id, max_devs - 1);
2469 return -1;
2473 * ignore multiple definitions
2476 if (drive_get_index(type, bus_id, unit_id) != -1)
2477 return -2;
2479 /* init */
2481 if (type == IF_IDE || type == IF_SCSI)
2482 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2483 if (max_devs)
2484 snprintf(buf, sizeof(buf), "%s%i%s%i",
2485 devname, bus_id, mediastr, unit_id);
2486 else
2487 snprintf(buf, sizeof(buf), "%s%s%i",
2488 devname, mediastr, unit_id);
2489 bdrv = bdrv_new(buf);
2490 drives_table_idx = drive_get_free_idx();
2491 drives_table[drives_table_idx].bdrv = bdrv;
2492 drives_table[drives_table_idx].type = type;
2493 drives_table[drives_table_idx].bus = bus_id;
2494 drives_table[drives_table_idx].unit = unit_id;
2495 drives_table[drives_table_idx].onerror = onerror;
2496 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2497 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2498 nb_drives++;
2500 switch(type) {
2501 case IF_IDE:
2502 case IF_SCSI:
2503 case IF_XEN:
2504 switch(media) {
2505 case MEDIA_DISK:
2506 if (cyls != 0) {
2507 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2508 bdrv_set_translation_hint(bdrv, translation);
2510 break;
2511 case MEDIA_CDROM:
2512 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2513 break;
2515 break;
2516 case IF_SD:
2517 /* FIXME: This isn't really a floppy, but it's a reasonable
2518 approximation. */
2519 case IF_FLOPPY:
2520 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2521 break;
2522 case IF_PFLASH:
2523 case IF_MTD:
2524 case IF_VIRTIO:
2525 break;
2526 case IF_COUNT:
2527 abort();
2529 if (!file[0])
2530 return -2;
2531 bdrv_flags = 0;
2532 if (snapshot) {
2533 bdrv_flags |= BDRV_O_SNAPSHOT;
2534 cache = 2; /* always use write-back with snapshot */
2536 if (cache == 0) /* no caching */
2537 bdrv_flags |= BDRV_O_NOCACHE;
2538 else if (cache == 2) /* write-back */
2539 bdrv_flags |= BDRV_O_CACHE_WB;
2540 else if (cache == 3) /* not specified */
2541 bdrv_flags |= BDRV_O_CACHE_DEF;
2542 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2543 fprintf(stderr, "qemu: could not open disk image %s\n",
2544 file);
2545 return -1;
2547 if (bdrv_key_required(bdrv))
2548 autostart = 0;
2549 return drives_table_idx;
2552 static void numa_add(const char *optarg)
2554 char option[128];
2555 char *endptr;
2556 unsigned long long value, endvalue;
2557 int nodenr;
2559 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2560 if (!strcmp(option, "node")) {
2561 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2562 nodenr = nb_numa_nodes;
2563 } else {
2564 nodenr = strtoull(option, NULL, 10);
2567 if (get_param_value(option, 128, "mem", optarg) == 0) {
2568 node_mem[nodenr] = 0;
2569 } else {
2570 value = strtoull(option, &endptr, 0);
2571 switch (*endptr) {
2572 case 0: case 'M': case 'm':
2573 value <<= 20;
2574 break;
2575 case 'G': case 'g':
2576 value <<= 30;
2577 break;
2579 node_mem[nodenr] = value;
2581 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2582 node_cpumask[nodenr] = 0;
2583 } else {
2584 value = strtoull(option, &endptr, 10);
2585 if (value >= 64) {
2586 value = 63;
2587 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2588 } else {
2589 if (*endptr == '-') {
2590 endvalue = strtoull(endptr+1, &endptr, 10);
2591 if (endvalue >= 63) {
2592 endvalue = 62;
2593 fprintf(stderr,
2594 "only 63 CPUs in NUMA mode supported.\n");
2596 value = (1 << (endvalue + 1)) - (1 << value);
2597 } else {
2598 value = 1 << value;
2601 node_cpumask[nodenr] = value;
2603 nb_numa_nodes++;
2605 return;
2608 /***********************************************************/
2609 /* USB devices */
2611 static USBPort *used_usb_ports;
2612 static USBPort *free_usb_ports;
2614 /* ??? Maybe change this to register a hub to keep track of the topology. */
2615 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2616 usb_attachfn attach)
2618 port->opaque = opaque;
2619 port->index = index;
2620 port->attach = attach;
2621 port->next = free_usb_ports;
2622 free_usb_ports = port;
2625 int usb_device_add_dev(USBDevice *dev)
2627 USBPort *port;
2629 /* Find a USB port to add the device to. */
2630 port = free_usb_ports;
2631 if (!port->next) {
2632 USBDevice *hub;
2634 /* Create a new hub and chain it on. */
2635 free_usb_ports = NULL;
2636 port->next = used_usb_ports;
2637 used_usb_ports = port;
2639 hub = usb_hub_init(VM_USB_HUB_SIZE);
2640 usb_attach(port, hub);
2641 port = free_usb_ports;
2644 free_usb_ports = port->next;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2647 usb_attach(port, dev);
2648 return 0;
2651 static void usb_msd_password_cb(void *opaque, int err)
2653 USBDevice *dev = opaque;
2655 if (!err)
2656 usb_device_add_dev(dev);
2657 else
2658 dev->handle_destroy(dev);
2661 static int usb_device_add(const char *devname, int is_hotplug)
2663 const char *p;
2664 USBDevice *dev;
2666 if (!free_usb_ports)
2667 return -1;
2669 if (strstart(devname, "host:", &p)) {
2670 dev = usb_host_device_open(p);
2671 } else if (!strcmp(devname, "mouse")) {
2672 dev = usb_mouse_init();
2673 } else if (!strcmp(devname, "tablet")) {
2674 dev = usb_tablet_init();
2675 } else if (!strcmp(devname, "keyboard")) {
2676 dev = usb_keyboard_init();
2677 } else if (strstart(devname, "disk:", &p)) {
2678 BlockDriverState *bs;
2680 dev = usb_msd_init(p);
2681 if (!dev)
2682 return -1;
2683 bs = usb_msd_get_bdrv(dev);
2684 if (bdrv_key_required(bs)) {
2685 autostart = 0;
2686 if (is_hotplug) {
2687 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2688 dev);
2689 return 0;
2692 } else if (!strcmp(devname, "wacom-tablet")) {
2693 dev = usb_wacom_init();
2694 } else if (strstart(devname, "serial:", &p)) {
2695 dev = usb_serial_init(p);
2696 #ifdef CONFIG_BRLAPI
2697 } else if (!strcmp(devname, "braille")) {
2698 dev = usb_baum_init();
2699 #endif
2700 } else if (strstart(devname, "net:", &p)) {
2701 int nic = nb_nics;
2703 if (net_client_init(NULL, "nic", p) < 0)
2704 return -1;
2705 nd_table[nic].model = "usb";
2706 dev = usb_net_init(&nd_table[nic]);
2707 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2708 dev = usb_bt_init(devname[2] ? hci_init(p) :
2709 bt_new_hci(qemu_find_bt_vlan(0)));
2710 } else {
2711 return -1;
2713 if (!dev)
2714 return -1;
2716 return usb_device_add_dev(dev);
2719 int usb_device_del_addr(int bus_num, int addr)
2721 USBPort *port;
2722 USBPort **lastp;
2723 USBDevice *dev;
2725 if (!used_usb_ports)
2726 return -1;
2728 if (bus_num != 0)
2729 return -1;
2731 lastp = &used_usb_ports;
2732 port = used_usb_ports;
2733 while (port && port->dev->addr != addr) {
2734 lastp = &port->next;
2735 port = port->next;
2738 if (!port)
2739 return -1;
2741 dev = port->dev;
2742 *lastp = port->next;
2743 usb_attach(port, NULL);
2744 dev->handle_destroy(dev);
2745 port->next = free_usb_ports;
2746 free_usb_ports = port;
2747 return 0;
2750 static int usb_device_del(const char *devname)
2752 int bus_num, addr;
2753 const char *p;
2755 if (strstart(devname, "host:", &p))
2756 return usb_host_device_close(p);
2758 if (!used_usb_ports)
2759 return -1;
2761 p = strchr(devname, '.');
2762 if (!p)
2763 return -1;
2764 bus_num = strtoul(devname, NULL, 0);
2765 addr = strtoul(p + 1, NULL, 0);
2767 return usb_device_del_addr(bus_num, addr);
2770 void do_usb_add(Monitor *mon, const char *devname)
2772 usb_device_add(devname, 1);
2775 void do_usb_del(Monitor *mon, const char *devname)
2777 usb_device_del(devname);
2780 void usb_info(Monitor *mon)
2782 USBDevice *dev;
2783 USBPort *port;
2784 const char *speed_str;
2786 if (!usb_enabled) {
2787 monitor_printf(mon, "USB support not enabled\n");
2788 return;
2791 for (port = used_usb_ports; port; port = port->next) {
2792 dev = port->dev;
2793 if (!dev)
2794 continue;
2795 switch(dev->speed) {
2796 case USB_SPEED_LOW:
2797 speed_str = "1.5";
2798 break;
2799 case USB_SPEED_FULL:
2800 speed_str = "12";
2801 break;
2802 case USB_SPEED_HIGH:
2803 speed_str = "480";
2804 break;
2805 default:
2806 speed_str = "?";
2807 break;
2809 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2810 0, dev->addr, speed_str, dev->devname);
2814 /***********************************************************/
2815 /* PCMCIA/Cardbus */
2817 static struct pcmcia_socket_entry_s {
2818 PCMCIASocket *socket;
2819 struct pcmcia_socket_entry_s *next;
2820 } *pcmcia_sockets = 0;
2822 void pcmcia_socket_register(PCMCIASocket *socket)
2824 struct pcmcia_socket_entry_s *entry;
2826 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2827 entry->socket = socket;
2828 entry->next = pcmcia_sockets;
2829 pcmcia_sockets = entry;
2832 void pcmcia_socket_unregister(PCMCIASocket *socket)
2834 struct pcmcia_socket_entry_s *entry, **ptr;
2836 ptr = &pcmcia_sockets;
2837 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2838 if (entry->socket == socket) {
2839 *ptr = entry->next;
2840 qemu_free(entry);
2844 void pcmcia_info(Monitor *mon)
2846 struct pcmcia_socket_entry_s *iter;
2848 if (!pcmcia_sockets)
2849 monitor_printf(mon, "No PCMCIA sockets\n");
2851 for (iter = pcmcia_sockets; iter; iter = iter->next)
2852 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2853 iter->socket->attached ? iter->socket->card_string :
2854 "Empty");
2857 /***********************************************************/
2858 /* register display */
2860 struct DisplayAllocator default_allocator = {
2861 defaultallocator_create_displaysurface,
2862 defaultallocator_resize_displaysurface,
2863 defaultallocator_free_displaysurface
2866 void register_displaystate(DisplayState *ds)
2868 DisplayState **s;
2869 s = &display_state;
2870 while (*s != NULL)
2871 s = &(*s)->next;
2872 ds->next = NULL;
2873 *s = ds;
2876 DisplayState *get_displaystate(void)
2878 return display_state;
2881 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2883 if(ds->allocator == &default_allocator) ds->allocator = da;
2884 return ds->allocator;
2887 /* dumb display */
2889 static void dumb_display_init(void)
2891 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2892 ds->allocator = &default_allocator;
2893 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2894 register_displaystate(ds);
2897 /***********************************************************/
2898 /* I/O handling */
2900 typedef struct IOHandlerRecord {
2901 int fd;
2902 IOCanRWHandler *fd_read_poll;
2903 IOHandler *fd_read;
2904 IOHandler *fd_write;
2905 int deleted;
2906 void *opaque;
2907 /* temporary data */
2908 struct pollfd *ufd;
2909 struct IOHandlerRecord *next;
2910 } IOHandlerRecord;
2912 static IOHandlerRecord *first_io_handler;
2914 /* XXX: fd_read_poll should be suppressed, but an API change is
2915 necessary in the character devices to suppress fd_can_read(). */
2916 int qemu_set_fd_handler2(int fd,
2917 IOCanRWHandler *fd_read_poll,
2918 IOHandler *fd_read,
2919 IOHandler *fd_write,
2920 void *opaque)
2922 IOHandlerRecord **pioh, *ioh;
2924 if (!fd_read && !fd_write) {
2925 pioh = &first_io_handler;
2926 for(;;) {
2927 ioh = *pioh;
2928 if (ioh == NULL)
2929 break;
2930 if (ioh->fd == fd) {
2931 ioh->deleted = 1;
2932 break;
2934 pioh = &ioh->next;
2936 } else {
2937 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2938 if (ioh->fd == fd)
2939 goto found;
2941 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2942 ioh->next = first_io_handler;
2943 first_io_handler = ioh;
2944 found:
2945 ioh->fd = fd;
2946 ioh->fd_read_poll = fd_read_poll;
2947 ioh->fd_read = fd_read;
2948 ioh->fd_write = fd_write;
2949 ioh->opaque = opaque;
2950 ioh->deleted = 0;
2952 return 0;
2955 int qemu_set_fd_handler(int fd,
2956 IOHandler *fd_read,
2957 IOHandler *fd_write,
2958 void *opaque)
2960 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2963 #ifdef _WIN32
2964 /***********************************************************/
2965 /* Polling handling */
2967 typedef struct PollingEntry {
2968 PollingFunc *func;
2969 void *opaque;
2970 struct PollingEntry *next;
2971 } PollingEntry;
2973 static PollingEntry *first_polling_entry;
