qemu-ga: fixes for win32 build of qemu-ga
[qemu-kvm.git] / exec.c
blobb81677ade9c7c67add6c4adbf4ceeb3d0d5ffe26
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
80 #define SMC_BITMAP_USE_THRESHOLD 10
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
118 static MemoryRegion *system_memory;
119 static MemoryRegion *system_io;
121 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
122 static MemoryRegion io_mem_subpage_ram;
124 #endif
126 CPUState *first_cpu;
127 /* current CPU in the current thread. It is only valid inside
128 cpu_exec() */
129 DEFINE_TLS(CPUState *,cpu_single_env);
130 /* 0 = Do not count executed instructions.
131 1 = Precise instruction counting.
132 2 = Adaptive rate instruction counting. */
133 int use_icount = 0;
135 typedef struct PageDesc {
136 /* list of TBs intersecting this ram page */
137 TranslationBlock *first_tb;
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count;
141 uint8_t *code_bitmap;
142 #if defined(CONFIG_USER_ONLY)
143 unsigned long flags;
144 #endif
145 } PageDesc;
147 /* In system mode we want L1_MAP to be based on ram offsets,
148 while in user mode we want it to be based on virtual addresses. */
149 #if !defined(CONFIG_USER_ONLY)
150 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152 #else
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
154 #endif
155 #else
156 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
157 #endif
159 /* Size of the L2 (and L3, etc) page tables. */
160 #define L2_BITS 10
161 #define L2_SIZE (1 << L2_BITS)
163 /* The bits remaining after N lower levels of page tables. */
164 #define P_L1_BITS_REM \
165 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169 /* Size of the L1 page table. Avoid silly small sizes. */
170 #if P_L1_BITS_REM < 4
171 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
172 #else
173 #define P_L1_BITS P_L1_BITS_REM
174 #endif
176 #if V_L1_BITS_REM < 4
177 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
178 #else
179 #define V_L1_BITS V_L1_BITS_REM
180 #endif
182 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
183 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
185 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
186 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
188 unsigned long qemu_real_host_page_size;
189 unsigned long qemu_host_page_size;
190 unsigned long qemu_host_page_mask;
192 /* This is a multi-level map on the virtual address space.
193 The bottom level has pointers to PageDesc. */
194 static void *l1_map[V_L1_SIZE];
196 #if !defined(CONFIG_USER_ONLY)
197 typedef struct PhysPageDesc {
198 /* offset in host memory of the page + io_index in the low bits */
199 ram_addr_t phys_offset;
200 ram_addr_t region_offset;
201 } PhysPageDesc;
203 /* This is a multi-level map on the physical address space.
204 The bottom level has pointers to PhysPageDesc. */
205 static void *l1_phys_map[P_L1_SIZE];
207 static void io_mem_init(void);
208 static void memory_map_init(void);
210 /* io memory support */
211 MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
212 static char io_mem_used[IO_MEM_NB_ENTRIES];
213 static MemoryRegion io_mem_watch;
214 #endif
216 /* log support */
217 #ifdef WIN32
218 static const char *logfilename = "qemu.log";
219 #else
220 static const char *logfilename = "/tmp/qemu.log";
221 #endif
222 FILE *logfile;
223 int loglevel;
224 static int log_append = 0;
226 /* statistics */
227 #if !defined(CONFIG_USER_ONLY)
228 static int tlb_flush_count;
229 #endif
230 static int tb_flush_count;
231 static int tb_phys_invalidate_count;
233 #ifdef _WIN32
234 static void map_exec(void *addr, long size)
236 DWORD old_protect;
237 VirtualProtect(addr, size,
238 PAGE_EXECUTE_READWRITE, &old_protect);
241 #else
242 static void map_exec(void *addr, long size)
244 unsigned long start, end, page_size;
246 page_size = getpagesize();
247 start = (unsigned long)addr;
248 start &= ~(page_size - 1);
250 end = (unsigned long)addr + size;
251 end += page_size - 1;
252 end &= ~(page_size - 1);
254 mprotect((void *)start, end - start,
255 PROT_READ | PROT_WRITE | PROT_EXEC);
257 #endif
259 static void page_init(void)
261 /* NOTE: we can always suppose that qemu_host_page_size >=
262 TARGET_PAGE_SIZE */
263 #ifdef _WIN32
265 SYSTEM_INFO system_info;
267 GetSystemInfo(&system_info);
268 qemu_real_host_page_size = system_info.dwPageSize;
270 #else
271 qemu_real_host_page_size = getpagesize();
272 #endif
273 if (qemu_host_page_size == 0)
274 qemu_host_page_size = qemu_real_host_page_size;
275 if (qemu_host_page_size < TARGET_PAGE_SIZE)
276 qemu_host_page_size = TARGET_PAGE_SIZE;
277 qemu_host_page_mask = ~(qemu_host_page_size - 1);
279 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
281 #ifdef HAVE_KINFO_GETVMMAP
282 struct kinfo_vmentry *freep;
283 int i, cnt;
285 freep = kinfo_getvmmap(getpid(), &cnt);
286 if (freep) {
287 mmap_lock();
288 for (i = 0; i < cnt; i++) {
289 unsigned long startaddr, endaddr;
291 startaddr = freep[i].kve_start;
292 endaddr = freep[i].kve_end;
293 if (h2g_valid(startaddr)) {
294 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
296 if (h2g_valid(endaddr)) {
297 endaddr = h2g(endaddr);
298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
299 } else {
300 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
301 endaddr = ~0ul;
302 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
303 #endif
307 free(freep);
308 mmap_unlock();
310 #else
311 FILE *f;
313 last_brk = (unsigned long)sbrk(0);
315 f = fopen("/compat/linux/proc/self/maps", "r");
316 if (f) {
317 mmap_lock();
319 do {
320 unsigned long startaddr, endaddr;
321 int n;
323 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
325 if (n == 2 && h2g_valid(startaddr)) {
326 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
328 if (h2g_valid(endaddr)) {
329 endaddr = h2g(endaddr);
330 } else {
331 endaddr = ~0ul;
333 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
335 } while (!feof(f));
337 fclose(f);
338 mmap_unlock();
340 #endif
342 #endif
345 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
347 PageDesc *pd;
348 void **lp;
349 int i;
351 #if defined(CONFIG_USER_ONLY)
352 /* We can't use g_malloc because it may recurse into a locked mutex. */
353 # define ALLOC(P, SIZE) \
354 do { \
355 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
356 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
357 } while (0)
358 #else
359 # define ALLOC(P, SIZE) \
360 do { P = g_malloc0(SIZE); } while (0)
361 #endif
363 /* Level 1. Always allocated. */
364 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
366 /* Level 2..N-1. */
367 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
368 void **p = *lp;
370 if (p == NULL) {
371 if (!alloc) {
372 return NULL;
374 ALLOC(p, sizeof(void *) * L2_SIZE);
375 *lp = p;
378 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
381 pd = *lp;
382 if (pd == NULL) {
383 if (!alloc) {
384 return NULL;
386 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
387 *lp = pd;
390 #undef ALLOC
392 return pd + (index & (L2_SIZE - 1));
395 static inline PageDesc *page_find(tb_page_addr_t index)
397 return page_find_alloc(index, 0);
400 #if !defined(CONFIG_USER_ONLY)
401 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
403 PhysPageDesc *pd;
404 void **lp;
405 int i;
407 /* Level 1. Always allocated. */
408 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
410 /* Level 2..N-1. */
411 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
412 void **p = *lp;
413 if (p == NULL) {
414 if (!alloc) {
415 return NULL;
417 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
419 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
422 pd = *lp;
423 if (pd == NULL) {
424 int i;
425 int first_index = index & ~(L2_SIZE - 1);
427 if (!alloc) {
428 return NULL;
431 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
433 for (i = 0; i < L2_SIZE; i++) {
434 pd[i].phys_offset = io_mem_unassigned.ram_addr;
435 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
439 return pd + (index & (L2_SIZE - 1));
442 static inline PhysPageDesc phys_page_find(target_phys_addr_t index)
444 PhysPageDesc *p = phys_page_find_alloc(index, 0);
446 if (p) {
447 return *p;
448 } else {
449 return (PhysPageDesc) {
450 .phys_offset = io_mem_unassigned.ram_addr,
451 .region_offset = index << TARGET_PAGE_BITS,
456 static void tlb_protect_code(ram_addr_t ram_addr);
457 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
458 target_ulong vaddr);
459 #define mmap_lock() do { } while(0)
460 #define mmap_unlock() do { } while(0)
461 #endif
463 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
465 #if defined(CONFIG_USER_ONLY)
466 /* Currently it is not recommended to allocate big chunks of data in
467 user mode. It will change when a dedicated libc will be used */
468 #define USE_STATIC_CODE_GEN_BUFFER
469 #endif
471 #ifdef USE_STATIC_CODE_GEN_BUFFER
472 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
473 __attribute__((aligned (CODE_GEN_ALIGN)));
474 #endif
476 static void code_gen_alloc(unsigned long tb_size)
478 #ifdef USE_STATIC_CODE_GEN_BUFFER
479 code_gen_buffer = static_code_gen_buffer;
480 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
481 map_exec(code_gen_buffer, code_gen_buffer_size);
482 #else
483 code_gen_buffer_size = tb_size;
484 if (code_gen_buffer_size == 0) {
485 #if defined(CONFIG_USER_ONLY)
486 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
487 #else
488 /* XXX: needs adjustments */
489 code_gen_buffer_size = (unsigned long)(ram_size / 4);
490 #endif
492 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
493 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
494 /* The code gen buffer location may have constraints depending on
495 the host cpu and OS */
496 #if defined(__linux__)
498 int flags;
499 void *start = NULL;
501 flags = MAP_PRIVATE | MAP_ANONYMOUS;
502 #if defined(__x86_64__)
503 flags |= MAP_32BIT;
504 /* Cannot map more than that */
505 if (code_gen_buffer_size > (800 * 1024 * 1024))
506 code_gen_buffer_size = (800 * 1024 * 1024);
507 #elif defined(__sparc_v9__)
508 // Map the buffer below 2G, so we can use direct calls and branches
509 flags |= MAP_FIXED;
510 start = (void *) 0x60000000UL;
511 if (code_gen_buffer_size > (512 * 1024 * 1024))
512 code_gen_buffer_size = (512 * 1024 * 1024);
513 #elif defined(__arm__)
514 /* Keep the buffer no bigger than 16MB to branch between blocks */
515 if (code_gen_buffer_size > 16 * 1024 * 1024)
516 code_gen_buffer_size = 16 * 1024 * 1024;
517 #elif defined(__s390x__)
518 /* Map the buffer so that we can use direct calls and branches. */
519 /* We have a +- 4GB range on the branches; leave some slop. */
520 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
521 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
523 start = (void *)0x90000000UL;
524 #endif
525 code_gen_buffer = mmap(start, code_gen_buffer_size,
526 PROT_WRITE | PROT_READ | PROT_EXEC,