2975 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2977 PollingEntry **ppe, *pe;
2978 pe = qemu_mallocz(sizeof(PollingEntry));
2979 pe->func = func;
2980 pe->opaque = opaque;
2981 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2982 *ppe = pe;
2983 return 0;
2986 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2988 PollingEntry **ppe, *pe;
2989 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2990 pe = *ppe;
2991 if (pe->func == func && pe->opaque == opaque) {
2992 *ppe = pe->next;
2993 qemu_free(pe);
2994 break;
2999 /***********************************************************/
3000 /* Wait objects support */
3001 typedef struct WaitObjects {
3002 int num;
3003 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3004 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3005 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3006 } WaitObjects;
3008 static WaitObjects wait_objects = {0};
3010 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3012 WaitObjects *w = &wait_objects;
3014 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3015 return -1;
3016 w->events[w->num] = handle;
3017 w->func[w->num] = func;
3018 w->opaque[w->num] = opaque;
3019 w->num++;
3020 return 0;
3023 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3025 int i, found;
3026 WaitObjects *w = &wait_objects;
3028 found = 0;
3029 for (i = 0; i < w->num; i++) {
3030 if (w->events[i] == handle)
3031 found = 1;
3032 if (found) {
3033 w->events[i] = w->events[i + 1];
3034 w->func[i] = w->func[i + 1];
3035 w->opaque[i] = w->opaque[i + 1];
3038 if (found)
3039 w->num--;
3041 #endif
3043 /***********************************************************/
3044 /* ram save/restore */
3046 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3048 int v;
3050 v = qemu_get_byte(f);
3051 switch(v) {
3052 case 0:
3053 if (qemu_get_buffer(f, buf, len) != len)
3054 return -EIO;
3055 break;
3056 case 1:
3057 v = qemu_get_byte(f);
3058 memset(buf, v, len);
3059 break;
3060 default:
3061 return -EINVAL;
3064 if (qemu_file_has_error(f))
3065 return -EIO;
3067 return 0;
3070 static int ram_load_v1(QEMUFile *f, void *opaque)
3072 int ret;
3073 ram_addr_t i;
3075 if (qemu_get_be32(f) != last_ram_offset)
3076 return -EINVAL;
3077 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3078 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3079 if (ret)
3080 return ret;
3082 return 0;
3085 #define BDRV_HASH_BLOCK_SIZE 1024
3086 #define IOBUF_SIZE 4096
3087 #define RAM_CBLOCK_MAGIC 0xfabe
3089 typedef struct RamDecompressState {
3090 z_stream zstream;
3091 QEMUFile *f;
3092 uint8_t buf[IOBUF_SIZE];
3093 } RamDecompressState;
3095 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3097 int ret;
3098 memset(s, 0, sizeof(*s));
3099 s->f = f;
3100 ret = inflateInit(&s->zstream);
3101 if (ret != Z_OK)
3102 return -1;
3103 return 0;
3106 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3108 int ret, clen;
3110 s->zstream.avail_out = len;
3111 s->zstream.next_out = buf;
3112 while (s->zstream.avail_out > 0) {
3113 if (s->zstream.avail_in == 0) {
3114 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3115 return -1;
3116 clen = qemu_get_be16(s->f);
3117 if (clen > IOBUF_SIZE)
3118 return -1;
3119 qemu_get_buffer(s->f, s->buf, clen);
3120 s->zstream.avail_in = clen;
3121 s->zstream.next_in = s->buf;
3123 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3124 if (ret != Z_OK && ret != Z_STREAM_END) {
3125 return -1;
3128 return 0;
3131 static void ram_decompress_close(RamDecompressState *s)
3133 inflateEnd(&s->zstream);
3136 #define RAM_SAVE_FLAG_FULL 0x01
3137 #define RAM_SAVE_FLAG_COMPRESS 0x02
3138 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3139 #define RAM_SAVE_FLAG_PAGE 0x08
3140 #define RAM_SAVE_FLAG_EOS 0x10
3142 static int is_dup_page(uint8_t *page, uint8_t ch)
3144 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3145 uint32_t *array = (uint32_t *)page;
3146 int i;
3148 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3149 if (array[i] != val)
3150 return 0;
3153 return 1;
3156 static int ram_save_block(QEMUFile *f)
3158 static ram_addr_t current_addr = 0;
3159 ram_addr_t saved_addr = current_addr;
3160 ram_addr_t addr = 0;
3161 int found = 0;
3163 while (addr < last_ram_offset) {
3164 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3165 uint8_t *p;
3167 cpu_physical_memory_reset_dirty(current_addr,
3168 current_addr + TARGET_PAGE_SIZE,
3169 MIGRATION_DIRTY_FLAG);
3171 p = qemu_get_ram_ptr(current_addr);
3173 if (is_dup_page(p, *p)) {
3174 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3175 qemu_put_byte(f, *p);
3176 } else {
3177 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3178 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3181 found = 1;
3182 break;
3184 addr += TARGET_PAGE_SIZE;
3185 current_addr = (saved_addr + addr) % last_ram_offset;
3188 return found;
3191 static ram_addr_t ram_save_threshold = 10;
3192 static uint64_t bytes_transferred = 0;
3194 static ram_addr_t ram_save_remaining(void)
3196 ram_addr_t addr;
3197 ram_addr_t count = 0;
3199 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3200 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3201 count++;
3204 return count;
3207 uint64_t ram_bytes_remaining(void)
3209 return ram_save_remaining() * TARGET_PAGE_SIZE;
3212 uint64_t ram_bytes_transferred(void)
3214 return bytes_transferred;
3217 uint64_t ram_bytes_total(void)
3219 return last_ram_offset;
3222 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3224 ram_addr_t addr;
3226 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3227 qemu_file_set_error(f);
3228 return 0;
3231 if (stage == 1) {
3232 /* Make sure all dirty bits are set */
3233 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3234 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3235 cpu_physical_memory_set_dirty(addr);
3238 /* Enable dirty memory tracking */
3239 cpu_physical_memory_set_dirty_tracking(1);
3241 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3244 while (!qemu_file_rate_limit(f)) {
3245 int ret;
3247 ret = ram_save_block(f);
3248 bytes_transferred += ret * TARGET_PAGE_SIZE;
3249 if (ret == 0) /* no more blocks */
3250 break;
3253 /* try transferring iterative blocks of memory */
3255 if (stage == 3) {
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0) {
3259 bytes_transferred += TARGET_PAGE_SIZE;
3261 cpu_physical_memory_set_dirty_tracking(0);
3264 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3266 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3269 static int ram_load_dead(QEMUFile *f, void *opaque)
3271 RamDecompressState s1, *s = &s1;
3272 uint8_t buf[10];
3273 ram_addr_t i;
3275 if (ram_decompress_open(s, f) < 0)
3276 return -EINVAL;
3277 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3278 if (ram_decompress_buf(s, buf, 1) < 0) {
3279 fprintf(stderr, "Error while reading ram block header\n");
3280 goto error;
3282 if (buf[0] == 0) {
3283 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3284 BDRV_HASH_BLOCK_SIZE) < 0) {
3285 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3286 goto error;
3288 } else {
3289 error:
3290 printf("Error block header\n");
3291 return -EINVAL;
3294 ram_decompress_close(s);
3296 return 0;
3299 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3301 ram_addr_t addr;
3302 int flags;
3304 if (version_id == 1)
3305 return ram_load_v1(f, opaque);
3307 if (version_id == 2) {
3308 if (qemu_get_be32(f) != last_ram_offset)
3309 return -EINVAL;
3310 return ram_load_dead(f, opaque);
3313 if (version_id != 3)
3314 return -EINVAL;
3316 do {
3317 addr = qemu_get_be64(f);
3319 flags = addr & ~TARGET_PAGE_MASK;
3320 addr &= TARGET_PAGE_MASK;
3322 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3323 if (addr != last_ram_offset)
3324 return -EINVAL;
3327 if (flags & RAM_SAVE_FLAG_FULL) {
3328 if (ram_load_dead(f, opaque) < 0)
3329 return -EINVAL;
3332 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3333 uint8_t ch = qemu_get_byte(f);
3334 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3335 } else if (flags & RAM_SAVE_FLAG_PAGE)
3336 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3337 } while (!(flags & RAM_SAVE_FLAG_EOS));
3339 return 0;
3342 void qemu_service_io(void)
3344 qemu_notify_event();
3347 /***********************************************************/
3348 /* bottom halves (can be seen as timers which expire ASAP) */
3350 struct QEMUBH {
3351 QEMUBHFunc *cb;
3352 void *opaque;
3353 int scheduled;
3354 int idle;
3355 int deleted;
3356 QEMUBH *next;
3359 static QEMUBH *first_bh = NULL;
3361 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3363 QEMUBH *bh;
3364 bh = qemu_mallocz(sizeof(QEMUBH));
3365 bh->cb = cb;
3366 bh->opaque = opaque;
3367 bh->next = first_bh;
3368 first_bh = bh;
3369 return bh;
3372 int qemu_bh_poll(void)
3374 QEMUBH *bh, **bhp;
3375 int ret;
3377 ret = 0;
3378 for (bh = first_bh; bh; bh = bh->next) {
3379 if (!bh->deleted && bh->scheduled) {
3380 bh->scheduled = 0;
3381 if (!bh->idle)
3382 ret = 1;
3383 bh->idle = 0;
3384 bh->cb(bh->opaque);
3388 /* remove deleted bhs */
3389 bhp = &first_bh;
3390 while (*bhp) {
3391 bh = *bhp;
3392 if (bh->deleted) {
3393 *bhp = bh->next;
3394 qemu_free(bh);
3395 } else
3396 bhp = &bh->next;
3399 return ret;
3402 void qemu_bh_schedule_idle(QEMUBH *bh)
3404 if (bh->scheduled)
3405 return;
3406 bh->scheduled = 1;
3407 bh->idle = 1;
3410 void qemu_bh_schedule(QEMUBH *bh)
3412 if (bh->scheduled)
3413 return;
3414 bh->scheduled = 1;
3415 bh->idle = 0;
3416 /* stop the currently executing CPU to execute the BH ASAP */
3417 qemu_notify_event();
3420 void qemu_bh_cancel(QEMUBH *bh)
3422 bh->scheduled = 0;
3425 void qemu_bh_delete(QEMUBH *bh)
3427 bh->scheduled = 0;
3428 bh->deleted = 1;
3431 static void qemu_bh_update_timeout(int *timeout)
3433 QEMUBH *bh;
3435 for (bh = first_bh; bh; bh = bh->next) {
3436 if (!bh->deleted && bh->scheduled) {
3437 if (bh->idle) {
3438 /* idle bottom halves will be polled at least
3439 * every 10ms */
3440 *timeout = MIN(10, *timeout);
3441 } else {
3442 /* non-idle bottom halves will be executed
3443 * immediately */
3444 *timeout = 0;
3445 break;
3451 /***********************************************************/
3452 /* machine registration */
3454 static QEMUMachine *first_machine = NULL;
3455 QEMUMachine *current_machine = NULL;
3457 int qemu_register_machine(QEMUMachine *m)
3459 QEMUMachine **pm;
3460 pm = &first_machine;
3461 while (*pm != NULL)
3462 pm = &(*pm)->next;
3463 m->next = NULL;
3464 *pm = m;
3465 return 0;
3468 static QEMUMachine *find_machine(const char *name)
3470 QEMUMachine *m;
3472 for(m = first_machine; m != NULL; m = m->next) {
3473 if (!strcmp(m->name, name))
3474 return m;
3476 return NULL;
3479 static QEMUMachine *find_default_machine(void)
3481 QEMUMachine *m;
3483 for(m = first_machine; m != NULL; m = m->next) {
3484 if (m->is_default) {
3485 return m;
3488 return NULL;
3491 /***********************************************************/
3492 /* main execution loop */
3494 static void gui_update(void *opaque)
3496 uint64_t interval = GUI_REFRESH_INTERVAL;
3497 DisplayState *ds = opaque;
3498 DisplayChangeListener *dcl = ds->listeners;
3500 dpy_refresh(ds);
3502 while (dcl != NULL) {
3503 if (dcl->gui_timer_interval &&
3504 dcl->gui_timer_interval < interval)
3505 interval = dcl->gui_timer_interval;
3506 dcl = dcl->next;
3508 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3511 static void nographic_update(void *opaque)
3513 uint64_t interval = GUI_REFRESH_INTERVAL;
3515 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3518 struct vm_change_state_entry {
3519 VMChangeStateHandler *cb;
3520 void *opaque;
3521 LIST_ENTRY (vm_change_state_entry) entries;
3524 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3526 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3527 void *opaque)
3529 VMChangeStateEntry *e;
3531 e = qemu_mallocz(sizeof (*e));
3533 e->cb = cb;
3534 e->opaque = opaque;
3535 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3536 return e;
3539 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3541 LIST_REMOVE (e, entries);
3542 qemu_free (e);
3545 static void vm_state_notify(int running, int reason)
3547 VMChangeStateEntry *e;
3549 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3550 e->cb(e->opaque, running, reason);
3554 static void resume_all_vcpus(void);
3555 static void pause_all_vcpus(void);
3557 void vm_start(void)
3559 if (!vm_running) {
3560 cpu_enable_ticks();
3561 vm_running = 1;
3562 vm_state_notify(1, 0);
3563 qemu_rearm_alarm_timer(alarm_timer);
3564 resume_all_vcpus();
3568 /* reset/shutdown handler */
3570 typedef struct QEMUResetEntry {
3571 QEMUResetHandler *func;
3572 void *opaque;
3573 int order;
3574 struct QEMUResetEntry *next;
3575 } QEMUResetEntry;
3577 static QEMUResetEntry *first_reset_entry;
3578 static int reset_requested;
3579 static int shutdown_requested;
3580 static int powerdown_requested;
3581 static int debug_requested;
3582 static int vmstop_requested;
3584 int qemu_shutdown_requested(void)
3586 int r = shutdown_requested;
3587 shutdown_requested = 0;
3588 return r;
3591 int qemu_reset_requested(void)
3593 int r = reset_requested;
3594 reset_requested = 0;
3595 return r;
3598 int qemu_powerdown_requested(void)
3600 int r = powerdown_requested;
3601 powerdown_requested = 0;
3602 return r;
3605 static int qemu_debug_requested(void)
3607 int r = debug_requested;
3608 debug_requested = 0;
3609 return r;
3612 static int qemu_vmstop_requested(void)
3614 int r = vmstop_requested;
3615 vmstop_requested = 0;
3616 return r;
3619 static void do_vm_stop(int reason)
3621 if (vm_running) {
3622 cpu_disable_ticks();
3623 vm_running = 0;
3624 pause_all_vcpus();
3625 vm_state_notify(0, reason);
3629 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3631 QEMUResetEntry **pre, *re;
3633 pre = &first_reset_entry;
3634 while (*pre != NULL && (*pre)->order >= order) {
3635 pre = &(*pre)->next;
3637 re = qemu_mallocz(sizeof(QEMUResetEntry));
3638 re->func = func;
3639 re->opaque = opaque;
3640 re->order = order;
3641 re->next = NULL;
3642 *pre = re;
3645 void qemu_system_reset(void)
3647 QEMUResetEntry *re;
3649 /* reset all devices */
3650 for(re = first_reset_entry; re != NULL; re = re->next) {
3651 re->func(re->opaque);
3655 void qemu_system_reset_request(void)
3657 if (no_reboot) {
3658 shutdown_requested = 1;
3659 } else {
3660 reset_requested = 1;
3662 qemu_notify_event();
3665 void qemu_system_shutdown_request(void)
3667 shutdown_requested = 1;
3668 qemu_notify_event();
3671 void qemu_system_powerdown_request(void)
3673 powerdown_requested = 1;
3674 qemu_notify_event();
3677 #ifdef CONFIG_IOTHREAD
3678 static void qemu_system_vmstop_request(int reason)
3680 vmstop_requested = reason;
3681 qemu_notify_event();
3683 #endif
3685 #ifndef _WIN32
3686 static int io_thread_fd = -1;
3688 static void qemu_event_increment(void)
3690 static const char byte = 0;
3692 if (io_thread_fd == -1)
3693 return;
3695 write(io_thread_fd, &byte, sizeof(byte));
3698 static void qemu_event_read(void *opaque)
3700 int fd = (unsigned long)opaque;
3701 ssize_t len;
3703 /* Drain the notify pipe */
3704 do {
3705 char buffer[512];
3706 len = read(fd, buffer, sizeof(buffer));
3707 } while ((len == -1 && errno == EINTR) || len > 0);
3710 static int qemu_event_init(void)
3712 int err;
3713 int fds[2];
3715 err = pipe(fds);
3716 if (err == -1)
3717 return -errno;
3719 err = fcntl_setfl(fds[0], O_NONBLOCK);
3720 if (err < 0)
3721 goto fail;
3723 err = fcntl_setfl(fds[1], O_NONBLOCK);
3724 if (err < 0)
3725 goto fail;
3727 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3728 (void *)(unsigned long)fds[0]);
3730 io_thread_fd = fds[1];
3731 return 0;
3733 fail:
3734 close(fds[0]);
3735 close(fds[1]);
3736 return err;
3738 #else
3739 HANDLE qemu_event_handle;
3741 static void dummy_event_handler(void *opaque)
3745 static int qemu_event_init(void)
3747 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3748 if (!qemu_event_handle) {
3749 perror("Failed CreateEvent");
3750 return -1;
3752 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3753 return 0;
3756 static void qemu_event_increment(void)
3758 SetEvent(qemu_event_handle);
3760 #endif
3762 static int cpu_can_run(CPUState *env)
3764 if (env->stop)
3765 return 0;
3766 if (env->stopped)
3767 return 0;
3768 return 1;
3771 #ifndef CONFIG_IOTHREAD
3772 static int qemu_init_main_loop(void)
3774 return qemu_event_init();
3777 void qemu_init_vcpu(void *_env)
3779 CPUState *env = _env;
3781 if (kvm_enabled())
3782 kvm_init_vcpu(env);
3783 return;
3786 int qemu_cpu_self(void *env)
3788 return 1;
3791 static void resume_all_vcpus(void)
3795 static void pause_all_vcpus(void)
3799 void qemu_cpu_kick(void *env)
3801 return;
3804 void qemu_notify_event(void)
3806 CPUState *env = cpu_single_env;
3808 if (env) {
3809 cpu_exit(env);
3810 #ifdef USE_KQEMU
3811 if (env->kqemu_enabled)
3812 kqemu_cpu_interrupt(env);
3813 #endif
3817 #define qemu_mutex_lock_iothread() do { } while (0)
3818 #define qemu_mutex_unlock_iothread() do { } while (0)
3820 void vm_stop(int reason)
3822 do_vm_stop(reason);
3825 #else /* CONFIG_IOTHREAD */
3827 #include "qemu-thread.h"
3829 QemuMutex qemu_global_mutex;
3830 static QemuMutex qemu_fair_mutex;
3832 static QemuThread io_thread;
3834 static QemuThread *tcg_cpu_thread;
3835 static QemuCond *tcg_halt_cond;
3837 static int qemu_system_ready;
3838 /* cpu creation */
3839 static QemuCond qemu_cpu_cond;
3840 /* system init */
3841 static QemuCond qemu_system_cond;
3842 static QemuCond qemu_pause_cond;
3844 static void block_io_signals(void);
3845 static void unblock_io_signals(void);
3846 static int tcg_has_work(void);
3848 static int qemu_init_main_loop(void)
3850 int ret;
3852 ret = qemu_event_init();
3853 if (ret)
3854 return ret;
3856 qemu_cond_init(&qemu_pause_cond);
3857 qemu_mutex_init(&qemu_fair_mutex);
3858 qemu_mutex_init(&qemu_global_mutex);
3859 qemu_mutex_lock(&qemu_global_mutex);
3861 unblock_io_signals();
3862 qemu_thread_self(&io_thread);
3864 return 0;
3867 static void qemu_wait_io_event(CPUState *env)
3869 while (!tcg_has_work())
3870 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3872 qemu_mutex_unlock(&qemu_global_mutex);
3875 * Users of qemu_global_mutex can be starved, having no chance
3876 * to acquire it since this path will get to it first.
3877 * So use another lock to provide fairness.
3879 qemu_mutex_lock(&qemu_fair_mutex);
3880 qemu_mutex_unlock(&qemu_fair_mutex);
3882 qemu_mutex_lock(&qemu_global_mutex);
3883 if (env->stop) {
3884 env->stop = 0;
3885 env->stopped = 1;
3886 qemu_cond_signal(&qemu_pause_cond);
3890 static int qemu_cpu_exec(CPUState *env);
3892 static void *kvm_cpu_thread_fn(void *arg)
3894 CPUState *env = arg;
3896 block_io_signals();
3897 qemu_thread_self(env->thread);
3899 /* signal CPU creation */
3900 qemu_mutex_lock(&qemu_global_mutex);
3901 env->created = 1;
3902 qemu_cond_signal(&qemu_cpu_cond);
3904 /* and wait for machine initialization */
3905 while (!qemu_system_ready)
3906 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3908 while (1) {
3909 if (cpu_can_run(env))
3910 qemu_cpu_exec(env);
3911 qemu_wait_io_event(env);
3914 return NULL;
3917 static void tcg_cpu_exec(void);
3919 static void *tcg_cpu_thread_fn(void *arg)
3921 CPUState *env = arg;
3923 block_io_signals();
3924 qemu_thread_self(env->thread);
3926 /* signal CPU creation */
3927 qemu_mutex_lock(&qemu_global_mutex);
3928 for (env = first_cpu; env != NULL; env = env->next_cpu)
3929 env->created = 1;
3930 qemu_cond_signal(&qemu_cpu_cond);
3932 /* and wait for machine initialization */
3933 while (!qemu_system_ready)
3934 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3936 while (1) {
3937 tcg_cpu_exec();
3938 qemu_wait_io_event(cur_cpu);
3941 return NULL;
3944 void qemu_cpu_kick(void *_env)
3946 CPUState *env = _env;
3947 qemu_cond_broadcast(env->halt_cond);
3948 if (kvm_enabled())
3949 qemu_thread_signal(env->thread, SIGUSR1);
3952 int qemu_cpu_self(void *env)
3954 return (cpu_single_env != NULL);
3957 static void cpu_signal(int sig)
3959 if (cpu_single_env)
3960 cpu_exit(cpu_single_env);
3963 static void block_io_signals(void)
3965 sigset_t set;
3966 struct sigaction sigact;
3968 sigemptyset(&set);
3969 sigaddset(&set, SIGUSR2);
3970 sigaddset(&set, SIGIO);
3971 sigaddset(&set, SIGALRM);
3972 pthread_sigmask(SIG_BLOCK, &set, NULL);
3974 sigemptyset(&set);
3975 sigaddset(&set, SIGUSR1);
3976 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3978 memset(&sigact, 0, sizeof(sigact));
3979 sigact.sa_handler = cpu_signal;
3980 sigaction(SIGUSR1, &sigact, NULL);
3983 static void unblock_io_signals(void)
3985 sigset_t set;
3987 sigemptyset(&set);
3988 sigaddset(&set, SIGUSR2);
3989 sigaddset(&set, SIGIO);
3990 sigaddset(&set, SIGALRM);
3991 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3993 sigemptyset(&set);
3994 sigaddset(&set, SIGUSR1);
3995 pthread_sigmask(SIG_BLOCK, &set, NULL);
3998 static void qemu_signal_lock(unsigned int msecs)
4000 qemu_mutex_lock(&qemu_fair_mutex);
4002 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4003 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4004 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4005 break;
4007 qemu_mutex_unlock(&qemu_fair_mutex);
4010 static void qemu_mutex_lock_iothread(void)
4012 if (kvm_enabled()) {
4013 qemu_mutex_lock(&qemu_fair_mutex);
4014 qemu_mutex_lock(&qemu_global_mutex);
4015 qemu_mutex_unlock(&qemu_fair_mutex);
4016 } else
4017 qemu_signal_lock(100);
4020 static void qemu_mutex_unlock_iothread(void)
4022 qemu_mutex_unlock(&qemu_global_mutex);
4025 static int all_vcpus_paused(void)
4027 CPUState *penv = first_cpu;
4029 while (penv) {
4030 if (!penv->stopped)
4031 return 0;
4032 penv = (CPUState *)penv->next_cpu;
4035 return 1;
4038 static void pause_all_vcpus(void)
4040 CPUState *penv = first_cpu;
4042 while (penv) {
4043 penv->stop = 1;
4044 qemu_thread_signal(penv->thread, SIGUSR1);
4045 qemu_cpu_kick(penv);
4046 penv = (CPUState *)penv->next_cpu;
4049 while (!all_vcpus_paused()) {
4050 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4051 penv = first_cpu;
4052 while (penv) {
4053 qemu_thread_signal(penv->thread, SIGUSR1);
4054 penv = (CPUState *)penv->next_cpu;
4059 static void resume_all_vcpus(void)
4061 CPUState *penv = first_cpu;
4063 while (penv) {
4064 penv->stop = 0;
4065 penv->stopped = 0;
4066 qemu_thread_signal(penv->thread, SIGUSR1);
4067 qemu_cpu_kick(penv);
4068 penv = (CPUState *)penv->next_cpu;
4072 static void tcg_init_vcpu(void *_env)
4074 CPUState *env = _env;
4075 /* share a single thread for all cpus with TCG */
4076 if (!tcg_cpu_thread) {
4077 env->thread = qemu_mallocz(sizeof(QemuThread));
4078 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4079 qemu_cond_init(env->halt_cond);
4080 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4081 while (env->created == 0)
4082 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4083 tcg_cpu_thread = env->thread;
4084 tcg_halt_cond = env->halt_cond;
4085 } else {
4086 env->thread = tcg_cpu_thread;
4087 env->halt_cond = tcg_halt_cond;
4091 static void kvm_start_vcpu(CPUState *env)
4093 kvm_init_vcpu(env);
4094 env->thread = qemu_mallocz(sizeof(QemuThread));
4095 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4096 qemu_cond_init(env->halt_cond);
4097 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4098 while (env->created == 0)
4099 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4102 void qemu_init_vcpu(void *_env)
4104 CPUState *env = _env;
4106 if (kvm_enabled())
4107 kvm_start_vcpu(env);
4108 else
4109 tcg_init_vcpu(env);
4112 void qemu_notify_event(void)
4114 qemu_event_increment();
4117 void vm_stop(int reason)
4119 QemuThread me;
4120 qemu_thread_self(&me);
4122 if (!qemu_thread_equal(&me, &io_thread)) {
4123 qemu_system_vmstop_request(reason);
4125 * FIXME: should not return to device code in case
4126 * vm_stop() has been requested.