527 flags, -1, 0);
528 if (code_gen_buffer == MAP_FAILED) {
529 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
530 exit(1);
533 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
534 || defined(__DragonFly__) || defined(__OpenBSD__) \
535 || defined(__NetBSD__)
537 int flags;
538 void *addr = NULL;
539 flags = MAP_PRIVATE | MAP_ANONYMOUS;
540 #if defined(__x86_64__)
541 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
542 * 0x40000000 is free */
543 flags |= MAP_FIXED;
544 addr = (void *)0x40000000;
545 /* Cannot map more than that */
546 if (code_gen_buffer_size > (800 * 1024 * 1024))
547 code_gen_buffer_size = (800 * 1024 * 1024);
548 #elif defined(__sparc_v9__)
549 // Map the buffer below 2G, so we can use direct calls and branches
550 flags |= MAP_FIXED;
551 addr = (void *) 0x60000000UL;
552 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
553 code_gen_buffer_size = (512 * 1024 * 1024);
555 #endif
556 code_gen_buffer = mmap(addr, code_gen_buffer_size,
557 PROT_WRITE | PROT_READ | PROT_EXEC,
558 flags, -1, 0);
559 if (code_gen_buffer == MAP_FAILED) {
560 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
561 exit(1);
564 #else
565 code_gen_buffer = g_malloc(code_gen_buffer_size);
566 map_exec(code_gen_buffer, code_gen_buffer_size);
567 #endif
568 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
569 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
570 code_gen_buffer_max_size = code_gen_buffer_size -
571 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
572 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
573 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
576 /* Must be called before using the QEMU cpus. 'tb_size' is the size
577 (in bytes) allocated to the translation buffer. Zero means default
578 size. */
579 void tcg_exec_init(unsigned long tb_size)
581 cpu_gen_init();
582 code_gen_alloc(tb_size);
583 code_gen_ptr = code_gen_buffer;
584 page_init();
585 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
586 /* There's no guest base to take into account, so go ahead and
587 initialize the prologue now. */
588 tcg_prologue_init(&tcg_ctx);
589 #endif
592 bool tcg_enabled(void)
594 return code_gen_buffer != NULL;
597 void cpu_exec_init_all(void)
599 #if !defined(CONFIG_USER_ONLY)
600 memory_map_init();
601 io_mem_init();
602 #endif
605 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
607 static int cpu_common_post_load(void *opaque, int version_id)
609 CPUState *env = opaque;
611 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
612 version_id is increased. */
613 env->interrupt_request &= ~0x01;
614 tlb_flush(env, 1);
616 return 0;
619 static const VMStateDescription vmstate_cpu_common = {
620 .name = "cpu_common",
621 .version_id = 1,
622 .minimum_version_id = 1,
623 .minimum_version_id_old = 1,
624 .post_load = cpu_common_post_load,
625 .fields = (VMStateField []) {
626 VMSTATE_UINT32(halted, CPUState),
627 VMSTATE_UINT32(interrupt_request, CPUState),
628 VMSTATE_END_OF_LIST()
631 #endif
633 CPUState *qemu_get_cpu(int cpu)
635 CPUState *env = first_cpu;
637 while (env) {
638 if (env->cpu_index == cpu)
639 break;
640 env = env->next_cpu;
643 return env;
646 void cpu_exec_init(CPUState *env)
648 CPUState **penv;
649 int cpu_index;
651 #if defined(CONFIG_USER_ONLY)
652 cpu_list_lock();
653 #endif
654 env->next_cpu = NULL;
655 penv = &first_cpu;
656 cpu_index = 0;
657 while (*penv != NULL) {
658 penv = &(*penv)->next_cpu;
659 cpu_index++;
661 env->cpu_index = cpu_index;
662 env->numa_node = 0;
663 QTAILQ_INIT(&env->breakpoints);
664 QTAILQ_INIT(&env->watchpoints);
665 #ifndef CONFIG_USER_ONLY
666 env->thread_id = qemu_get_thread_id();
667 #endif
668 *penv = env;
669 #if defined(CONFIG_USER_ONLY)
670 cpu_list_unlock();
671 #endif
672 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
673 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
674 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
675 cpu_save, cpu_load, env);
676 #endif
679 /* Allocate a new translation block. Flush the translation buffer if
680 too many translation blocks or too much generated code. */
681 static TranslationBlock *tb_alloc(target_ulong pc)
683 TranslationBlock *tb;
685 if (nb_tbs >= code_gen_max_blocks ||
686 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
687 return NULL;
688 tb = &tbs[nb_tbs++];
689 tb->pc = pc;
690 tb->cflags = 0;
691 return tb;
694 void tb_free(TranslationBlock *tb)
696 /* In practice this is mostly used for single use temporary TB
697 Ignore the hard cases and just back up if this TB happens to
698 be the last one generated. */
699 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
700 code_gen_ptr = tb->tc_ptr;
701 nb_tbs--;
705 static inline void invalidate_page_bitmap(PageDesc *p)
707 if (p->code_bitmap) {
708 g_free(p->code_bitmap);
709 p->code_bitmap = NULL;
711 p->code_write_count = 0;
714 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
716 static void page_flush_tb_1 (int level, void **lp)
718 int i;
720 if (*lp == NULL) {
721 return;
723 if (level == 0) {
724 PageDesc *pd = *lp;
725 for (i = 0; i < L2_SIZE; ++i) {
726 pd[i].first_tb = NULL;
727 invalidate_page_bitmap(pd + i);
729 } else {
730 void **pp = *lp;
731 for (i = 0; i < L2_SIZE; ++i) {
732 page_flush_tb_1 (level - 1, pp + i);
737 static void page_flush_tb(void)
739 int i;
740 for (i = 0; i < V_L1_SIZE; i++) {
741 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
745 /* flush all the translation blocks */
746 /* XXX: tb_flush is currently not thread safe */
747 void tb_flush(CPUState *env1)
749 CPUState *env;
750 #if defined(DEBUG_FLUSH)
751 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
752 (unsigned long)(code_gen_ptr - code_gen_buffer),
753 nb_tbs, nb_tbs > 0 ?
754 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
755 #endif
756 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
757 cpu_abort(env1, "Internal error: code buffer overflow\n");
759 nb_tbs = 0;
761 for(env = first_cpu; env != NULL; env = env->next_cpu) {
762 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
765 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
766 page_flush_tb();
768 code_gen_ptr = code_gen_buffer;
769 /* XXX: flush processor icache at this point if cache flush is
770 expensive */
771 tb_flush_count++;
774 #ifdef DEBUG_TB_CHECK
776 static void tb_invalidate_check(target_ulong address)
778 TranslationBlock *tb;
779 int i;
780 address &= TARGET_PAGE_MASK;
781 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
782 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
783 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
784 address >= tb->pc + tb->size)) {
785 printf("ERROR invalidate: address=" TARGET_FMT_lx
786 " PC=%08lx size=%04x\n",
787 address, (long)tb->pc, tb->size);
793 /* verify that all the pages have correct rights for code */
794 static void tb_page_check(void)
796 TranslationBlock *tb;
797 int i, flags1, flags2;
799 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
800 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
801 flags1 = page_get_flags(tb->pc);
802 flags2 = page_get_flags(tb->pc + tb->size - 1);
803 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
804 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
805 (long)tb->pc, tb->size, flags1, flags2);
811 #endif
813 /* invalidate one TB */
814 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
815 int next_offset)
817 TranslationBlock *tb1;
818 for(;;) {
819 tb1 = *ptb;
820 if (tb1 == tb) {
821 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
822 break;
824 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
828 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
830 TranslationBlock *tb1;
831 unsigned int n1;
833 for(;;) {
834 tb1 = *ptb;
835 n1 = (long)tb1 & 3;
836 tb1 = (TranslationBlock *)((long)tb1 & ~3);
837 if (tb1 == tb) {
838 *ptb = tb1->page_next[n1];
839 break;
841 ptb = &tb1->page_next[n1];
845 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
847 TranslationBlock *tb1, **ptb;
848 unsigned int n1;
850 ptb = &tb->jmp_next[n];
851 tb1 = *ptb;
852 if (tb1) {
853 /* find tb(n) in circular list */
854 for(;;) {
855 tb1 = *ptb;
856 n1 = (long)tb1 & 3;
857 tb1 = (TranslationBlock *)((long)tb1 & ~3);
858 if (n1 == n && tb1 == tb)
859 break;
860 if (n1 == 2) {
861 ptb = &tb1->jmp_first;
862 } else {
863 ptb = &tb1->jmp_next[n1];
866 /* now we can suppress tb(n) from the list */
867 *ptb = tb->jmp_next[n];
869 tb->jmp_next[n] = NULL;
873 /* reset the jump entry 'n' of a TB so that it is not chained to
874 another TB */
875 static inline void tb_reset_jump(TranslationBlock *tb, int n)
877 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
880 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
882 CPUState *env;
883 PageDesc *p;
884 unsigned int h, n1;
885 tb_page_addr_t phys_pc;
886 TranslationBlock *tb1, *tb2;
888 /* remove the TB from the hash list */
889 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
890 h = tb_phys_hash_func(phys_pc);
891 tb_remove(&tb_phys_hash[h], tb,
892 offsetof(TranslationBlock, phys_hash_next));
894 /* remove the TB from the page list */
895 if (tb->page_addr[0] != page_addr) {
896 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
897 tb_page_remove(&p->first_tb, tb);
898 invalidate_page_bitmap(p);
900 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
901 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
902 tb_page_remove(&p->first_tb, tb);
903 invalidate_page_bitmap(p);
906 tb_invalidated_flag = 1;
908 /* remove the TB from the hash list */
909 h = tb_jmp_cache_hash_func(tb->pc);
910 for(env = first_cpu; env != NULL; env = env->next_cpu) {
911 if (env->tb_jmp_cache[h] == tb)
912 env->tb_jmp_cache[h] = NULL;
915 /* suppress this TB from the two jump lists */
916 tb_jmp_remove(tb, 0);
917 tb_jmp_remove(tb, 1);
919 /* suppress any remaining jumps to this TB */
920 tb1 = tb->jmp_first;
921 for(;;) {
922 n1 = (long)tb1 & 3;
923 if (n1 == 2)
924 break;
925 tb1 = (TranslationBlock *)((long)tb1 & ~3);
926 tb2 = tb1->jmp_next[n1];
927 tb_reset_jump(tb1, n1);
928 tb1->jmp_next[n1] = NULL;
929 tb1 = tb2;
931 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
933 tb_phys_invalidate_count++;
936 static inline void set_bits(uint8_t *tab, int start, int len)
938 int end, mask, end1;
940 end = start + len;
941 tab += start >> 3;
942 mask = 0xff << (start & 7);
943 if ((start & ~7) == (end & ~7)) {
944 if (start < end) {
945 mask &= ~(0xff << (end & 7));
946 *tab |= mask;
948 } else {
949 *tab++ |= mask;
950 start = (start + 8) & ~7;
951 end1 = end & ~7;
952 while (start < end1) {
953 *tab++ = 0xff;
954 start += 8;
956 if (start < end) {
957 mask = ~(0xff << (end & 7));
958 *tab |= mask;
963 static void build_page_bitmap(PageDesc *p)
965 int n, tb_start, tb_end;
966 TranslationBlock *tb;
968 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
970 tb = p->first_tb;