4128 if (cpu_single_env) {
4129 cpu_exit(cpu_single_env);
4130 cpu_single_env->stop = 1;
4132 return;
4134 do_vm_stop(reason);
4137 #endif
4140 #ifdef _WIN32
4141 static void host_main_loop_wait(int *timeout)
4143 int ret, ret2, i;
4144 PollingEntry *pe;
4147 /* XXX: need to suppress polling by better using win32 events */
4148 ret = 0;
4149 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4150 ret |= pe->func(pe->opaque);
4152 if (ret == 0) {
4153 int err;
4154 WaitObjects *w = &wait_objects;
4156 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4157 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4158 if (w->func[ret - WAIT_OBJECT_0])
4159 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4161 /* Check for additional signaled events */
4162 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4164 /* Check if event is signaled */
4165 ret2 = WaitForSingleObject(w->events[i], 0);
4166 if(ret2 == WAIT_OBJECT_0) {
4167 if (w->func[i])
4168 w->func[i](w->opaque[i]);
4169 } else if (ret2 == WAIT_TIMEOUT) {
4170 } else {
4171 err = GetLastError();
4172 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4175 } else if (ret == WAIT_TIMEOUT) {
4176 } else {
4177 err = GetLastError();
4178 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4182 *timeout = 0;
4184 #else
4185 static void host_main_loop_wait(int *timeout)
4188 #endif
4190 void main_loop_wait(int timeout)
4192 IOHandlerRecord *ioh;
4193 fd_set rfds, wfds, xfds;
4194 int ret, nfds;
4195 struct timeval tv;
4197 qemu_bh_update_timeout(&timeout);
4199 host_main_loop_wait(&timeout);
4201 /* poll any events */
4202 /* XXX: separate device handlers from system ones */
4203 nfds = -1;
4204 FD_ZERO(&rfds);
4205 FD_ZERO(&wfds);
4206 FD_ZERO(&xfds);
4207 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4208 if (ioh->deleted)
4209 continue;
4210 if (ioh->fd_read &&
4211 (!ioh->fd_read_poll ||
4212 ioh->fd_read_poll(ioh->opaque) != 0)) {
4213 FD_SET(ioh->fd, &rfds);
4214 if (ioh->fd > nfds)
4215 nfds = ioh->fd;
4217 if (ioh->fd_write) {
4218 FD_SET(ioh->fd, &wfds);
4219 if (ioh->fd > nfds)
4220 nfds = ioh->fd;
4224 tv.tv_sec = timeout / 1000;
4225 tv.tv_usec = (timeout % 1000) * 1000;
4227 #if defined(CONFIG_SLIRP)
4228 if (slirp_is_inited()) {
4229 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4231 #endif
4232 qemu_mutex_unlock_iothread();
4233 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4234 qemu_mutex_lock_iothread();
4235 if (ret > 0) {
4236 IOHandlerRecord **pioh;
4238 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4239 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4240 ioh->fd_read(ioh->opaque);
4242 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4243 ioh->fd_write(ioh->opaque);
4247 /* remove deleted IO handlers */
4248 pioh = &first_io_handler;
4249 while (*pioh) {
4250 ioh = *pioh;
4251 if (ioh->deleted) {
4252 *pioh = ioh->next;
4253 qemu_free(ioh);
4254 } else
4255 pioh = &ioh->next;
4258 #if defined(CONFIG_SLIRP)
4259 if (slirp_is_inited()) {
4260 if (ret < 0) {
4261 FD_ZERO(&rfds);
4262 FD_ZERO(&wfds);
4263 FD_ZERO(&xfds);
4265 slirp_select_poll(&rfds, &wfds, &xfds);
4267 #endif
4269 /* rearm timer, if not periodic */
4270 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4271 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4272 qemu_rearm_alarm_timer(alarm_timer);
4275 /* vm time timers */
4276 if (vm_running) {
4277 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4278 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4279 qemu_get_clock(vm_clock));
4282 /* real time timers */
4283 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4284 qemu_get_clock(rt_clock));
4286 /* Check bottom-halves last in case any of the earlier events triggered
4287 them. */
4288 qemu_bh_poll();
4292 static int qemu_cpu_exec(CPUState *env)
4294 int ret;
4295 #ifdef CONFIG_PROFILER
4296 int64_t ti;
4297 #endif
4299 #ifdef CONFIG_PROFILER
4300 ti = profile_getclock();
4301 #endif
4302 if (use_icount) {
4303 int64_t count;
4304 int decr;
4305 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4306 env->icount_decr.u16.low = 0;
4307 env->icount_extra = 0;
4308 count = qemu_next_deadline();
4309 count = (count + (1 << icount_time_shift) - 1)
4310 >> icount_time_shift;
4311 qemu_icount += count;
4312 decr = (count > 0xffff) ? 0xffff : count;
4313 count -= decr;
4314 env->icount_decr.u16.low = decr;
4315 env->icount_extra = count;
4317 ret = cpu_exec(env);
4318 #ifdef CONFIG_PROFILER
4319 qemu_time += profile_getclock() - ti;
4320 #endif
4321 if (use_icount) {
4322 /* Fold pending instructions back into the
4323 instruction counter, and clear the interrupt flag. */
4324 qemu_icount -= (env->icount_decr.u16.low
4325 + env->icount_extra);
4326 env->icount_decr.u32 = 0;
4327 env->icount_extra = 0;
4329 return ret;
4332 static void tcg_cpu_exec(void)
4334 int ret = 0;
4336 if (next_cpu == NULL)
4337 next_cpu = first_cpu;
4338 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4339 CPUState *env = cur_cpu = next_cpu;
4341 if (!vm_running)
4342 break;
4343 if (timer_alarm_pending) {
4344 timer_alarm_pending = 0;
4345 break;
4347 if (cpu_can_run(env))
4348 ret = qemu_cpu_exec(env);
4349 if (ret == EXCP_DEBUG) {
4350 gdb_set_stop_cpu(env);
4351 debug_requested = 1;
4352 break;
4357 static int cpu_has_work(CPUState *env)
4359 if (env->stop)
4360 return 1;
4361 if (env->stopped)
4362 return 0;
4363 if (!env->halted)
4364 return 1;
4365 if (qemu_cpu_has_work(env))
4366 return 1;
4367 return 0;
4370 static int tcg_has_work(void)
4372 CPUState *env;
4374 for (env = first_cpu; env != NULL; env = env->next_cpu)
4375 if (cpu_has_work(env))
4376 return 1;
4377 return 0;
4380 static int qemu_calculate_timeout(void)
4382 #ifndef CONFIG_IOTHREAD
4383 int timeout;
4385 if (!vm_running)
4386 timeout = 5000;
4387 else if (tcg_has_work())
4388 timeout = 0;
4389 else if (!use_icount)
4390 timeout = 5000;
4391 else {
4392 /* XXX: use timeout computed from timers */
4393 int64_t add;
4394 int64_t delta;
4395 /* Advance virtual time to the next event. */
4396 if (use_icount == 1) {
4397 /* When not using an adaptive execution frequency
4398 we tend to get badly out of sync with real time,
4399 so just delay for a reasonable amount of time. */
4400 delta = 0;
4401 } else {
4402 delta = cpu_get_icount() - cpu_get_clock();
4404 if (delta > 0) {
4405 /* If virtual time is ahead of real time then just
4406 wait for IO. */
4407 timeout = (delta / 1000000) + 1;
4408 } else {
4409 /* Wait for either IO to occur or the next
4410 timer event. */
4411 add = qemu_next_deadline();
4412 /* We advance the timer before checking for IO.