971 while (tb != NULL) {
972 n = (long)tb & 3;
973 tb = (TranslationBlock *)((long)tb & ~3);
974 /* NOTE: this is subtle as a TB may span two physical pages */
975 if (n == 0) {
976 /* NOTE: tb_end may be after the end of the page, but
977 it is not a problem */
978 tb_start = tb->pc & ~TARGET_PAGE_MASK;
979 tb_end = tb_start + tb->size;
980 if (tb_end > TARGET_PAGE_SIZE)
981 tb_end = TARGET_PAGE_SIZE;
982 } else {
983 tb_start = 0;
984 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
986 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
987 tb = tb->page_next[n];
991 TranslationBlock *tb_gen_code(CPUState *env,
992 target_ulong pc, target_ulong cs_base,
993 int flags, int cflags)
995 TranslationBlock *tb;
996 uint8_t *tc_ptr;
997 tb_page_addr_t phys_pc, phys_page2;
998 target_ulong virt_page2;
999 int code_gen_size;
1001 phys_pc = get_page_addr_code(env, pc);
1002 tb = tb_alloc(pc);
1003 if (!tb) {
1004 /* flush must be done */
1005 tb_flush(env);
1006 /* cannot fail at this point */
1007 tb = tb_alloc(pc);
1008 /* Don't forget to invalidate previous TB info. */
1009 tb_invalidated_flag = 1;
1011 tc_ptr = code_gen_ptr;
1012 tb->tc_ptr = tc_ptr;
1013 tb->cs_base = cs_base;
1014 tb->flags = flags;
1015 tb->cflags = cflags;
1016 cpu_gen_code(env, tb, &code_gen_size);
1017 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1019 /* check next page if needed */
1020 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1021 phys_page2 = -1;
1022 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1023 phys_page2 = get_page_addr_code(env, virt_page2);
1025 tb_link_page(tb, phys_pc, phys_page2);
1026 return tb;
1029 /* invalidate all TBs which intersect with the target physical page
1030 starting in range [start;end[. NOTE: start and end must refer to
1031 the same physical page. 'is_cpu_write_access' should be true if called
1032 from a real cpu write access: the virtual CPU will exit the current
1033 TB if code is modified inside this TB. */
1034 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1035 int is_cpu_write_access)
1037 TranslationBlock *tb, *tb_next, *saved_tb;
1038 CPUState *env = cpu_single_env;
1039 tb_page_addr_t tb_start, tb_end;
1040 PageDesc *p;
1041 int n;
1042 #ifdef TARGET_HAS_PRECISE_SMC
1043 int current_tb_not_found = is_cpu_write_access;
1044 TranslationBlock *current_tb = NULL;
1045 int current_tb_modified = 0;
1046 target_ulong current_pc = 0;
1047 target_ulong current_cs_base = 0;
1048 int current_flags = 0;
1049 #endif /* TARGET_HAS_PRECISE_SMC */
1051 p = page_find(start >> TARGET_PAGE_BITS);
1052 if (!p)
1053 return;
1054 if (!p->code_bitmap &&
1055 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1056 is_cpu_write_access) {
1057 /* build code bitmap */
1058 build_page_bitmap(p);
1061 /* we remove all the TBs in the range [start, end[ */
1062 /* XXX: see if in some cases it could be faster to invalidate all the code */
1063 tb = p->first_tb;
1064 while (tb != NULL) {
1065 n = (long)tb & 3;
1066 tb = (TranslationBlock *)((long)tb & ~3);
1067 tb_next = tb->page_next[n];
1068 /* NOTE: this is subtle as a TB may span two physical pages */
1069 if (n == 0) {
1070 /* NOTE: tb_end may be after the end of the page, but
1071 it is not a problem */
1072 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1073 tb_end = tb_start + tb->size;
1074 } else {
1075 tb_start = tb->page_addr[1];
1076 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1078 if (!(tb_end <= start || tb_start >= end)) {
1079 #ifdef TARGET_HAS_PRECISE_SMC
1080 if (current_tb_not_found) {
1081 current_tb_not_found = 0;
1082 current_tb = NULL;
1083 if (env->mem_io_pc) {
1084 /* now we have a real cpu fault */
1085 current_tb = tb_find_pc(env->mem_io_pc);
1088 if (current_tb == tb &&
1089 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1090 /* If we are modifying the current TB, we must stop
1091 its execution. We could be more precise by checking
1092 that the modification is after the current PC, but it
1093 would require a specialized function to partially
1094 restore the CPU state */
1096 current_tb_modified = 1;
1097 cpu_restore_state(current_tb, env, env->mem_io_pc);
1098 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1099 &current_flags);
1101 #endif /* TARGET_HAS_PRECISE_SMC */
1102 /* we need to do that to handle the case where a signal
1103 occurs while doing tb_phys_invalidate() */
1104 saved_tb = NULL;
1105 if (env) {
1106 saved_tb = env->current_tb;
1107 env->current_tb = NULL;
1109 tb_phys_invalidate(tb, -1);
1110 if (env) {
1111 env->current_tb = saved_tb;
1112 if (env->interrupt_request && env->current_tb)
1113 cpu_interrupt(env, env->interrupt_request);
1116 tb = tb_next;
1118 #if !defined(CONFIG_USER_ONLY)
1119 /* if no code remaining, no need to continue to use slow writes */
1120 if (!p->first_tb) {
1121 invalidate_page_bitmap(p);
1122 if (is_cpu_write_access) {
1123 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1126 #endif
1127 #ifdef TARGET_HAS_PRECISE_SMC
1128 if (current_tb_modified) {
1129 /* we generate a block containing just the instruction
1130 modifying the memory. It will ensure that it cannot modify
1131 itself */
1132 env->current_tb = NULL;
1133 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1134 cpu_resume_from_signal(env, NULL);
1136 #endif
1139 /* len must be <= 8 and start must be a multiple of len */
1140 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1142 PageDesc *p;
1143 int offset, b;
1144 #if 0
1145 if (1) {
1146 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1147 cpu_single_env->mem_io_vaddr, len,
1148 cpu_single_env->eip,
1149 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1151 #endif
1152 p = page_find(start >> TARGET_PAGE_BITS);
1153 if (!p)
1154 return;
1155 if (p->code_bitmap) {
1156 offset = start & ~TARGET_PAGE_MASK;
1157 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1158 if (b & ((1 << len) - 1))
1159 goto do_invalidate;
1160 } else {
1161 do_invalidate:
1162 tb_invalidate_phys_page_range(start, start + len, 1);
1166 #if !defined(CONFIG_SOFTMMU)
1167 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1168 unsigned long pc, void *puc)
1170 TranslationBlock *tb;
1171 PageDesc *p;
1172 int n;
1173 #ifdef TARGET_HAS_PRECISE_SMC
1174 TranslationBlock *current_tb = NULL;
1175 CPUState *env = cpu_single_env;
1176 int current_tb_modified = 0;
1177 target_ulong current_pc = 0;
1178 target_ulong current_cs_base = 0;
1179 int current_flags = 0;
1180 #endif
1182 addr &= TARGET_PAGE_MASK;
1183 p = page_find(addr >> TARGET_PAGE_BITS);
1184 if (!p)
1185 return;
1186 tb = p->first_tb;
1187 #ifdef TARGET_HAS_PRECISE_SMC
1188 if (tb && pc != 0) {
1189 current_tb = tb_find_pc(pc);
1191 #endif
1192 while (tb != NULL) {
1193 n = (long)tb & 3;
1194 tb = (TranslationBlock *)((long)tb & ~3);
1195 #ifdef TARGET_HAS_PRECISE_SMC
1196 if (current_tb == tb &&
1197 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1198 /* If we are modifying the current TB, we must stop
1199 its execution. We could be more precise by checking
1200 that the modification is after the current PC, but it
1201 would require a specialized function to partially
1202 restore the CPU state */
1204 current_tb_modified = 1;
1205 cpu_restore_state(current_tb, env, pc);
1206 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1207 &current_flags);
1209 #endif /* TARGET_HAS_PRECISE_SMC */
1210 tb_phys_invalidate(tb, addr);
1211 tb = tb->page_next[n];
1213 p->first_tb = NULL;
1214 #ifdef TARGET_HAS_PRECISE_SMC
1215 if (current_tb_modified) {
1216 /* we generate a block containing just the instruction
1217 modifying the memory. It will ensure that it cannot modify
1218 itself */
1219 env->current_tb = NULL;
1220 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1221 cpu_resume_from_signal(env, puc);
1223 #endif
1225 #endif
1227 /* add the tb in the target page and protect it if necessary */
1228 static inline void tb_alloc_page(TranslationBlock *tb,
1229 unsigned int n, tb_page_addr_t page_addr)
1231 PageDesc *p;
1232 #ifndef CONFIG_USER_ONLY
1233 bool page_already_protected;
1234 #endif
1236 tb->page_addr[n] = page_addr;
1237 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1238 tb->page_next[n] = p->first_tb;
1239 #ifndef CONFIG_USER_ONLY
1240 page_already_protected = p->first_tb != NULL;
1241 #endif
1242 p->first_tb = (TranslationBlock *)((long)tb | n);
1243 invalidate_page_bitmap(p);
1245 #if defined(TARGET_HAS_SMC) || 1
1247 #if defined(CONFIG_USER_ONLY)
1248 if (p->flags & PAGE_WRITE) {
1249 target_ulong addr;
1250 PageDesc *p2;
1251 int prot;
1253 /* force the host page as non writable (writes will have a
1254 page fault + mprotect overhead) */
1255 page_addr &= qemu_host_page_mask;
1256 prot = 0;
1257 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1258 addr += TARGET_PAGE_SIZE) {
1260 p2 = page_find (addr >> TARGET_PAGE_BITS);
1261 if (!p2)
1262 continue;
1263 prot |= p2->flags;
1264 p2->flags &= ~PAGE_WRITE;
1266 mprotect(g2h(page_addr), qemu_host_page_size,
1267 (prot & PAGE_BITS) & ~PAGE_WRITE);
1268 #ifdef DEBUG_TB_INVALIDATE
1269 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1270 page_addr);
1271 #endif
1273 #else
1274 /* if some code is already present, then the pages are already
1275 protected. So we handle the case where only the first TB is
1276 allocated in a physical page */
1277 if (!page_already_protected) {
1278 tlb_protect_code(page_addr);
1280 #endif
1282 #endif /* TARGET_HAS_SMC */
1285 /* add a new TB and link it to the physical page tables. phys_page2 is
1286 (-1) to indicate that only one page contains the TB. */
1287 void tb_link_page(TranslationBlock *tb,
1288 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1290 unsigned int h;
1291 TranslationBlock **ptb;
1293 /* Grab the mmap lock to stop another thread invalidating this TB
1294 before we are done. */
1295 mmap_lock();
1296 /* add in the physical hash table */
1297 h = tb_phys_hash_func(phys_pc);
1298 ptb = &tb_phys_hash[h];
1299 tb->phys_hash_next = *ptb;
1300 *ptb = tb;
1302 /* add in the page list */
1303 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1304 if (phys_page2 != -1)
1305 tb_alloc_page(tb, 1, phys_page2);
1306 else
1307 tb->page_addr[1] = -1;
1309 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1310 tb->jmp_next[0] = NULL;
1311 tb->jmp_next[1] = NULL;
1313 /* init original jump addresses */
1314 if (tb->tb_next_offset[0] != 0xffff)
1315 tb_reset_jump(tb, 0);
1316 if (tb->tb_next_offset[1] != 0xffff)
1317 tb_reset_jump(tb, 1);
1319 #ifdef DEBUG_TB_CHECK
1320 tb_page_check();
1321 #endif
1322 mmap_unlock();
1325 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1326 tb[1].tc_ptr. Return NULL if not found */
1327 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1329 int m_min, m_max, m;
1330 unsigned long v;
1331 TranslationBlock *tb;
1333 if (nb_tbs <= 0)
1334 return NULL;
1335 if (tc_ptr < (unsigned long)code_gen_buffer ||
1336 tc_ptr >= (unsigned long)code_gen_ptr)
1337 return NULL;
1338 /* binary search (cf Knuth) */
1339 m_min = 0;
1340 m_max = nb_tbs - 1;
1341 while (m_min <= m_max) {
1342 m = (m_min + m_max) >> 1;
1343 tb = &tbs[m];
1344 v = (unsigned long)tb->tc_ptr;
1345 if (v == tc_ptr)
1346 return tb;
1347 else if (tc_ptr < v) {
1348 m_max = m - 1;
1349 } else {
1350 m_min = m + 1;
1353 return &tbs[m_max];
1356 static void tb_reset_jump_recursive(TranslationBlock *tb);
1358 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1360 TranslationBlock *tb1, *tb_next, **ptb;
1361 unsigned int n1;
1363 tb1 = tb->jmp_next[n];
1364 if (tb1 != NULL) {
1365 /* find head of list */
1366 for(;;) {
1367 n1 = (long)tb1 & 3;
1368 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1369 if (n1 == 2)
1370 break;
1371 tb1 = tb1->jmp_next[n1];
1373 /* we are now sure now that tb jumps to tb1 */
1374 tb_next = tb1;
1376 /* remove tb from the jmp_first list */
1377 ptb = &tb_next->jmp_first;
1378 for(;;) {
1379 tb1 = *ptb;
1380 n1 = (long)tb1 & 3;
1381 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1382 if (n1 == n && tb1 == tb)
1383 break;
1384 ptb = &tb1->jmp_next[n1];
1386 *ptb = tb->jmp_next[n];
1387 tb->jmp_next[n] = NULL;
1389 /* suppress the jump to next tb in generated code */
1390 tb_reset_jump(tb, n);
1392 /* suppress jumps in the tb on which we could have jumped */
1393 tb_reset_jump_recursive(tb_next);
1397 static void tb_reset_jump_recursive(TranslationBlock *tb)
1399 tb_reset_jump_recursive2(tb, 0);
1400 tb_reset_jump_recursive2(tb, 1);
1403 #if defined(TARGET_HAS_ICE)
1404 #if defined(CONFIG_USER_ONLY)
1405 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1407 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1409 #else
1410 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1412 target_phys_addr_t addr;
1413 target_ulong pd;
1414 ram_addr_t ram_addr;
1415 PhysPageDesc p;
1417 addr = cpu_get_phys_page_debug(env, pc);
1418 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1419 pd = p.phys_offset;
1420 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1421 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1423 #endif
1424 #endif /* TARGET_HAS_ICE */
1426 #if defined(CONFIG_USER_ONLY)
1427 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1432 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1433 int flags, CPUWatchpoint **watchpoint)
1435 return -ENOSYS;
1437 #else
1438 /* Add a watchpoint. */
1439 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1440 int flags, CPUWatchpoint **watchpoint)
1442 target_ulong len_mask = ~(len - 1);
1443 CPUWatchpoint *wp;
1445 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1446 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1447 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1448 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1449 return -EINVAL;
1451 wp = g_malloc(sizeof(*wp));
1453 wp->vaddr = addr;
1454 wp->len_mask = len_mask;
1455 wp->flags = flags;
1457 /* keep all GDB-injected watchpoints in front */
1458 if (flags & BP_GDB)
1459 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1460 else
1461 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1463 tlb_flush_page(env, addr);
1465 if (watchpoint)
1466 *watchpoint = wp;
1467 return 0;
1470 /* Remove a specific watchpoint. */
1471 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1472 int flags)
1474 target_ulong len_mask = ~(len - 1);
1475 CPUWatchpoint *wp;
1477 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1478 if (addr == wp->vaddr && len_mask == wp->len_mask
1479 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1480 cpu_watchpoint_remove_by_ref(env, wp);
1481 return 0;
1484 return -ENOENT;
1487 /* Remove a specific watchpoint by reference. */
1488 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1490 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1492 tlb_flush_page(env, watchpoint->vaddr);
1494 g_free(watchpoint);
1497 /* Remove all matching watchpoints. */
1498 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1500 CPUWatchpoint *wp, *next;
1502 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1503 if (wp->flags & mask)
1504 cpu_watchpoint_remove_by_ref(env, wp);
1507 #endif
1509 /* Add a breakpoint. */
1510 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1511 CPUBreakpoint **breakpoint)
1513 #if defined(TARGET_HAS_ICE)
1514 CPUBreakpoint *bp;
1516 bp = g_malloc(sizeof(*bp));
1518 bp->pc = pc;
1519 bp->flags = flags;
1521 /* keep all GDB-injected breakpoints in front */
1522 if (flags & BP_GDB)
1523 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1524 else
1525 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1527 breakpoint_invalidate(env, pc);
1529 if (breakpoint)
1530 *breakpoint = bp;
1531 return 0;
1532 #else
1533 return -ENOSYS;
1534 #endif
1537 /* Remove a specific breakpoint. */
1538 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1540 #if defined(TARGET_HAS_ICE)
1541 CPUBreakpoint *bp;
1543 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1544 if (bp->pc == pc && bp->flags == flags) {
1545 cpu_breakpoint_remove_by_ref(env, bp);
1546 return 0;
1549 return -ENOENT;
1550 #else
1551 return -ENOSYS;
1552 #endif
1555 /* Remove a specific breakpoint by reference. */
1556 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1558 #if defined(TARGET_HAS_ICE)
1559 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1561 breakpoint_invalidate(env, breakpoint->pc);
1563 g_free(breakpoint);
1564 #endif
1567 /* Remove all matching breakpoints. */
1568 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1570 #if defined(TARGET_HAS_ICE)
1571 CPUBreakpoint *bp, *next;
1573 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1574 if (bp->flags & mask)
1575 cpu_breakpoint_remove_by_ref(env, bp);
1577 #endif
1580 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1581 CPU loop after each instruction */
1582 void cpu_single_step(CPUState *env, int enabled)
1584 #if defined(TARGET_HAS_ICE)
1585 if (env->singlestep_enabled != enabled) {
1586 env->singlestep_enabled = enabled;
1587 if (kvm_enabled())
1588 kvm_update_guest_debug(env, 0);
1589 else {
1590 /* must flush all the translated code to avoid inconsistencies */
1591 /* XXX: only flush what is necessary */
1592 tb_flush(env);
1595 #endif
1598 /* enable or disable low levels log */
1599 void cpu_set_log(int log_flags)
1601 loglevel = log_flags;
1602 if (loglevel && !logfile) {
1603 logfile = fopen(logfilename, log_append ? "a" : "w");
1604 if (!logfile) {
1605 perror(logfilename);
1606 _exit(1);
1608 #if !defined(CONFIG_SOFTMMU)
1609 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1611 static char logfile_buf[4096];
1612 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1614 #elif defined(_WIN32)
1615 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1616 setvbuf(logfile, NULL, _IONBF, 0);
1617 #else
1618 setvbuf(logfile, NULL, _IOLBF, 0);
1619 #endif
1620 log_append = 1;
1622 if (!loglevel && logfile) {
1623 fclose(logfile);
1624 logfile = NULL;
1628 void cpu_set_log_filename(const char *filename)
1630 logfilename = strdup(filename);
1631 if (logfile) {
1632 fclose(logfile);
1633 logfile = NULL;
1635 cpu_set_log(loglevel);
1638 static void cpu_unlink_tb(CPUState *env)
1640 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1641 problem and hope the cpu will stop of its own accord. For userspace
1642 emulation this often isn't actually as bad as it sounds. Often
1643 signals are used primarily to interrupt blocking syscalls. */
1644 TranslationBlock *tb;
1645 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1647 spin_lock(&interrupt_lock);
1648 tb = env->current_tb;
1649 /* if the cpu is currently executing code, we must unlink it and
1650 all the potentially executing TB */
1651 if (tb) {
1652 env->current_tb = NULL;
1653 tb_reset_jump_recursive(tb);
1655 spin_unlock(&interrupt_lock);
1658 #ifndef CONFIG_USER_ONLY
1659 /* mask must never be zero, except for A20 change call */
1660 static void tcg_handle_interrupt(CPUState *env, int mask)
1662 int old_mask;
1664 old_mask = env->interrupt_request;
1665 env->interrupt_request |= mask;
1668 * If called from iothread context, wake the target cpu in
1669 * case its halted.
1671 if (!qemu_cpu_is_self(env)) {
1672 qemu_cpu_kick(env);
1673 return;
1676 if (use_icount) {
1677 env->icount_decr.u16.high = 0xffff;
1678 if (!can_do_io(env)
1679 && (mask & ~old_mask) != 0) {
1680 cpu_abort(env, "Raised interrupt while not in I/O function");
1682 } else {
1683 cpu_unlink_tb(env);
1687 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1689 #else /* CONFIG_USER_ONLY */
1691 void cpu_interrupt(CPUState *env, int mask)
1693 env->interrupt_request |= mask;
1694 cpu_unlink_tb(env);
1696 #endif /* CONFIG_USER_ONLY */
1698 void cpu_reset_interrupt(CPUState *env, int mask)
1700 env->interrupt_request &= ~mask;
1703 void cpu_exit(CPUState *env)
1705 env->exit_request = 1;
1706 cpu_unlink_tb(env);
1709 const CPULogItem cpu_log_items[] = {
1710 { CPU_LOG_TB_OUT_ASM, "out_asm",
1711 "show generated host assembly code for each compiled TB" },
1712 { CPU_LOG_TB_IN_ASM, "in_asm",
1713 "show target assembly code for each compiled TB" },
1714 { CPU_LOG_TB_OP, "op",
1715 "show micro ops for each compiled TB" },
1716 { CPU_LOG_TB_OP_OPT, "op_opt",
1717 "show micro ops "
1718 #ifdef TARGET_I386
1719 "before eflags optimization and "
1720 #endif
1721 "after liveness analysis" },
1722 { CPU_LOG_INT, "int",
1723 "show interrupts/exceptions in short format" },
1724 { CPU_LOG_EXEC, "exec",
1725 "show trace before each executed TB (lots of logs)" },
1726 { CPU_LOG_TB_CPU, "cpu",
1727 "show CPU state before block translation" },
1728 #ifdef TARGET_I386
1729 { CPU_LOG_PCALL, "pcall",
1730 "show protected mode far calls/returns/exceptions" },
1731 { CPU_LOG_RESET, "cpu_reset",
1732 "show CPU state before CPU resets" },
1733 #endif
1734 #ifdef DEBUG_IOPORT
1735 { CPU_LOG_IOPORT, "ioport",
1736 "show all i/o ports accesses" },
1737 #endif
1738 { 0, NULL, NULL },
1741 static int cmp1(const char *s1, int n, const char *s2)
1743 if (strlen(s2) != n)
1744 return 0;
1745 return memcmp(s1, s2, n) == 0;
1748 /* takes a comma separated list of log masks. Return 0 if error. */
1749 int cpu_str_to_log_mask(const char *str)
1751 const CPULogItem *item;
1752 int mask;
1753 const char *p, *p1;
1755 p = str;
1756 mask = 0;
1757 for(;;) {
1758 p1 = strchr(p, ',');
1759 if (!p1)
1760 p1 = p + strlen(p);
1761 if(cmp1(p,p1-p,"all")) {
1762 for(item = cpu_log_items; item->mask != 0; item++) {
1763 mask |= item->mask;
1765 } else {
1766 for(item = cpu_log_items; item->mask != 0; item++) {
1767 if (cmp1(p, p1 - p, item->name))
1768 goto found;
1770 return 0;
1772 found:
1773 mask |= item->mask;
1774 if (*p1 != ',')
1775 break;
1776 p = p1 + 1;
1778 return mask;
1781 void cpu_abort(CPUState *env, const char *fmt, ...)