4413 Limit the amount we advance so that early IO
4414 activity won't get the guest too far ahead. */
4415 if (add > 10000000)
4416 add = 10000000;
4417 delta += add;
4418 add = (add + (1 << icount_time_shift) - 1)
4419 >> icount_time_shift;
4420 qemu_icount += add;
4421 timeout = delta / 1000000;
4422 if (timeout < 0)
4423 timeout = 0;
4427 return timeout;
4428 #else /* CONFIG_IOTHREAD */
4429 return 1000;
4430 #endif
4433 static int vm_can_run(void)
4435 if (powerdown_requested)
4436 return 0;
4437 if (reset_requested)
4438 return 0;
4439 if (shutdown_requested)
4440 return 0;
4441 if (debug_requested)
4442 return 0;
4443 return 1;
4446 static void main_loop(void)
4448 int r;
4450 #ifdef CONFIG_IOTHREAD
4451 qemu_system_ready = 1;
4452 qemu_cond_broadcast(&qemu_system_cond);
4453 #endif
4455 for (;;) {
4456 do {
4457 #ifdef CONFIG_PROFILER
4458 int64_t ti;
4459 #endif
4460 #ifndef CONFIG_IOTHREAD
4461 tcg_cpu_exec();
4462 #endif
4463 #ifdef CONFIG_PROFILER
4464 ti = profile_getclock();
4465 #endif
4466 main_loop_wait(qemu_calculate_timeout());
4467 #ifdef CONFIG_PROFILER
4468 dev_time += profile_getclock() - ti;
4469 #endif
4470 } while (vm_can_run());
4472 if (qemu_debug_requested())
4473 vm_stop(EXCP_DEBUG);
4474 if (qemu_shutdown_requested()) {
4475 if (no_shutdown) {
4476 vm_stop(0);
4477 no_shutdown = 0;
4478 } else
4479 break;
4481 if (qemu_reset_requested()) {
4482 pause_all_vcpus();
4483 qemu_system_reset();
4484 resume_all_vcpus();
4486 if (qemu_powerdown_requested())
4487 qemu_system_powerdown();
4488 if ((r = qemu_vmstop_requested()))
4489 vm_stop(r);
4491 pause_all_vcpus();
4494 static void version(void)
4496 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4499 static void help(int exitcode)
4501 version();
4502 printf("usage: %s [options] [disk_image]\n"
4503 "\n"
4504 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4505 "\n"
4506 #define DEF(option, opt_arg, opt_enum, opt_help) \
4507 opt_help
4508 #define DEFHEADING(text) stringify(text) "\n"
4509 #include "qemu-options.h"
4510 #undef DEF
4511 #undef DEFHEADING
4512 #undef GEN_DOCS
4513 "\n"
4514 "During emulation, the following keys are useful:\n"
4515 "ctrl-alt-f toggle full screen\n"
4516 "ctrl-alt-n switch to virtual console 'n'\n"
4517 "ctrl-alt toggle mouse and keyboard grab\n"
4518 "\n"
4519 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4521 "qemu",
4522 DEFAULT_RAM_SIZE,
4523 #ifndef _WIN32
4524 DEFAULT_NETWORK_SCRIPT,
4525 DEFAULT_NETWORK_DOWN_SCRIPT,
4526 #endif
4527 DEFAULT_GDBSTUB_PORT,
4528 "/tmp/qemu.log");
4529 exit(exitcode);
4532 #define HAS_ARG 0x0001
4534 enum {
4535 #define DEF(option, opt_arg, opt_enum, opt_help) \
4536 opt_enum,
4537 #define DEFHEADING(text)
4538 #include "qemu-options.h"
4539 #undef DEF
4540 #undef DEFHEADING
4541 #undef GEN_DOCS
4544 typedef struct QEMUOption {
4545 const char *name;
4546 int flags;
4547 int index;
4548 } QEMUOption;
4550 static const QEMUOption qemu_options[] = {
4551 { "h", 0, QEMU_OPTION_h },
4552 #define DEF(option, opt_arg, opt_enum, opt_help) \
4553 { option, opt_arg, opt_enum },
4554 #define DEFHEADING(text)
4555 #include "qemu-options.h"
4556 #undef DEF
4557 #undef DEFHEADING
4558 #undef GEN_DOCS
4559 { NULL },
4562 #ifdef HAS_AUDIO
4563 struct soundhw soundhw[] = {
4564 #ifdef HAS_AUDIO_CHOICE
4565 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4567 "pcspk",
4568 "PC speaker",
4571 { .init_isa = pcspk_audio_init }
4573 #endif
4575 #ifdef CONFIG_SB16
4577 "sb16",
4578 "Creative Sound Blaster 16",
4581 { .init_isa = SB16_init }
4583 #endif
4585 #ifdef CONFIG_CS4231A
4587 "cs4231a",
4588 "CS4231A",
4591 { .init_isa = cs4231a_init }
4593 #endif
4595 #ifdef CONFIG_ADLIB
4597 "adlib",
4598 #ifdef HAS_YMF262
4599 "Yamaha YMF262 (OPL3)",
4600 #else
4601 "Yamaha YM3812 (OPL2)",
4602 #endif
4605 { .init_isa = Adlib_init }
4607 #endif
4609 #ifdef CONFIG_GUS
4611 "gus",
4612 "Gravis Ultrasound GF1",
4615 { .init_isa = GUS_init }
4617 #endif
4619 #ifdef CONFIG_AC97
4621 "ac97",
4622 "Intel 82801AA AC97 Audio",
4625 { .init_pci = ac97_init }
4627 #endif
4629 #ifdef CONFIG_ES1370
4631 "es1370",
4632 "ENSONIQ AudioPCI ES1370",
4635 { .init_pci = es1370_init }
4637 #endif
4639 #endif /* HAS_AUDIO_CHOICE */
4641 { NULL, NULL, 0, 0, { NULL } }
4644 static void select_soundhw (const char *optarg)
4646 struct soundhw *c;
4648 if (*optarg == '?') {
4649 show_valid_cards:
4651 printf ("Valid sound card names (comma separated):\n");
4652 for (c = soundhw; c->name; ++c) {
4653 printf ("%-11s %s\n", c->name, c->descr);
4655 printf ("\n-soundhw all will enable all of the above\n");
4656 exit (*optarg != '?');
4658 else {
4659 size_t l;
4660 const char *p;
4661 char *e;
4662 int bad_card = 0;
4664 if (!strcmp (optarg, "all")) {
4665 for (c = soundhw; c->name; ++c) {
4666 c->enabled = 1;
4668 return;
4671 p = optarg;
4672 while (*p) {
4673 e = strchr (p, ',');
4674 l = !e ? strlen (p) : (size_t) (e - p);
4676 for (c = soundhw; c->name; ++c) {
4677 if (!strncmp (c->name, p, l)) {
4678 c->enabled = 1;
4679 break;
4683 if (!c->name) {
4684 if (l > 80) {
4685 fprintf (stderr,
4686 "Unknown sound card name (too big to show)\n");
4688 else {
4689 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4690 (int) l, p);
4692 bad_card = 1;
4694 p += l + (e != NULL);
4697 if (bad_card)
4698 goto show_valid_cards;
4701 #endif
4703 static void select_vgahw (const char *p)
4705 const char *opts;
4707 cirrus_vga_enabled = 0;
4708 std_vga_enabled = 0;
4709 vmsvga_enabled = 0;
4710 xenfb_enabled = 0;
4711 if (strstart(p, "std", &opts)) {
4712 std_vga_enabled = 1;
4713 } else if (strstart(p, "cirrus", &opts)) {
4714 cirrus_vga_enabled = 1;
4715 } else if (strstart(p, "vmware", &opts)) {
4716 vmsvga_enabled = 1;
4717 } else if (strstart(p, "xenfb", &opts)) {
4718 xenfb_enabled = 1;
4719 } else if (!strstart(p, "none", &opts)) {
4720 invalid_vga:
4721 fprintf(stderr, "Unknown vga type: %s\n", p);
4722 exit(1);
4724 while (*opts) {
4725 const char *nextopt;
4727 if (strstart(opts, ",retrace=", &nextopt)) {
4728 opts = nextopt;
4729 if (strstart(opts, "dumb", &nextopt))
4730 vga_retrace_method = VGA_RETRACE_DUMB;
4731 else if (strstart(opts, "precise", &nextopt))
4732 vga_retrace_method = VGA_RETRACE_PRECISE;
4733 else goto invalid_vga;
4734 } else goto invalid_vga;
4735 opts = nextopt;
4739 #ifdef _WIN32
4740 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4742 exit(STATUS_CONTROL_C_EXIT);
4743 return TRUE;
4745 #endif
4747 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4749 int ret;
4751 if(strlen(str) != 36)
4752 return -1;
4754 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4755 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4756 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4758 if(ret != 16)
4759 return -1;
4761 #ifdef TARGET_I386
4762 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4763 #endif
4765 return 0;
4768 #define MAX_NET_CLIENTS 32
4770 #ifndef _WIN32
4772 static void termsig_handler(int signal)
4774 qemu_system_shutdown_request();
4777 static void sigchld_handler(int signal)
4779 waitpid(-1, NULL, WNOHANG);
4782 static void sighandler_setup(void)
4784 struct sigaction act;
4786 memset(&act, 0, sizeof(act));
4787 act.sa_handler = termsig_handler;
4788 sigaction(SIGINT, &act, NULL);
4789 sigaction(SIGHUP, &act, NULL);
4790 sigaction(SIGTERM, &act, NULL);
4792 act.sa_handler = sigchld_handler;
4793 act.sa_flags = SA_NOCLDSTOP;
4794 sigaction(SIGCHLD, &act, NULL);
4797 #endif
4799 #ifdef _WIN32
4800 /* Look for support files in the same directory as the executable. */
4801 static char *find_datadir(const char *argv0)
4803 char *p;
4804 char buf[MAX_PATH];
4805 DWORD len;
4807 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4808 if (len == 0) {
4809 return NULL;
4812 buf[len] = 0;
4813 p = buf + len - 1;
4814 while (p != buf && *p != '\\')
4815 p--;
4816 *p = 0;
4817 if (access(buf, R_OK) == 0) {
4818 return qemu_strdup(buf);
4820 return NULL;
4822 #else /* !_WIN32 */
4824 /* Find a likely location for support files using the location of the binary.
4825 For installed binaries this will be "$bindir/../share/qemu". When
4826 running from the build tree this will be "$bindir/../pc-bios". */
4827 #define SHARE_SUFFIX "/share/qemu"
4828 #define BUILD_SUFFIX "/pc-bios"
4829 static char *find_datadir(const char *argv0)
4831 char *dir;
4832 char *p = NULL;
4833 char *res;
4834 #ifdef PATH_MAX
4835 char buf[PATH_MAX];
4836 #endif
4837 size_t max_len;
4839 #if defined(__linux__)
4841 int len;
4842 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4843 if (len > 0) {
4844 buf[len] = 0;
4845 p = buf;
4848 #elif defined(__FreeBSD__)
4850 int len;
4851 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4852 if (len > 0) {
4853 buf[len] = 0;
4854 p = buf;
4857 #endif
4858 /* If we don't have any way of figuring out the actual executable
4859 location then try argv[0]. */
4860 if (!p) {
4861 #ifdef PATH_MAX
4862 p = buf;
4863 #endif
4864 p = realpath(argv0, p);
4865 if (!p) {
4866 return NULL;
4869 dir = dirname(p);
4870 dir = dirname(dir);
4872 max_len = strlen(dir) +
4873 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4874 res = qemu_mallocz(max_len);