1783 va_list ap;
1784 va_list ap2;
1786 va_start(ap, fmt);
1787 va_copy(ap2, ap);
1788 fprintf(stderr, "qemu: fatal: ");
1789 vfprintf(stderr, fmt, ap);
1790 fprintf(stderr, "\n");
1791 #ifdef TARGET_I386
1792 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1793 #else
1794 cpu_dump_state(env, stderr, fprintf, 0);
1795 #endif
1796 if (qemu_log_enabled()) {
1797 qemu_log("qemu: fatal: ");
1798 qemu_log_vprintf(fmt, ap2);
1799 qemu_log("\n");
1800 #ifdef TARGET_I386
1801 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1802 #else
1803 log_cpu_state(env, 0);
1804 #endif
1805 qemu_log_flush();
1806 qemu_log_close();
1808 va_end(ap2);
1809 va_end(ap);
1810 #if defined(CONFIG_USER_ONLY)
1812 struct sigaction act;
1813 sigfillset(&act.sa_mask);
1814 act.sa_handler = SIG_DFL;
1815 sigaction(SIGABRT, &act, NULL);
1817 #endif
1818 abort();
1821 CPUState *cpu_copy(CPUState *env)
1823 CPUState *new_env = cpu_init(env->cpu_model_str);
1824 CPUState *next_cpu = new_env->next_cpu;
1825 int cpu_index = new_env->cpu_index;
1826 #if defined(TARGET_HAS_ICE)
1827 CPUBreakpoint *bp;
1828 CPUWatchpoint *wp;
1829 #endif
1831 memcpy(new_env, env, sizeof(CPUState));
1833 /* Preserve chaining and index. */
1834 new_env->next_cpu = next_cpu;
1835 new_env->cpu_index = cpu_index;
1837 /* Clone all break/watchpoints.
1838 Note: Once we support ptrace with hw-debug register access, make sure
1839 BP_CPU break/watchpoints are handled correctly on clone. */
1840 QTAILQ_INIT(&env->breakpoints);
1841 QTAILQ_INIT(&env->watchpoints);
1842 #if defined(TARGET_HAS_ICE)
1843 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1844 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1846 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1847 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1848 wp->flags, NULL);
1850 #endif
1852 return new_env;
1855 #if !defined(CONFIG_USER_ONLY)
1857 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1859 unsigned int i;
1861 /* Discard jump cache entries for any tb which might potentially
1862 overlap the flushed page. */
1863 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1864 memset (&env->tb_jmp_cache[i], 0,
1865 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1867 i = tb_jmp_cache_hash_page(addr);
1868 memset (&env->tb_jmp_cache[i], 0,
1869 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1872 static CPUTLBEntry s_cputlb_empty_entry = {
1873 .addr_read = -1,
1874 .addr_write = -1,
1875 .addr_code = -1,
1876 .addend = -1,
1879 /* NOTE:
1880 * If flush_global is true (the usual case), flush all tlb entries.
1881 * If flush_global is false, flush (at least) all tlb entries not
1882 * marked global.
1884 * Since QEMU doesn't currently implement a global/not-global flag
1885 * for tlb entries, at the moment tlb_flush() will also flush all
1886 * tlb entries in the flush_global == false case. This is OK because
1887 * CPU architectures generally permit an implementation to drop
1888 * entries from the TLB at any time, so flushing more entries than
1889 * required is only an efficiency issue, not a correctness issue.
1891 void tlb_flush(CPUState *env, int flush_global)
1893 int i;
1895 #if defined(DEBUG_TLB)
1896 printf("tlb_flush:\n");
1897 #endif
1898 /* must reset current TB so that interrupts cannot modify the
1899 links while we are modifying them */
1900 env->current_tb = NULL;
1902 for(i = 0; i < CPU_TLB_SIZE; i++) {
1903 int mmu_idx;
1904 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1905 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1909 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1911 env->tlb_flush_addr = -1;
1912 env->tlb_flush_mask = 0;
1913 tlb_flush_count++;
1916 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1918 if (addr == (tlb_entry->addr_read &
1919 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1920 addr == (tlb_entry->addr_write &
1921 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1922 addr == (tlb_entry->addr_code &
1923 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1924 *tlb_entry = s_cputlb_empty_entry;
1928 void tlb_flush_page(CPUState *env, target_ulong addr)
1930 int i;
1931 int mmu_idx;
1933 #if defined(DEBUG_TLB)
1934 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1935 #endif
1936 /* Check if we need to flush due to large pages. */
1937 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1938 #if defined(DEBUG_TLB)
1939 printf("tlb_flush_page: forced full flush ("
1940 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1941 env->tlb_flush_addr, env->tlb_flush_mask);
1942 #endif
1943 tlb_flush(env, 1);
1944 return;
1946 /* must reset current TB so that interrupts cannot modify the
1947 links while we are modifying them */
1948 env->current_tb = NULL;
1950 addr &= TARGET_PAGE_MASK;
1951 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1952 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1953 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1955 tlb_flush_jmp_cache(env, addr);
1958 /* update the TLBs so that writes to code in the virtual page 'addr'
1959 can be detected */
1960 static void tlb_protect_code(ram_addr_t ram_addr)
1962 cpu_physical_memory_reset_dirty(ram_addr,
1963 ram_addr + TARGET_PAGE_SIZE,
1964 CODE_DIRTY_FLAG);
1967 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1968 tested for self modifying code */
1969 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1970 target_ulong vaddr)
1972 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1975 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1976 unsigned long start, unsigned long length)
1978 unsigned long addr;
1979 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
1980 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1981 if ((addr - start) < length) {
1982 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1987 /* Note: start and end must be within the same ram block. */
1988 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1989 int dirty_flags)
1991 CPUState *env;
1992 unsigned long length, start1;
1993 int i;
1995 start &= TARGET_PAGE_MASK;
1996 end = TARGET_PAGE_ALIGN(end);
1998 length = end - start;
1999 if (length == 0)
2000 return;
2001 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2003 /* we modify the TLB cache so that the dirty bit will be set again
2004 when accessing the range */
2005 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2006 /* Check that we don't span multiple blocks - this breaks the
2007 address comparisons below. */
2008 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2009 != (end - 1) - start) {
2010 abort();
2013 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2014 int mmu_idx;
2015 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2016 for(i = 0; i < CPU_TLB_SIZE; i++)
2017 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2018 start1, length);
2023 int cpu_physical_memory_set_dirty_tracking(int enable)
2025 int ret = 0;
2026 in_migration = enable;
2027 return ret;
2030 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2032 ram_addr_t ram_addr;
2033 void *p;
2035 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
2036 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2037 + tlb_entry->addend);
2038 ram_addr = qemu_ram_addr_from_host_nofail(p);
2039 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2040 tlb_entry->addr_write |= TLB_NOTDIRTY;
2045 /* update the TLB according to the current state of the dirty bits */
2046 void cpu_tlb_update_dirty(CPUState *env)
2048 int i;
2049 int mmu_idx;
2050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2051 for(i = 0; i < CPU_TLB_SIZE; i++)
2052 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2056 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2058 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2059 tlb_entry->addr_write = vaddr;
2062 /* update the TLB corresponding to virtual page vaddr
2063 so that it is no longer dirty */
2064 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2066 int i;
2067 int mmu_idx;
2069 vaddr &= TARGET_PAGE_MASK;
2070 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2071 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2072 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2075 /* Our TLB does not support large pages, so remember the area covered by
2076 large pages and trigger a full TLB flush if these are invalidated. */
2077 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2078 target_ulong size)
2080 target_ulong mask = ~(size - 1);
2082 if (env->tlb_flush_addr == (target_ulong)-1) {
2083 env->tlb_flush_addr = vaddr & mask;
2084 env->tlb_flush_mask = mask;
2085 return;
2087 /* Extend the existing region to include the new page.
2088 This is a compromise between unnecessary flushes and the cost
2089 of maintaining a full variable size TLB. */
2090 mask &= env->tlb_flush_mask;
2091 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2092 mask <<= 1;
2094 env->tlb_flush_addr &= mask;
2095 env->tlb_flush_mask = mask;
2098 static bool is_ram_rom(ram_addr_t pd)
2100 pd &= ~TARGET_PAGE_MASK;
2101 return pd == io_mem_ram.ram_addr || pd == io_mem_rom.ram_addr;
2104 static bool is_romd(ram_addr_t pd)
2106 MemoryRegion *mr;
2108 pd &= ~TARGET_PAGE_MASK;
2109 mr = io_mem_region[pd];
2110 return mr->rom_device && mr->readable;
2113 static bool is_ram_rom_romd(ram_addr_t pd)
2115 return is_ram_rom(pd) || is_romd(pd);
2118 /* Add a new TLB entry. At most one entry for a given virtual address
2119 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2120 supplied size is only used by tlb_flush_page. */
2121 void tlb_set_page(CPUState *env, target_ulong vaddr,
2122 target_phys_addr_t paddr, int prot,
2123 int mmu_idx, target_ulong size)
2125 PhysPageDesc p;
2126 unsigned long pd;
2127 unsigned int index;
2128 target_ulong address;
2129 target_ulong code_address;
2130 unsigned long addend;
2131 CPUTLBEntry *te;
2132 CPUWatchpoint *wp;
2133 target_phys_addr_t iotlb;
2135 assert(size >= TARGET_PAGE_SIZE);
2136 if (size != TARGET_PAGE_SIZE) {
2137 tlb_add_large_page(env, vaddr, size);
2139 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2140 pd = p.phys_offset;
2141 #if defined(DEBUG_TLB)
2142 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2143 " prot=%x idx=%d pd=0x%08lx\n",
2144 vaddr, paddr, prot, mmu_idx, pd);
2145 #endif
2147 address = vaddr;
2148 if (!is_ram_rom_romd(pd)) {
2149 /* IO memory case (romd handled later) */
2150 address |= TLB_MMIO;
2152 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2153 if (is_ram_rom(pd)) {
2154 /* Normal RAM. */
2155 iotlb = pd & TARGET_PAGE_MASK;
2156 if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr)
2157 iotlb |= io_mem_notdirty.ram_addr;
2158 else
2159 iotlb |= io_mem_rom.ram_addr;
2160 } else {
2161 /* IO handlers are currently passed a physical address.
2162 It would be nice to pass an offset from the base address
2163 of that region. This would avoid having to special case RAM,
2164 and avoid full address decoding in every device.
2165 We can't use the high bits of pd for this because
2166 IO_MEM_ROMD uses these as a ram address. */
2167 iotlb = (pd & ~TARGET_PAGE_MASK);
2168 iotlb += p.region_offset;
2171 code_address = address;
2172 /* Make accesses to pages with watchpoints go via the
2173 watchpoint trap routines. */
2174 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2175 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2176 /* Avoid trapping reads of pages with a write breakpoint. */
2177 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2178 iotlb = io_mem_watch.ram_addr + paddr;
2179 address |= TLB_MMIO;
2180 break;
2185 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2186 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2187 te = &env->tlb_table[mmu_idx][index];
2188 te->addend = addend - vaddr;
2189 if (prot & PAGE_READ) {
2190 te->addr_read = address;
2191 } else {
2192 te->addr_read = -1;
2195 if (prot & PAGE_EXEC) {
2196 te->addr_code = code_address;
2197 } else {
2198 te->addr_code = -1;
2200 if (prot & PAGE_WRITE) {
2201 if ((pd & ~TARGET_PAGE_MASK) == io_mem_rom.ram_addr || is_romd(pd)) {
2202 /* Write access calls the I/O callback. */
2203 te->addr_write = address | TLB_MMIO;
2204 } else if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr &&
2205 !cpu_physical_memory_is_dirty(pd)) {
2206 te->addr_write = address | TLB_NOTDIRTY;
2207 } else {
2208 te->addr_write = address;
2210 } else {
2211 te->addr_write = -1;
2215 #else
2217 void tlb_flush(CPUState *env, int flush_global)
2221 void tlb_flush_page(CPUState *env, target_ulong addr)
2226 * Walks guest process memory "regions" one by one
2227 * and calls callback function 'fn' for each region.
2230 struct walk_memory_regions_data
2232 walk_memory_regions_fn fn;
2233 void *priv;
2234 unsigned long start;
2235 int prot;
2238 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2239 abi_ulong end, int new_prot)
2241 if (data->start != -1ul) {
2242 int rc = data->fn(data->priv, data->start, end, data->prot);
2243 if (rc != 0) {
2244 return rc;
2248 data->start = (new_prot ? end : -1ul);
2249 data->prot = new_prot;
2251 return 0;
2254 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2255 abi_ulong base, int level, void **lp)
2257 abi_ulong pa;
2258 int i, rc;
2260 if (*lp == NULL) {
2261 return walk_memory_regions_end(data, base, 0);
2264 if (level == 0) {
2265 PageDesc *pd = *lp;
2266 for (i = 0; i < L2_SIZE; ++i) {
2267 int prot = pd[i].flags;
2269 pa = base | (i << TARGET_PAGE_BITS);
2270 if (prot != data->prot) {
2271 rc = walk_memory_regions_end(data, pa, prot);
2272 if (rc != 0) {
2273 return rc;
2277 } else {
2278 void **pp = *lp;
2279 for (i = 0; i < L2_SIZE; ++i) {
2280 pa = base | ((abi_ulong)i <<
2281 (TARGET_PAGE_BITS + L2_BITS * level));
2282 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2283 if (rc != 0) {
2284 return rc;
2289 return 0;
2292 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2294 struct walk_memory_regions_data data;
2295 unsigned long i;
2297 data.fn = fn;
2298 data.priv = priv;
2299 data.start = -1ul;
2300 data.prot = 0;
2302 for (i = 0; i < V_L1_SIZE; i++) {
2303 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2304 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2305 if (rc != 0) {
2306 return rc;
2310 return walk_memory_regions_end(&data, 0, 0);
2313 static int dump_region(void *priv, abi_ulong start,
2314 abi_ulong end, unsigned long prot)
2316 FILE *f = (FILE *)priv;
2318 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2319 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2320 start, end, end - start,
2321 ((prot & PAGE_READ) ? 'r' : '-'),
2322 ((prot & PAGE_WRITE) ? 'w' : '-'),
2323 ((prot & PAGE_EXEC) ? 'x' : '-'));
2325 return (0);
2328 /* dump memory mappings */
2329 void page_dump(FILE *f)
2331 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2332 "start", "end", "size", "prot");
2333 walk_memory_regions(f, dump_region);
2336 int page_get_flags(target_ulong address)
2338 PageDesc *p;
2340 p = page_find(address >> TARGET_PAGE_BITS);
2341 if (!p)
2342 return 0;
2343 return p->flags;
2346 /* Modify the flags of a page and invalidate the code if necessary.
2347 The flag PAGE_WRITE_ORG is positioned automatically depending
2348 on PAGE_WRITE. The mmap_lock should already be held. */
2349 void page_set_flags(target_ulong start, target_ulong end, int flags)
2351 target_ulong addr, len;
2353 /* This function should never be called with addresses outside the
2354 guest address space. If this assert fires, it probably indicates
2355 a missing call to h2g_valid. */
2356 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2357 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2358 #endif
2359 assert(start < end);
2361 start = start & TARGET_PAGE_MASK;
2362 end = TARGET_PAGE_ALIGN(end);
2364 if (flags & PAGE_WRITE) {
2365 flags |= PAGE_WRITE_ORG;
2368 for (addr = start, len = end - start;
2369 len != 0;
2370 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2371 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2373 /* If the write protection bit is set, then we invalidate
2374 the code inside. */
2375 if (!(p->flags & PAGE_WRITE) &&
2376 (flags & PAGE_WRITE) &&
2377 p->first_tb) {
2378 tb_invalidate_phys_page(addr, 0, NULL);
2380 p->flags = flags;
2384 int page_check_range(target_ulong start, target_ulong len, int flags)
2386 PageDesc *p;
2387 target_ulong end;
2388 target_ulong addr;
2390 /* This function should never be called with addresses outside the
2391 guest address space. If this assert fires, it probably indicates
2392 a missing call to h2g_valid. */
2393 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2394 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2395 #endif
2397 if (len == 0) {
2398 return 0;
2400 if (start + len - 1 < start) {
2401 /* We've wrapped around. */
2402 return -1;
2405 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2406 start = start & TARGET_PAGE_MASK;
2408 for (addr = start, len = end - start;
2409 len != 0;
2410 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2411 p = page_find(addr >> TARGET_PAGE_BITS);
2412 if( !p )
2413 return -1;
2414 if( !(p->flags & PAGE_VALID) )
2415 return -1;
2417 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2418 return -1;
2419 if (flags & PAGE_WRITE) {
2420 if (!(p->flags & PAGE_WRITE_ORG))
2421 return -1;
2422 /* unprotect the page if it was put read-only because it
2423 contains translated code */
2424 if (!(p->flags & PAGE_WRITE)) {
2425 if (!page_unprotect(addr, 0, NULL))
2426 return -1;
2428 return 0;
2431 return 0;
2434 /* called from signal handler: invalidate the code and unprotect the
2435 page. Return TRUE if the fault was successfully handled. */
2436 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2438 unsigned int prot;
2439 PageDesc *p;
2440 target_ulong host_start, host_end, addr;
2442 /* Technically this isn't safe inside a signal handler. However we
2443 know this only ever happens in a synchronous SEGV handler, so in
2444 practice it seems to be ok. */
2445 mmap_lock();
2447 p = page_find(address >> TARGET_PAGE_BITS);
2448 if (!p) {
2449 mmap_unlock();
2450 return 0;
2453 /* if the page was really writable, then we change its
2454 protection back to writable */
2455 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2456 host_start = address & qemu_host_page_mask;
2457 host_end = host_start + qemu_host_page_size;
2459 prot = 0;
2460 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2461 p = page_find(addr >> TARGET_PAGE_BITS);
2462 p->flags |= PAGE_WRITE;
2463 prot |= p->flags;
2465 /* and since the content will be modified, we must invalidate
2466 the corresponding translated code. */
2467 tb_invalidate_phys_page(addr, pc, puc);
2468 #ifdef DEBUG_TB_CHECK
2469 tb_invalidate_check(addr);
2470 #endif
2472 mprotect((void *)g2h(host_start), qemu_host_page_size,
2473 prot & PAGE_BITS);
2475 mmap_unlock();
2476 return 1;
2478 mmap_unlock();
2479 return 0;
2482 static inline void tlb_set_dirty(CPUState *env,
2483 unsigned long addr, target_ulong vaddr)
2486 #endif /* defined(CONFIG_USER_ONLY) */
2488 #if !defined(CONFIG_USER_ONLY)
2490 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2491 typedef struct subpage_t {
2492 MemoryRegion iomem;
2493 target_phys_addr_t base;
2494 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2495 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2496 } subpage_t;
2498 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2499 ram_addr_t memory, ram_addr_t region_offset);
2500 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2501 ram_addr_t orig_memory,
2502 ram_addr_t region_offset);
2503 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2504 need_subpage) \
2505 do { \
2506 if (addr > start_addr) \
2507 start_addr2 = 0; \
2508 else { \
2509 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2510 if (start_addr2 > 0) \
2511 need_subpage = 1; \
2514 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2515 end_addr2 = TARGET_PAGE_SIZE - 1; \
2516 else { \
2517 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2518 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2519 need_subpage = 1; \
2521 } while (0)
2523 /* register physical memory.