4875 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4876 if (access(res, R_OK)) {
4877 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4878 if (access(res, R_OK)) {
4879 qemu_free(res);
4880 res = NULL;
4883 #ifndef PATH_MAX
4884 free(p);
4885 #endif
4886 return res;
4888 #undef SHARE_SUFFIX
4889 #undef BUILD_SUFFIX
4890 #endif
4892 char *qemu_find_file(int type, const char *name)
4894 int len;
4895 const char *subdir;
4896 char *buf;
4898 /* If name contains path separators then try it as a straight path. */
4899 if ((strchr(name, '/') || strchr(name, '\\'))
4900 && access(name, R_OK) == 0) {
4901 return strdup(name);
4903 switch (type) {
4904 case QEMU_FILE_TYPE_BIOS:
4905 subdir = "";
4906 break;
4907 case QEMU_FILE_TYPE_KEYMAP:
4908 subdir = "keymaps/";
4909 break;
4910 default:
4911 abort();
4913 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4914 buf = qemu_mallocz(len);
4915 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4916 if (access(buf, R_OK)) {
4917 qemu_free(buf);
4918 return NULL;
4920 return buf;
4923 int main(int argc, char **argv, char **envp)
4925 const char *gdbstub_dev = NULL;
4926 uint32_t boot_devices_bitmap = 0;
4927 int i;
4928 int snapshot, linux_boot, net_boot;
4929 const char *initrd_filename;
4930 const char *kernel_filename, *kernel_cmdline;
4931 const char *boot_devices = "";
4932 DisplayState *ds;
4933 DisplayChangeListener *dcl;
4934 int cyls, heads, secs, translation;
4935 const char *net_clients[MAX_NET_CLIENTS];
4936 int nb_net_clients;
4937 const char *bt_opts[MAX_BT_CMDLINE];
4938 int nb_bt_opts;
4939 int hda_index;
4940 int optind;
4941 const char *r, *optarg;
4942 CharDriverState *monitor_hd = NULL;
4943 const char *monitor_device;
4944 const char *serial_devices[MAX_SERIAL_PORTS];
4945 int serial_device_index;
4946 const char *parallel_devices[MAX_PARALLEL_PORTS];
4947 int parallel_device_index;
4948 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4949 int virtio_console_index;
4950 const char *loadvm = NULL;
4951 QEMUMachine *machine;
4952 const char *cpu_model;
4953 const char *usb_devices[MAX_USB_CMDLINE];
4954 int usb_devices_index;
4955 #ifndef _WIN32
4956 int fds[2];
4957 #endif
4958 int tb_size;
4959 const char *pid_file = NULL;
4960 const char *incoming = NULL;
4961 #ifndef _WIN32
4962 int fd = 0;
4963 struct passwd *pwd = NULL;
4964 const char *chroot_dir = NULL;
4965 const char *run_as = NULL;
4966 #endif
4967 CPUState *env;
4968 int show_vnc_port = 0;
4970 qemu_cache_utils_init(envp);
4972 LIST_INIT (&vm_change_state_head);
4973 #ifndef _WIN32
4975 struct sigaction act;
4976 sigfillset(&act.sa_mask);
4977 act.sa_flags = 0;
4978 act.sa_handler = SIG_IGN;
4979 sigaction(SIGPIPE, &act, NULL);
4981 #else
4982 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4983 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4984 QEMU to run on a single CPU */
4986 HANDLE h;
4987 DWORD mask, smask;
4988 int i;
4989 h = GetCurrentProcess();
4990 if (GetProcessAffinityMask(h, &mask, &smask)) {
4991 for(i = 0; i < 32; i++) {
4992 if (mask & (1 << i))
4993 break;
4995 if (i != 32) {
4996 mask = 1 << i;
4997 SetProcessAffinityMask(h, mask);
5001 #endif
5003 module_call_init(MODULE_INIT_MACHINE);
5004 machine = find_default_machine();
5005 cpu_model = NULL;
5006 initrd_filename = NULL;
5007 ram_size = 0;
5008 snapshot = 0;
5009 kernel_filename = NULL;
5010 kernel_cmdline = "";
5011 cyls = heads = secs = 0;
5012 translation = BIOS_ATA_TRANSLATION_AUTO;
5013 monitor_device = "vc:80Cx24C";
5015 serial_devices[0] = "vc:80Cx24C";
5016 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5017 serial_devices[i] = NULL;
5018 serial_device_index = 0;
5020 parallel_devices[0] = "vc:80Cx24C";
5021 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5022 parallel_devices[i] = NULL;
5023 parallel_device_index = 0;
5025 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5026 virtio_consoles[i] = NULL;
5027 virtio_console_index = 0;
5029 for (i = 0; i < MAX_NODES; i++) {
5030 node_mem[i] = 0;
5031 node_cpumask[i] = 0;
5034 usb_devices_index = 0;
5036 nb_net_clients = 0;
5037 nb_bt_opts = 0;
5038 nb_drives = 0;
5039 nb_drives_opt = 0;
5040 nb_numa_nodes = 0;
5041 hda_index = -1;
5043 nb_nics = 0;
5045 tb_size = 0;
5046 autostart= 1;
5048 register_watchdogs();
5050 optind = 1;
5051 for(;;) {
5052 if (optind >= argc)
5053 break;
5054 r = argv[optind];
5055 if (r[0] != '-') {
5056 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5057 } else {
5058 const QEMUOption *popt;
5060 optind++;
5061 /* Treat --foo the same as -foo. */
5062 if (r[1] == '-')
5063 r++;
5064 popt = qemu_options;
5065 for(;;) {
5066 if (!popt->name) {
5067 fprintf(stderr, "%s: invalid option -- '%s'\n",
5068 argv[0], r);
5069 exit(1);
5071 if (!strcmp(popt->name, r + 1))
5072 break;
5073 popt++;
5075 if (popt->flags & HAS_ARG) {
5076 if (optind >= argc) {
5077 fprintf(stderr, "%s: option '%s' requires an argument\n",
5078 argv[0], r);
5079 exit(1);
5081 optarg = argv[optind++];
5082 } else {
5083 optarg = NULL;
5086 switch(popt->index) {
5087 case QEMU_OPTION_M:
5088 machine = find_machine(optarg);
5089 if (!machine) {
5090 QEMUMachine *m;
5091 printf("Supported machines are:\n");
5092 for(m = first_machine; m != NULL; m = m->next) {
5093 printf("%-10s %s%s\n",
5094 m->name, m->desc,
5095 m->is_default ? " (default)" : "");
5097 exit(*optarg != '?');
5099 break;
5100 case QEMU_OPTION_cpu:
5101 /* hw initialization will check this */
5102 if (*optarg == '?') {
5103 /* XXX: implement xxx_cpu_list for targets that still miss it */
5104 #if defined(cpu_list)
5105 cpu_list(stdout, &fprintf);
5106 #endif
5107 exit(0);
5108 } else {
5109 cpu_model = optarg;
5111 break;
5112 case QEMU_OPTION_initrd:
5113 initrd_filename = optarg;
5114 break;
5115 case QEMU_OPTION_hda:
5116 if (cyls == 0)
5117 hda_index = drive_add(optarg, HD_ALIAS, 0);
5118 else
5119 hda_index = drive_add(optarg, HD_ALIAS
5120 ",cyls=%d,heads=%d,secs=%d%s",
5121 0, cyls, heads, secs,
5122 translation == BIOS_ATA_TRANSLATION_LBA ?
5123 ",trans=lba" :
5124 translation == BIOS_ATA_TRANSLATION_NONE ?
5125 ",trans=none" : "");
5126 break;
5127 case QEMU_OPTION_hdb:
5128 case QEMU_OPTION_hdc:
5129 case QEMU_OPTION_hdd:
5130 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5131 break;
5132 case QEMU_OPTION_drive:
5133 drive_add(NULL, "%s", optarg);
5134 break;
5135 case QEMU_OPTION_mtdblock:
5136 drive_add(optarg, MTD_ALIAS);
5137 break;
5138 case QEMU_OPTION_sd:
5139 drive_add(optarg, SD_ALIAS);
5140 break;
5141 case QEMU_OPTION_pflash:
5142 drive_add(optarg, PFLASH_ALIAS);
5143 break;
5144 case QEMU_OPTION_snapshot:
5145 snapshot = 1;
5146 break;
5147 case QEMU_OPTION_hdachs:
5149 const char *p;
5150 p = optarg;
5151 cyls = strtol(p, (char **)&p, 0);
5152 if (cyls < 1 || cyls > 16383)
5153 goto chs_fail;
5154 if (*p != ',')
5155 goto chs_fail;
5156 p++;
5157 heads = strtol(p, (char **)&p, 0);
5158 if (heads < 1 || heads > 16)
5159 goto chs_fail;
5160 if (*p != ',')
5161 goto chs_fail;
5162 p++;
5163 secs = strtol(p, (char **)&p, 0);
5164 if (secs < 1 || secs > 63)
5165 goto chs_fail;
5166 if (*p == ',') {
5167 p++;
5168 if (!strcmp(p, "none"))
5169 translation = BIOS_ATA_TRANSLATION_NONE;
5170 else if (!strcmp(p, "lba"))
5171 translation = BIOS_ATA_TRANSLATION_LBA;
5172 else if (!strcmp(p, "auto"))
5173 translation = BIOS_ATA_TRANSLATION_AUTO;
5174 else
5175 goto chs_fail;
5176 } else if (*p != '\0') {
5177 chs_fail:
5178 fprintf(stderr, "qemu: invalid physical CHS format\n");
5179 exit(1);
5181 if (hda_index != -1)
5182 snprintf(drives_opt[hda_index].opt,
5183 sizeof(drives_opt[hda_index].opt),
5184 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5185 0, cyls, heads, secs,
5186 translation == BIOS_ATA_TRANSLATION_LBA ?
5187 ",trans=lba" :
5188 translation == BIOS_ATA_TRANSLATION_NONE ?
5189 ",trans=none" : "");
5191 break;
5192 case QEMU_OPTION_numa:
5193 if (nb_numa_nodes >= MAX_NODES) {
5194 fprintf(stderr, "qemu: too many NUMA nodes\n");
5195 exit(1);
5197 numa_add(optarg);
5198 break;
5199 case QEMU_OPTION_nographic:
5200 display_type = DT_NOGRAPHIC;
5201 break;
5202 #ifdef CONFIG_CURSES
5203 case QEMU_OPTION_curses:
5204 display_type = DT_CURSES;
5205 break;
5206 #endif
5207 case QEMU_OPTION_portrait:
5208 graphic_rotate = 1;
5209 break;
5210 case QEMU_OPTION_kernel:
5211 kernel_filename = optarg;
5212 break;
5213 case QEMU_OPTION_append:
5214 kernel_cmdline = optarg;
5215 break;
5216 case QEMU_OPTION_cdrom:
5217 drive_add(optarg, CDROM_ALIAS);
5218 break;
5219 case QEMU_OPTION_boot:
5220 boot_devices = optarg;
5221 /* We just do some generic consistency checks */
5223 /* Could easily be extended to 64 devices if needed */
5224 const char *p;
5226 boot_devices_bitmap = 0;
5227 for (p = boot_devices; *p != '\0'; p++) {
5228 /* Allowed boot devices are:
5229 * a b : floppy disk drives
5230 * c ... f : IDE disk drives
5231 * g ... m : machine implementation dependant drives
5232 * n ... p : network devices
5233 * It's up to each machine implementation to check
5234 * if the given boot devices match the actual hardware
5235 * implementation and firmware features.