2524 For RAM, 'size' must be a multiple of the target page size.
2525 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2526 io memory page. The address used when calling the IO function is
2527 the offset from the start of the region, plus region_offset. Both
2528 start_addr and region_offset are rounded down to a page boundary
2529 before calculating this offset. This should not be a problem unless
2530 the low bits of start_addr and region_offset differ. */
2531 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2532 bool readable, bool readonly)
2534 target_phys_addr_t start_addr = section->offset_within_address_space;
2535 ram_addr_t size = section->size;
2536 ram_addr_t phys_offset = section->mr->ram_addr;
2537 ram_addr_t region_offset = section->offset_within_region;
2538 target_phys_addr_t addr, end_addr;
2539 PhysPageDesc *p;
2540 CPUState *env;
2541 ram_addr_t orig_size = size;
2542 subpage_t *subpage;
2544 if (memory_region_is_ram(section->mr)) {
2545 phys_offset += region_offset;
2546 region_offset = 0;
2549 if (readonly) {
2550 phys_offset |= io_mem_rom.ram_addr;
2553 assert(size);
2555 if (phys_offset == io_mem_unassigned.ram_addr) {
2556 region_offset = start_addr;
2558 region_offset &= TARGET_PAGE_MASK;
2559 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2560 end_addr = start_addr + (target_phys_addr_t)size;
2562 addr = start_addr;
2563 do {
2564 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 0);
2565 if (p && p->phys_offset != io_mem_unassigned.ram_addr) {
2566 ram_addr_t orig_memory = p->phys_offset;
2567 target_phys_addr_t start_addr2, end_addr2;
2568 int need_subpage = 0;
2569 MemoryRegion *mr = io_mem_region[orig_memory & ~TARGET_PAGE_MASK];
2571 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2572 need_subpage);
2573 if (need_subpage) {
2574 if (!(mr->subpage)) {
2575 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2576 &p->phys_offset, orig_memory,
2577 p->region_offset);
2578 } else {
2579 subpage = container_of(mr, subpage_t, iomem);
2581 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2582 region_offset);
2583 p->region_offset = 0;
2584 } else {
2585 p->phys_offset = phys_offset;
2586 p->region_offset = region_offset;
2587 if (is_ram_rom_romd(phys_offset))
2588 phys_offset += TARGET_PAGE_SIZE;
2590 } else {
2591 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2592 p->phys_offset = phys_offset;
2593 p->region_offset = region_offset;
2594 if (is_ram_rom_romd(phys_offset)) {
2595 phys_offset += TARGET_PAGE_SIZE;
2596 } else {
2597 target_phys_addr_t start_addr2, end_addr2;
2598 int need_subpage = 0;
2600 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2601 end_addr2, need_subpage);
2603 if (need_subpage) {
2604 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2605 &p->phys_offset,
2606 io_mem_unassigned.ram_addr,
2607 addr & TARGET_PAGE_MASK);
2608 subpage_register(subpage, start_addr2, end_addr2,
2609 phys_offset, region_offset);
2610 p->region_offset = 0;
2614 region_offset += TARGET_PAGE_SIZE;
2615 addr += TARGET_PAGE_SIZE;
2616 } while (addr != end_addr);
2618 /* since each CPU stores ram addresses in its TLB cache, we must
2619 reset the modified entries */
2620 /* XXX: slow ! */
2621 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2622 tlb_flush(env, 1);
2626 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2628 if (kvm_enabled())
2629 kvm_coalesce_mmio_region(addr, size);
2632 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2634 if (kvm_enabled())
2635 kvm_uncoalesce_mmio_region(addr, size);
2638 void qemu_flush_coalesced_mmio_buffer(void)
2640 if (kvm_enabled())
2641 kvm_flush_coalesced_mmio_buffer();
2644 #if defined(__linux__) && !defined(TARGET_S390X)
2646 #include <sys/vfs.h>
2648 #define HUGETLBFS_MAGIC 0x958458f6
2650 static long gethugepagesize(const char *path)
2652 struct statfs fs;
2653 int ret;
2655 do {
2656 ret = statfs(path, &fs);
2657 } while (ret != 0 && errno == EINTR);
2659 if (ret != 0) {
2660 perror(path);
2661 return 0;
2664 if (fs.f_type != HUGETLBFS_MAGIC)
2665 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2667 return fs.f_bsize;
2670 static void *file_ram_alloc(RAMBlock *block,
2671 ram_addr_t memory,
2672 const char *path)
2674 char *filename;
2675 void *area;
2676 int fd;
2677 #ifdef MAP_POPULATE
2678 int flags;
2679 #endif
2680 unsigned long hpagesize;
2682 hpagesize = gethugepagesize(path);
2683 if (!hpagesize) {
2684 return NULL;
2687 if (memory < hpagesize) {
2688 return NULL;
2691 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2692 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2693 return NULL;
2696 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2697 return NULL;
2700 fd = mkstemp(filename);
2701 if (fd < 0) {
2702 perror("unable to create backing store for hugepages");
2703 free(filename);
2704 return NULL;
2706 unlink(filename);
2707 free(filename);
2709 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2712 * ftruncate is not supported by hugetlbfs in older
2713 * hosts, so don't bother bailing out on errors.
2714 * If anything goes wrong with it under other filesystems,
2715 * mmap will fail.
2717 if (ftruncate(fd, memory))
2718 perror("ftruncate");
2720 #ifdef MAP_POPULATE
2721 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2722 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2723 * to sidestep this quirk.
2725 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2726 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2727 #else
2728 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2729 #endif
2730 if (area == MAP_FAILED) {
2731 perror("file_ram_alloc: can't mmap RAM pages");
2732 close(fd);
2733 return (NULL);
2735 block->fd = fd;
2736 return area;
2738 #endif
2740 static ram_addr_t find_ram_offset(ram_addr_t size)
2742 RAMBlock *block, *next_block;
2743 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2745 if (QLIST_EMPTY(&ram_list.blocks))
2746 return 0;
2748 QLIST_FOREACH(block, &ram_list.blocks, next) {
2749 ram_addr_t end, next = RAM_ADDR_MAX;
2751 end = block->offset + block->length;
2753 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2754 if (next_block->offset >= end) {
2755 next = MIN(next, next_block->offset);
2758 if (next - end >= size && next - end < mingap) {
2759 offset = end;
2760 mingap = next - end;
2764 if (offset == RAM_ADDR_MAX) {
2765 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2766 (uint64_t)size);
2767 abort();
2770 return offset;
2773 static ram_addr_t last_ram_offset(void)
2775 RAMBlock *block;
2776 ram_addr_t last = 0;
2778 QLIST_FOREACH(block, &ram_list.blocks, next)
2779 last = MAX(last, block->offset + block->length);
2781 return last;
2784 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2786 RAMBlock *new_block, *block;
2788 new_block = NULL;
2789 QLIST_FOREACH(block, &ram_list.blocks, next) {
2790 if (block->offset == addr) {
2791 new_block = block;
2792 break;
2795 assert(new_block);
2796 assert(!new_block->idstr[0]);
2798 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2799 char *id = dev->parent_bus->info->get_dev_path(dev);
2800 if (id) {
2801 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2802 g_free(id);
2805 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2807 QLIST_FOREACH(block, &ram_list.blocks, next) {
2808 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2809 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2810 new_block->idstr);
2811 abort();
2816 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2817 MemoryRegion *mr)
2819 RAMBlock *new_block;
2821 size = TARGET_PAGE_ALIGN(size);
2822 new_block = g_malloc0(sizeof(*new_block));
2824 new_block->mr = mr;
2825 new_block->offset = find_ram_offset(size);
2826 if (host) {
2827 new_block->host = host;
2828 new_block->flags |= RAM_PREALLOC_MASK;
2829 } else {
2830 if (mem_path) {
2831 #if defined (__linux__) && !defined(TARGET_S390X)
2832 new_block->host = file_ram_alloc(new_block, size, mem_path);
2833 if (!new_block->host) {
2834 new_block->host = qemu_vmalloc(size);
2835 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2837 #else
2838 fprintf(stderr, "-mem-path option unsupported\n");
2839 exit(1);
2840 #endif
2841 } else {
2842 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2843 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2844 an system defined value, which is at least 256GB. Larger systems
2845 have larger values. We put the guest between the end of data
2846 segment (system break) and this value. We use 32GB as a base to
2847 have enough room for the system break to grow. */
2848 new_block->host = mmap((void*)0x800000000, size,
2849 PROT_EXEC|PROT_READ|PROT_WRITE,
2850 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2851 if (new_block->host == MAP_FAILED) {
2852 fprintf(stderr, "Allocating RAM failed\n");
2853 abort();
2855 #else
2856 if (xen_enabled()) {
2857 xen_ram_alloc(new_block->offset, size, mr);
2858 } else {
2859 new_block->host = qemu_vmalloc(size);
2861 #endif
2862 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2865 new_block->length = size;
2867 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2869 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2870 last_ram_offset() >> TARGET_PAGE_BITS);
2871 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2872 0xff, size >> TARGET_PAGE_BITS);
2874 if (kvm_enabled())
2875 kvm_setup_guest_memory(new_block->host, size);
2877 return new_block->offset;
2880 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2882 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2885 void qemu_ram_free_from_ptr(ram_addr_t addr)
2887 RAMBlock *block;
2889 QLIST_FOREACH(block, &ram_list.blocks, next) {
2890 if (addr == block->offset) {
2891 QLIST_REMOVE(block, next);
2892 g_free(block);
2893 return;
2898 void qemu_ram_free(ram_addr_t addr)
2900 RAMBlock *block;
2902 QLIST_FOREACH(block, &ram_list.blocks, next) {
2903 if (addr == block->offset) {
2904 QLIST_REMOVE(block, next);
2905 if (block->flags & RAM_PREALLOC_MASK) {
2907 } else if (mem_path) {
2908 #if defined (__linux__) && !defined(TARGET_S390X)
2909 if (block->fd) {
2910 munmap(block->host, block->length);
2911 close(block->fd);
2912 } else {
2913 qemu_vfree(block->host);
2915 #else
2916 abort();
2917 #endif
2918 } else {
2919 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2920 munmap(block->host, block->length);
2921 #else
2922 if (xen_enabled()) {
2923 xen_invalidate_map_cache_entry(block->host);
2924 } else {
2925 qemu_vfree(block->host);
2927 #endif
2929 g_free(block);
2930 return;
2936 #ifndef _WIN32
2937 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2939 RAMBlock *block;
2940 ram_addr_t offset;
2941 int flags;
2942 void *area, *vaddr;
2944 QLIST_FOREACH(block, &ram_list.blocks, next) {
2945 offset = addr - block->offset;
2946 if (offset < block->length) {
2947 vaddr = block->host + offset;
2948 if (block->flags & RAM_PREALLOC_MASK) {
2950 } else {
2951 flags = MAP_FIXED;
2952 munmap(vaddr, length);
2953 if (mem_path) {
2954 #if defined(__linux__) && !defined(TARGET_S390X)
2955 if (block->fd) {
2956 #ifdef MAP_POPULATE
2957 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2958 MAP_PRIVATE;
2959 #else
2960 flags |= MAP_PRIVATE;
2961 #endif
2962 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2963 flags, block->fd, offset);
2964 } else {
2965 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2966 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2967 flags, -1, 0);
2969 #else
2970 abort();
2971 #endif
2972 } else {
2973 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2974 flags |= MAP_SHARED | MAP_ANONYMOUS;
2975 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2976 flags, -1, 0);
2977 #else
2978 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2979 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2980 flags, -1, 0);
2981 #endif
2983 if (area != vaddr) {
2984 fprintf(stderr, "Could not remap addr: "
2985 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2986 length, addr);
2987 exit(1);
2989 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2991 return;
2995 #endif /* !_WIN32 */
2997 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2998 With the exception of the softmmu code in this file, this should
2999 only be used for local memory (e.g. video ram) that the device owns,
3000 and knows it isn't going to access beyond the end of the block.
3002 It should not be used for general purpose DMA.
3003 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3005 void *qemu_get_ram_ptr(ram_addr_t addr)
3007 RAMBlock *block;
3009 QLIST_FOREACH(block, &ram_list.blocks, next) {
3010 if (addr - block->offset < block->length) {
3011 /* Move this entry to to start of the list. */
3012 if (block != QLIST_FIRST(&ram_list.blocks)) {
3013 QLIST_REMOVE(block, next);
3014 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3016 if (xen_enabled()) {
3017 /* We need to check if the requested address is in the RAM
3018 * because we don't want to map the entire memory in QEMU.
3019 * In that case just map until the end of the page.