5237 if (*p < 'a' || *p > 'q') {
5238 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5239 exit(1);
5241 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5242 fprintf(stderr,
5243 "Boot device '%c' was given twice\n",*p);
5244 exit(1);
5246 boot_devices_bitmap |= 1 << (*p - 'a');
5249 break;
5250 case QEMU_OPTION_fda:
5251 case QEMU_OPTION_fdb:
5252 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5253 break;
5254 #ifdef TARGET_I386
5255 case QEMU_OPTION_no_fd_bootchk:
5256 fd_bootchk = 0;
5257 break;
5258 #endif
5259 case QEMU_OPTION_net:
5260 if (nb_net_clients >= MAX_NET_CLIENTS) {
5261 fprintf(stderr, "qemu: too many network clients\n");
5262 exit(1);
5264 net_clients[nb_net_clients] = optarg;
5265 nb_net_clients++;
5266 break;
5267 #ifdef CONFIG_SLIRP
5268 case QEMU_OPTION_tftp:
5269 tftp_prefix = optarg;
5270 break;
5271 case QEMU_OPTION_bootp:
5272 bootp_filename = optarg;
5273 break;
5274 #ifndef _WIN32
5275 case QEMU_OPTION_smb:
5276 net_slirp_smb(optarg);
5277 break;
5278 #endif
5279 case QEMU_OPTION_redir:
5280 net_slirp_redir(NULL, optarg, NULL);
5281 break;
5282 #endif
5283 case QEMU_OPTION_bt:
5284 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5285 fprintf(stderr, "qemu: too many bluetooth options\n");
5286 exit(1);
5288 bt_opts[nb_bt_opts++] = optarg;
5289 break;
5290 #ifdef HAS_AUDIO
5291 case QEMU_OPTION_audio_help:
5292 AUD_help ();
5293 exit (0);
5294 break;
5295 case QEMU_OPTION_soundhw:
5296 select_soundhw (optarg);
5297 break;
5298 #endif
5299 case QEMU_OPTION_h:
5300 help(0);
5301 break;
5302 case QEMU_OPTION_version:
5303 version();
5304 exit(0);
5305 break;
5306 case QEMU_OPTION_m: {
5307 uint64_t value;
5308 char *ptr;
5310 value = strtoul(optarg, &ptr, 10);
5311 switch (*ptr) {
5312 case 0: case 'M': case 'm':
5313 value <<= 20;
5314 break;
5315 case 'G': case 'g':
5316 value <<= 30;
5317 break;
5318 default:
5319 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5320 exit(1);
5323 /* On 32-bit hosts, QEMU is limited by virtual address space */
5324 if (value > (2047 << 20)
5325 #ifndef CONFIG_KQEMU
5326 && HOST_LONG_BITS == 32
5327 #endif
5329 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5330 exit(1);
5332 if (value != (uint64_t)(ram_addr_t)value) {
5333 fprintf(stderr, "qemu: ram size too large\n");
5334 exit(1);
5336 ram_size = value;
5337 break;
5339 case QEMU_OPTION_d:
5341 int mask;
5342 const CPULogItem *item;
5344 mask = cpu_str_to_log_mask(optarg);
5345 if (!mask) {
5346 printf("Log items (comma separated):\n");
5347 for(item = cpu_log_items; item->mask != 0; item++) {
5348 printf("%-10s %s\n", item->name, item->help);
5350 exit(1);
5352 cpu_set_log(mask);
5354 break;
5355 case QEMU_OPTION_s:
5356 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5357 break;
5358 case QEMU_OPTION_gdb:
5359 gdbstub_dev = optarg;
5360 break;
5361 case QEMU_OPTION_L:
5362 data_dir = optarg;
5363 break;
5364 case QEMU_OPTION_bios:
5365 bios_name = optarg;
5366 break;
5367 case QEMU_OPTION_singlestep:
5368 singlestep = 1;
5369 break;
5370 case QEMU_OPTION_S:
5371 autostart = 0;
5372 break;
5373 #ifndef _WIN32
5374 case QEMU_OPTION_k:
5375 keyboard_layout = optarg;
5376 break;
5377 #endif
5378 case QEMU_OPTION_localtime:
5379 rtc_utc = 0;
5380 break;
5381 case QEMU_OPTION_vga:
5382 select_vgahw (optarg);
5383 break;
5384 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5385 case QEMU_OPTION_g:
5387 const char *p;
5388 int w, h, depth;
5389 p = optarg;
5390 w = strtol(p, (char **)&p, 10);
5391 if (w <= 0) {
5392 graphic_error:
5393 fprintf(stderr, "qemu: invalid resolution or depth\n");
5394 exit(1);
5396 if (*p != 'x')
5397 goto graphic_error;
5398 p++;
5399 h = strtol(p, (char **)&p, 10);
5400 if (h <= 0)
5401 goto graphic_error;
5402 if (*p == 'x') {
5403 p++;
5404 depth = strtol(p, (char **)&p, 10);
5405 if (depth != 8 && depth != 15 && depth != 16 &&
5406 depth != 24 && depth != 32)
5407 goto graphic_error;
5408 } else if (*p == '\0') {
5409 depth = graphic_depth;
5410 } else {
5411 goto graphic_error;
5414 graphic_width = w;
5415 graphic_height = h;
5416 graphic_depth = depth;
5418 break;
5419 #endif
5420 case QEMU_OPTION_echr:
5422 char *r;
5423 term_escape_char = strtol(optarg, &r, 0);
5424 if (r == optarg)
5425 printf("Bad argument to echr\n");
5426 break;
5428 case QEMU_OPTION_monitor:
5429 monitor_device = optarg;
5430 break;
5431 case QEMU_OPTION_serial:
5432 if (serial_device_index >= MAX_SERIAL_PORTS) {
5433 fprintf(stderr, "qemu: too many serial ports\n");
5434 exit(1);
5436 serial_devices[serial_device_index] = optarg;
5437 serial_device_index++;
5438 break;
5439 case QEMU_OPTION_watchdog:
5440 i = select_watchdog(optarg);
5441 if (i > 0)
5442 exit (i == 1 ? 1 : 0);
5443 break;
5444 case QEMU_OPTION_watchdog_action:
5445 if (select_watchdog_action(optarg) == -1) {
5446 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5447 exit(1);
5449 break;
5450 case QEMU_OPTION_virtiocon:
5451 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5452 fprintf(stderr, "qemu: too many virtio consoles\n");
5453 exit(1);
5455 virtio_consoles[virtio_console_index] = optarg;
5456 virtio_console_index++;
5457 break;
5458 case QEMU_OPTION_parallel:
5459 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5460 fprintf(stderr, "qemu: too many parallel ports\n");
5461 exit(1);
5463 parallel_devices[parallel_device_index] = optarg;
5464 parallel_device_index++;
5465 break;
5466 case QEMU_OPTION_loadvm:
5467 loadvm = optarg;
5468 break;
5469 case QEMU_OPTION_full_screen:
5470 full_screen = 1;
5471 break;
5472 #ifdef CONFIG_SDL
5473 case QEMU_OPTION_no_frame:
5474 no_frame = 1;
5475 break;
5476 case QEMU_OPTION_alt_grab:
5477 alt_grab = 1;
5478 break;
5479 case QEMU_OPTION_no_quit:
5480 no_quit = 1;
5481 break;
5482 case QEMU_OPTION_sdl:
5483 display_type = DT_SDL;
5484 break;
5485 #endif
5486 case QEMU_OPTION_pidfile:
5487 pid_file = optarg;
5488 break;
5489 #ifdef TARGET_I386
5490 case QEMU_OPTION_win2k_hack:
5491 win2k_install_hack = 1;
5492 break;
5493 case QEMU_OPTION_rtc_td_hack:
5494 rtc_td_hack = 1;
5495 break;
5496 case QEMU_OPTION_acpitable:
5497 if(acpi_table_add(optarg) < 0) {
5498 fprintf(stderr, "Wrong acpi table provided\n");
5499 exit(1);
5501 break;
5502 case QEMU_OPTION_smbios:
5503 if(smbios_entry_add(optarg) < 0) {
5504 fprintf(stderr, "Wrong smbios provided\n");
5505 exit(1);
5507 break;
5508 #endif
5509 #ifdef CONFIG_KQEMU
5510 case QEMU_OPTION_no_kqemu:
5511 kqemu_allowed = 0;
5512 break;
5513 case QEMU_OPTION_kernel_kqemu:
5514 kqemu_allowed = 2;
5515 break;
5516 #endif
5517 #ifdef CONFIG_KVM
5518 case QEMU_OPTION_enable_kvm:
5519 kvm_allowed = 1;
5520 #ifdef CONFIG_KQEMU
5521 kqemu_allowed = 0;
5522 #endif
5523 break;
5524 #endif
5525 case QEMU_OPTION_usb:
5526 usb_enabled = 1;
5527 break;
5528 case QEMU_OPTION_usbdevice:
5529 usb_enabled = 1;
5530 if (usb_devices_index >= MAX_USB_CMDLINE) {
5531 fprintf(stderr, "Too many USB devices\n");
5532 exit(1);
5534 usb_devices[usb_devices_index] = optarg;
5535 usb_devices_index++;
5536 break;
5537 case QEMU_OPTION_smp:
5538 smp_cpus = atoi(optarg);
5539 if (smp_cpus < 1) {
5540 fprintf(stderr, "Invalid number of CPUs\n");
5541 exit(1);
5543 break;
5544 case QEMU_OPTION_vnc:
5545 display_type = DT_VNC;
5546 vnc_display = optarg;
5547 break;
5548 #ifdef TARGET_I386
5549 case QEMU_OPTION_no_acpi:
5550 acpi_enabled = 0;
5551 break;
5552 case QEMU_OPTION_no_hpet:
5553 no_hpet = 1;
5554 break;
5555 case QEMU_OPTION_no_virtio_balloon:
5556 no_virtio_balloon = 1;
5557 break;
5558 #endif
5559 case QEMU_OPTION_no_reboot:
5560 no_reboot = 1;
5561 break;
5562 case QEMU_OPTION_no_shutdown:
5563 no_shutdown = 1;
5564 break;
5565 case QEMU_OPTION_show_cursor:
5566 cursor_hide = 0;
5567 break;
5568 case QEMU_OPTION_uuid:
5569 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5570 fprintf(stderr, "Fail to parse UUID string."
5571 " Wrong format.\n");
5572 exit(1);
5574 break;
5575 #ifndef _WIN32
5576 case QEMU_OPTION_daemonize:
5577 daemonize = 1;
5578 break;
5579 #endif
5580 case QEMU_OPTION_option_rom:
5581 if (nb_option_roms >= MAX_OPTION_ROMS) {
5582 fprintf(stderr, "Too many option ROMs\n");
5583 exit(1);
5585 option_rom[nb_option_roms] = optarg;
5586 nb_option_roms++;
5587 break;
5588 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5589 case QEMU_OPTION_semihosting:
5590 semihosting_enabled = 1;
5591 break;
5592 #endif
5593 case QEMU_OPTION_name:
5594 qemu_name = optarg;
5595 break;
5596 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5597 case QEMU_OPTION_prom_env:
5598 if (nb_prom_envs >= MAX_PROM_ENVS) {
5599 fprintf(stderr, "Too many prom variables\n");
5600 exit(1);
5602 prom_envs[nb_prom_envs] = optarg;
5603 nb_prom_envs++;
5604 break;
5605 #endif
5606 #ifdef TARGET_ARM
5607 case QEMU_OPTION_old_param:
5608 old_param = 1;
5609 break;
5610 #endif
5611 case QEMU_OPTION_clock:
5612 configure_alarms(optarg);
5613 break;
5614 case QEMU_OPTION_startdate:
5616 struct tm tm;
5617 time_t rtc_start_date;
5618 if (!strcmp(optarg, "now")) {
5619 rtc_date_offset = -1;
5620 } else {
5621 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5622 &tm.tm_year,
5623 &tm.tm_mon,
5624 &tm.tm_mday,
5625 &tm.tm_hour,
5626 &tm.tm_min,
5627 &tm.tm_sec) == 6) {
5628 /* OK */
5629 } else if (sscanf(optarg, "%d-%d-%d",
5630 &tm.tm_year,
5631 &tm.tm_mon,
5632 &tm.tm_mday) == 3) {
5633 tm.tm_hour = 0;
5634 tm.tm_min = 0;
5635 tm.tm_sec = 0;
5636 } else {
5637 goto date_fail;
5639 tm.tm_year -= 1900;
5640 tm.tm_mon--;
5641 rtc_start_date = mktimegm(&tm);
5642 if (rtc_start_date == -1) {
5643 date_fail:
5644 fprintf(stderr, "Invalid date format. Valid format are:\n"
5645 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5646 exit(1);
5648 rtc_date_offset = time(NULL) - rtc_start_date;
5651 break;
5652 case QEMU_OPTION_tb_size:
5653 tb_size = strtol(optarg, NULL, 0);
5654 if (tb_size < 0)
5655 tb_size = 0;
5656 break;
5657 case QEMU_OPTION_icount:
5658 use_icount = 1;
5659 if (strcmp(optarg, "auto") == 0) {
5660 icount_time_shift = -1;
5661 } else {
5662 icount_time_shift = strtol(optarg, NULL, 0);
5664 break;
5665 case QEMU_OPTION_incoming:
5666 incoming = optarg;
5667 break;
5668 #ifndef _WIN32
5669 case QEMU_OPTION_chroot:
5670 chroot_dir = optarg;
5671 break;
5672 case QEMU_OPTION_runas:
5673 run_as = optarg;
5674 break;
5675 #endif
5676 #ifdef CONFIG_XEN
5677 case QEMU_OPTION_xen_domid:
5678 xen_domid = atoi(optarg);
5679 break;
5680 case QEMU_OPTION_xen_create:
5681 xen_mode = XEN_CREATE;
5682 break;
5683 case QEMU_OPTION_xen_attach:
5684 xen_mode = XEN_ATTACH;
5685 break;
5686 #endif
5691 /* If no data_dir is specified then try to find it relative to the
5692 executable path. */
5693 if (!data_dir) {
5694 data_dir = find_datadir(argv[0]);
5696 /* If all else fails use the install patch specified when building. */
5697 if (!data_dir) {
5698 data_dir = CONFIG_QEMU_SHAREDIR;
5701 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5702 if (kvm_allowed && kqemu_allowed) {
5703 fprintf(stderr,
5704 "You can not enable both KVM and kqemu at the same time\n");
5705 exit(1);
5707 #endif
5709 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5710 if (smp_cpus > machine->max_cpus) {
5711 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5712 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5713 machine->max_cpus);
5714 exit(1);
5717 if (display_type == DT_NOGRAPHIC) {
5718 if (serial_device_index == 0)
5719 serial_devices[0] = "stdio";
5720 if (parallel_device_index == 0)
5721 parallel_devices[0] = "null";
5722 if (strncmp(monitor_device, "vc", 2) == 0)
5723 monitor_device = "stdio";
5726 #ifndef _WIN32
5727 if (daemonize) {
5728 pid_t pid;
5730 if (pipe(fds) == -1)
5731 exit(1);
5733 pid = fork();
5734 if (pid > 0) {
5735 uint8_t status;
5736 ssize_t len;
5738 close(fds[1]);
5740 again:
5741 len = read(fds[0], &status, 1);
5742 if (len == -1 && (errno == EINTR))
5743 goto again;
5745 if (len != 1)
5746 exit(1);
5747 else if (status == 1) {
5748 fprintf(stderr, "Could not acquire pidfile\n");
5749 exit(1);
5750 } else
5751 exit(0);
5752 } else if (pid < 0)
5753 exit(1);
5755 setsid();
5757 pid = fork();
5758 if (pid > 0)
5759 exit(0);
5760 else if (pid < 0)
5761 exit(1);
5763 umask(027);
5765 signal(SIGTSTP, SIG_IGN);
5766 signal(SIGTTOU, SIG_IGN);
5767 signal(SIGTTIN, SIG_IGN);
5770 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5771 if (daemonize) {
5772 uint8_t status = 1;
5773 write(fds[1], &status, 1);
5774 } else
5775 fprintf(stderr, "Could not acquire pid file\n");
5776 exit(1);
5778 #endif
5780 #ifdef CONFIG_KQEMU
5781 if (smp_cpus > 1)
5782 kqemu_allowed = 0;
5783 #endif
5784 if (qemu_init_main_loop()) {
5785 fprintf(stderr, "qemu_init_main_loop failed\n");
5786 exit(1);
5788 linux_boot = (kernel_filename != NULL);
5789 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5791 if (!linux_boot && *kernel_cmdline != '\0') {
5792 fprintf(stderr, "-append only allowed with -kernel option\n");
5793 exit(1);
5796 if (!linux_boot && initrd_filename != NULL) {
5797 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5798 exit(1);
5801 /* boot to floppy or the default cd if no hard disk defined yet */
5802 if (!boot_devices[0]) {
5803 boot_devices = "cad";
5805 setvbuf(stdout, NULL, _IOLBF, 0);
5807 init_timers();
5808 if (init_timer_alarm() < 0) {
5809 fprintf(stderr, "could not initialize alarm timer\n");
5810 exit(1);
5812 if (use_icount && icount_time_shift < 0) {
5813 use_icount = 2;
5814 /* 125MIPS seems a reasonable initial guess at the guest speed.
5815 It will be corrected fairly quickly anyway. */
5816 icount_time_shift = 3;
5817 init_icount_adjust();
5820 #ifdef _WIN32
5821 socket_init();
5822 #endif
5824 /* init network clients */
5825 if (nb_net_clients == 0) {
5826 /* if no clients, we use a default config */
5827 net_clients[nb_net_clients++] = "nic";
5828 #ifdef CONFIG_SLIRP
5829 net_clients[nb_net_clients++] = "user";
5830 #endif
5833 for(i = 0;i < nb_net_clients; i++) {
5834 if (net_client_parse(net_clients[i]) < 0)
5835 exit(1);
5837 net_client_check();
5839 #ifdef TARGET_I386
5840 /* XXX: this should be moved in the PC machine instantiation code */
5841 if (net_boot != 0) {
5842 int netroms = 0;
5843 for (i = 0; i < nb_nics && i < 4; i++) {
5844 const char *model = nd_table[i].model;
5845 char buf[1024];
5846 char *filename;
5847 if (net_boot & (1 << i)) {
5848 if (model == NULL)
5849 model = "ne2k_pci";
5850 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5851 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5852 if (filename && get_image_size(filename) > 0) {
5853 if (nb_option_roms >= MAX_OPTION_ROMS) {
5854 fprintf(stderr, "Too many option ROMs\n");
5855 exit(1);
5857 option_rom[nb_option_roms] = qemu_strdup(buf);
5858 nb_option_roms++;
5859 netroms++;
5861 if (filename) {
5862 qemu_free(filename);
5866 if (netroms == 0) {
5867 fprintf(stderr, "No valid PXE rom found for network device\n");
5868 exit(1);
5871 #endif
5873 /* init the bluetooth world */
5874 for (i = 0; i < nb_bt_opts; i++)
5875 if (bt_parse(bt_opts[i]))
5876 exit(1);
5878 /* init the memory */
5879 if (ram_size == 0)
5880 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5882 #ifdef CONFIG_KQEMU
5883 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5884 guest ram allocation. It needs to go away. */
5885 if (kqemu_allowed) {
5886 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5887 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5888 if (!kqemu_phys_ram_base) {
5889 fprintf(stderr, "Could not allocate physical memory\n");
5890 exit(1);
5893 #endif
5895 /* init the dynamic translator */
5896 cpu_exec_init_all(tb_size * 1024 * 1024);
5898 bdrv_init();
5900 /* we always create the cdrom drive, even if no disk is there */
5902 if (nb_drives_opt < MAX_DRIVES)
5903 drive_add(NULL, CDROM_ALIAS);
5905 /* we always create at least one floppy */
5907 if (nb_drives_opt < MAX_DRIVES)
5908 drive_add(NULL, FD_ALIAS, 0);
5910 /* we always create one sd slot, even if no card is in it */
5912 if (nb_drives_opt < MAX_DRIVES)
5913 drive_add(NULL, SD_ALIAS);
5915 /* open the virtual block devices */
5917 for(i = 0; i < nb_drives_opt; i++)
5918 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5919 exit(1);
5921 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5922 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5924 #ifndef _WIN32
5925 /* must be after terminal init, SDL library changes signal handlers */
5926 sighandler_setup();
5927 #endif
5929 /* Maintain compatibility with multiple stdio monitors */
5930 if (!strcmp(monitor_device,"stdio")) {
5931 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5932 const char *devname = serial_devices[i];
5933 if (devname && !strcmp(devname,"mon:stdio")) {
5934 monitor_device = NULL;
5935 break;
5936 } else if (devname && !strcmp(devname,"stdio")) {
5937 monitor_device = NULL;
5938 serial_devices[i] = "mon:stdio";
5939 break;
5944 if (nb_numa_nodes > 0) {
5945 int i;
5947 if (nb_numa_nodes > smp_cpus) {
5948 nb_numa_nodes = smp_cpus;
5951 /* If no memory size if given for any node, assume the default case
5952 * and distribute the available memory equally across all nodes
5954 for (i = 0; i < nb_numa_nodes; i++) {
5955 if (node_mem[i] != 0)
5956 break;
5958 if (i == nb_numa_nodes) {
5959 uint64_t usedmem = 0;
5961 /* On Linux, the each node's border has to be 8MB aligned,
5962 * the final node gets the rest.
5964 for (i = 0; i < nb_numa_nodes - 1; i++) {
5965 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5966 usedmem += node_mem[i];
5968 node_mem[i] = ram_size - usedmem;
5971 for (i = 0; i < nb_numa_nodes; i++) {
5972 if (node_cpumask[i] != 0)
5973 break;
5975 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5976 * must cope with this anyway, because there are BIOSes out there in
5977 * real machines which also use this scheme.
5979 if (i == nb_numa_nodes) {
5980 for (i = 0; i < smp_cpus; i++) {
5981 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5986 if (kvm_enabled()) {
5987 int ret;
5989 ret = kvm_init(smp_cpus);
5990 if (ret < 0) {
5991 fprintf(stderr, "failed to initialize KVM\n");
5992 exit(1);
5996 if (monitor_device) {
5997 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5998 if (!monitor_hd) {
5999 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6000 exit(1);
6004 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6005 const char *devname = serial_devices[i];
6006 if (devname && strcmp(devname, "none")) {
6007 char label[32];
6008 snprintf(label, sizeof(label), "serial%d", i);
6009 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6010 if (!serial_hds[i]) {
6011 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6012 devname);
6013 exit(1);
6018 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6019 const char *devname = parallel_devices[i];
6020 if (devname && strcmp(devname, "none")) {
6021 char label[32];
6022 snprintf(label, sizeof(label), "parallel%d", i);
6023 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6024 if (!parallel_hds[i]) {
6025 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6026 devname);
6027 exit(1);
6032 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6033 const char *devname = virtio_consoles[i];
6034 if (devname && strcmp(devname, "none")) {
6035 char label[32];
6036 snprintf(label, sizeof(label), "virtcon%d", i);
6037 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6038 if (!virtcon_hds[i]) {
6039 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6040 devname);
6041 exit(1);
6046 module_call_init(MODULE_INIT_DEVICE);
6048 machine->init(ram_size, boot_devices,
6049 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6052 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6053 for (i = 0; i < nb_numa_nodes; i++) {
6054 if (node_cpumask[i] & (1 << env->cpu_index)) {
6055 env->numa_node = i;
6060 current_machine = machine;
6062 /* Set KVM's vcpu state to qemu's initial CPUState. */
6063 if (kvm_enabled()) {
6064 int ret;
6066 ret = kvm_sync_vcpus();
6067 if (ret < 0) {
6068 fprintf(stderr, "failed to initialize vcpus\n");
6069 exit(1);
6073 /* init USB devices */
6074 if (usb_enabled) {
6075 for(i = 0; i < usb_devices_index; i++) {
6076 if (usb_device_add(usb_devices[i], 0) < 0) {
6077 fprintf(stderr, "Warning: could not add USB device %s\n",
6078 usb_devices[i]);
6083 if (!display_state)
6084 dumb_display_init();
6085 /* just use the first displaystate for the moment */
6086 ds = display_state;
6088 if (display_type == DT_DEFAULT) {
6089 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6090 display_type = DT_SDL;
6091 #else
6092 display_type = DT_VNC;
6093 vnc_display = "localhost:0,to=99";
6094 show_vnc_port = 1;
6095 #endif
6099 switch (display_type) {
6100 case DT_NOGRAPHIC:
6101 break;
6102 #if defined(CONFIG_CURSES)
6103 case DT_CURSES:
6104 curses_display_init(ds, full_screen);
6105 break;
6106 #endif
6107 #if defined(CONFIG_SDL)
6108 case DT_SDL:
6109 sdl_display_init(ds, full_screen, no_frame);
6110 break;
6111 #elif defined(CONFIG_COCOA)
6112 case DT_SDL:
6113 cocoa_display_init(ds, full_screen);
6114 break;
6115 #endif
6116 case DT_VNC:
6117 vnc_display_init(ds);
6118 if (vnc_display_open(ds, vnc_display) < 0)
6119 exit(1);
6121 if (show_vnc_port) {
6122 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6124 break;
6125 default:
6126 break;
6128 dpy_resize(ds);
6130 dcl = ds->listeners;
6131 while (dcl != NULL) {
6132 if (dcl->dpy_refresh != NULL) {
6133 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6134 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6136 dcl = dcl->next;
6139 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6140 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6141 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6144 text_consoles_set_display(display_state);
6145 qemu_chr_initial_reset();
6147 if (monitor_device && monitor_hd)
6148 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6150 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6151 const char *devname = serial_devices[i];
6152 if (devname && strcmp(devname, "none")) {
6153 char label[32];
6154 snprintf(label, sizeof(label), "serial%d", i);
6155 if (strstart(devname, "vc", 0))
6156 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6160 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6161 const char *devname = parallel_devices[i];
6162 if (devname && strcmp(devname, "none")) {
6163 char label[32];
6164 snprintf(label, sizeof(label), "parallel%d", i);
6165 if (strstart(devname, "vc", 0))
6166 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6170 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6171 const char *devname = virtio_consoles[i];
6172 if (virtcon_hds[i] && devname) {
6173 char label[32];
6174 snprintf(label, sizeof(label), "virtcon%d", i);
6175 if (strstart(devname, "vc", 0))
6176 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6180 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6181 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6182 gdbstub_dev);
6183 exit(1);
6186 if (loadvm)
6187 do_loadvm(cur_mon, loadvm);
6189 if (incoming) {
6190 autostart = 0; /* fixme how to deal with -daemonize */
6191 qemu_start_incoming_migration(incoming);
6194 if (autostart)
6195 vm_start();
6197 #ifndef _WIN32
6198 if (daemonize) {
6199 uint8_t status = 0;
6200 ssize_t len;
6202 again1:
6203 len = write(fds[1], &status, 1);
6204 if (len == -1 && (errno == EINTR))
6205 goto again1;
6207 if (len != 1)
6208 exit(1);
6210 chdir("/");
6211 TFR(fd = open("/dev/null", O_RDWR));
6212 if (fd == -1)
6213 exit(1);
6216 if (run_as) {
6217 pwd = getpwnam(run_as);
6218 if (!pwd) {
6219 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6220 exit(1);
6224 if (chroot_dir) {
6225 if (chroot(chroot_dir) < 0) {
6226 fprintf(stderr, "chroot failed\n");
6227 exit(1);
6229 chdir("/");
6232 if (run_as) {
6233 if (setgid(pwd->pw_gid) < 0) {
6234 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6235 exit(1);
6237 if (setuid(pwd->pw_uid) < 0) {
6238 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6239 exit(1);
6241 if (setuid(0) != -1) {
6242 fprintf(stderr, "Dropping privileges failed\n");
6243 exit(1);
6247 if (daemonize) {
6248 dup2(fd, 0);
6249 dup2(fd, 1);
6250 dup2(fd, 2);
6252 close(fd);
6254 #endif
6256 main_loop();
6257 quit_timers();
6258 net_cleanup();
6260 return 0;