3021 if (block->offset == 0) {
3022 return xen_map_cache(addr, 0, 0);
3023 } else if (block->host == NULL) {
3024 block->host =
3025 xen_map_cache(block->offset, block->length, 1);
3028 return block->host + (addr - block->offset);
3032 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3033 abort();
3035 return NULL;
3038 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3039 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3041 void *qemu_safe_ram_ptr(ram_addr_t addr)
3043 RAMBlock *block;
3045 QLIST_FOREACH(block, &ram_list.blocks, next) {
3046 if (addr - block->offset < block->length) {
3047 if (xen_enabled()) {
3048 /* We need to check if the requested address is in the RAM
3049 * because we don't want to map the entire memory in QEMU.
3050 * In that case just map until the end of the page.
3052 if (block->offset == 0) {
3053 return xen_map_cache(addr, 0, 0);
3054 } else if (block->host == NULL) {
3055 block->host =
3056 xen_map_cache(block->offset, block->length, 1);
3059 return block->host + (addr - block->offset);
3063 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3064 abort();
3066 return NULL;
3069 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3070 * but takes a size argument */
3071 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3073 if (*size == 0) {
3074 return NULL;
3076 if (xen_enabled()) {
3077 return xen_map_cache(addr, *size, 1);
3078 } else {
3079 RAMBlock *block;
3081 QLIST_FOREACH(block, &ram_list.blocks, next) {
3082 if (addr - block->offset < block->length) {
3083 if (addr - block->offset + *size > block->length)
3084 *size = block->length - addr + block->offset;
3085 return block->host + (addr - block->offset);
3089 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3090 abort();
3094 void qemu_put_ram_ptr(void *addr)
3096 trace_qemu_put_ram_ptr(addr);
3099 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3101 RAMBlock *block;
3102 uint8_t *host = ptr;
3104 if (xen_enabled()) {
3105 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3106 return 0;
3109 QLIST_FOREACH(block, &ram_list.blocks, next) {
3110 /* This case append when the block is not mapped. */
3111 if (block->host == NULL) {
3112 continue;
3114 if (host - block->host < block->length) {
3115 *ram_addr = block->offset + (host - block->host);
3116 return 0;
3120 return -1;
3123 /* Some of the softmmu routines need to translate from a host pointer
3124 (typically a TLB entry) back to a ram offset. */
3125 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3127 ram_addr_t ram_addr;
3129 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3130 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3131 abort();
3133 return ram_addr;
3136 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3137 unsigned size)
3139 #ifdef DEBUG_UNASSIGNED
3140 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3141 #endif
3142 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3143 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
3144 #endif
3145 return 0;
3148 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3149 uint64_t val, unsigned size)
3151 #ifdef DEBUG_UNASSIGNED
3152 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
3153 #endif
3154 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3155 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
3156 #endif
3159 static const MemoryRegionOps unassigned_mem_ops = {
3160 .read = unassigned_mem_read,
3161 .write = unassigned_mem_write,
3162 .endianness = DEVICE_NATIVE_ENDIAN,
3165 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3166 unsigned size)
3168 abort();
3171 static void error_mem_write(void *opaque, target_phys_addr_t addr,
3172 uint64_t value, unsigned size)
3174 abort();
3177 static const MemoryRegionOps error_mem_ops = {
3178 .read = error_mem_read,
3179 .write = error_mem_write,
3180 .endianness = DEVICE_NATIVE_ENDIAN,
3183 static const MemoryRegionOps rom_mem_ops = {
3184 .read = error_mem_read,
3185 .write = unassigned_mem_write,
3186 .endianness = DEVICE_NATIVE_ENDIAN,
3189 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3190 uint64_t val, unsigned size)
3192 int dirty_flags;
3193 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3194 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3195 #if !defined(CONFIG_USER_ONLY)
3196 tb_invalidate_phys_page_fast(ram_addr, size);
3197 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3198 #endif
3200 switch (size) {
3201 case 1:
3202 stb_p(qemu_get_ram_ptr(ram_addr), val);
3203 break;
3204 case 2:
3205 stw_p(qemu_get_ram_ptr(ram_addr), val);
3206 break;
3207 case 4:
3208 stl_p(qemu_get_ram_ptr(ram_addr), val);
3209 break;
3210 default:
3211 abort();
3213 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3214 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3215 /* we remove the notdirty callback only if the code has been
3216 flushed */
3217 if (dirty_flags == 0xff)
3218 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3221 static const MemoryRegionOps notdirty_mem_ops = {
3222 .read = error_mem_read,
3223 .write = notdirty_mem_write,
3224 .endianness = DEVICE_NATIVE_ENDIAN,
3227 /* Generate a debug exception if a watchpoint has been hit. */
3228 static void check_watchpoint(int offset, int len_mask, int flags)
3230 CPUState *env = cpu_single_env;
3231 target_ulong pc, cs_base;
3232 TranslationBlock *tb;
3233 target_ulong vaddr;
3234 CPUWatchpoint *wp;
3235 int cpu_flags;
3237 if (env->watchpoint_hit) {
3238 /* We re-entered the check after replacing the TB. Now raise
3239 * the debug interrupt so that is will trigger after the
3240 * current instruction. */
3241 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3242 return;
3244 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3245 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3246 if ((vaddr == (wp->vaddr & len_mask) ||
3247 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3248 wp->flags |= BP_WATCHPOINT_HIT;
3249 if (!env->watchpoint_hit) {
3250 env->watchpoint_hit = wp;
3251 tb = tb_find_pc(env->mem_io_pc);
3252 if (!tb) {
3253 cpu_abort(env, "check_watchpoint: could not find TB for "
3254 "pc=%p", (void *)env->mem_io_pc);
3256 cpu_restore_state(tb, env, env->mem_io_pc);
3257 tb_phys_invalidate(tb, -1);
3258 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3259 env->exception_index = EXCP_DEBUG;
3260 } else {
3261 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3262 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3264 cpu_resume_from_signal(env, NULL);
3266 } else {
3267 wp->flags &= ~BP_WATCHPOINT_HIT;
3272 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3273 so these check for a hit then pass through to the normal out-of-line
3274 phys routines. */
3275 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3276 unsigned size)
3278 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3279 switch (size) {
3280 case 1: return ldub_phys(addr);
3281 case 2: return lduw_phys(addr);
3282 case 4: return ldl_phys(addr);
3283 default: abort();
3287 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3288 uint64_t val, unsigned size)
3290 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3291 switch (size) {
3292 case 1: stb_phys(addr, val);
3293 case 2: stw_phys(addr, val);
3294 case 4: stl_phys(addr, val);
3295 default: abort();
3299 static const MemoryRegionOps watch_mem_ops = {
3300 .read = watch_mem_read,
3301 .write = watch_mem_write,
3302 .endianness = DEVICE_NATIVE_ENDIAN,
3305 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3306 unsigned len)
3308 subpage_t *mmio = opaque;
3309 unsigned int idx = SUBPAGE_IDX(addr);
3310 #if defined(DEBUG_SUBPAGE)
3311 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3312 mmio, len, addr, idx);
3313 #endif
3315 addr += mmio->region_offset[idx];
3316 idx = mmio->sub_io_index[idx];
3317 return io_mem_read(idx, addr, len);
3320 static void subpage_write(void *opaque, target_phys_addr_t addr,
3321 uint64_t value, unsigned len)
3323 subpage_t *mmio = opaque;
3324 unsigned int idx = SUBPAGE_IDX(addr);
3325 #if defined(DEBUG_SUBPAGE)
3326 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3327 " idx %d value %"PRIx64"\n",
3328 __func__, mmio, len, addr, idx, value);
3329 #endif
3331 addr += mmio->region_offset[idx];
3332 idx = mmio->sub_io_index[idx];
3333 io_mem_write(idx, addr, value, len);
3336 static const MemoryRegionOps subpage_ops = {
3337 .read = subpage_read,
3338 .write = subpage_write,
3339 .endianness = DEVICE_NATIVE_ENDIAN,
3342 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3343 unsigned size)
3345 ram_addr_t raddr = addr;
3346 void *ptr = qemu_get_ram_ptr(raddr);
3347 switch (size) {
3348 case 1: return ldub_p(ptr);
3349 case 2: return lduw_p(ptr);
3350 case 4: return ldl_p(ptr);
3351 default: abort();
3355 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3356 uint64_t value, unsigned size)
3358 ram_addr_t raddr = addr;
3359 void *ptr = qemu_get_ram_ptr(raddr);
3360 switch (size) {
3361 case 1: return stb_p(ptr, value);
3362 case 2: return stw_p(ptr, value);
3363 case 4: return stl_p(ptr, value);
3364 default: abort();
3368 static const MemoryRegionOps subpage_ram_ops = {
3369 .read = subpage_ram_read,
3370 .write = subpage_ram_write,
3371 .endianness = DEVICE_NATIVE_ENDIAN,
3374 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3375 ram_addr_t memory, ram_addr_t region_offset)
3377 int idx, eidx;
3379 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3380 return -1;
3381 idx = SUBPAGE_IDX(start);
3382 eidx = SUBPAGE_IDX(end);
3383 #if defined(DEBUG_SUBPAGE)
3384 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3385 mmio, start, end, idx, eidx, memory);
3386 #endif
3387 if ((memory & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
3388 memory = io_mem_subpage_ram.ram_addr;
3390 memory &= IO_MEM_NB_ENTRIES - 1;
3391 for (; idx <= eidx; idx++) {
3392 mmio->sub_io_index[idx] = memory;
3393 mmio->region_offset[idx] = region_offset;
3396 return 0;
3399 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3400 ram_addr_t orig_memory,
3401 ram_addr_t region_offset)
3403 subpage_t *mmio;
3404 int subpage_memory;
3406 mmio = g_malloc0(sizeof(subpage_t));
3408 mmio->base = base;
3409 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3410 "subpage", TARGET_PAGE_SIZE);
3411 mmio->iomem.subpage = true;
3412 subpage_memory = mmio->iomem.ram_addr;
3413 #if defined(DEBUG_SUBPAGE)
3414 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3415 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3416 #endif
3417 *phys = subpage_memory;
3418 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3420 return mmio;
3423 static int get_free_io_mem_idx(void)
3425 int i;
3427 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3428 if (!io_mem_used[i]) {
3429 io_mem_used[i] = 1;
3430 return i;
3432 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3433 return -1;
3436 /* mem_read and mem_write are arrays of functions containing the
3437 function to access byte (index 0), word (index 1) and dword (index
3438 2). Functions can be omitted with a NULL function pointer.
3439 If io_index is non zero, the corresponding io zone is
3440 modified. If it is zero, a new io zone is allocated. The return
3441 value can be used with cpu_register_physical_memory(). (-1) is
3442 returned if error. */
3443 static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
3445 if (io_index <= 0) {
3446 io_index = get_free_io_mem_idx();
3447 if (io_index == -1)
3448 return io_index;
3449 } else {
3450 if (io_index >= IO_MEM_NB_ENTRIES)
3451 return -1;
3454 io_mem_region[io_index] = mr;
3456 return io_index;
3459 int cpu_register_io_memory(MemoryRegion *mr)
3461 return cpu_register_io_memory_fixed(0, mr);
3464 void cpu_unregister_io_memory(int io_index)
3466 io_mem_region[io_index] = NULL;
3467 io_mem_used[io_index] = 0;
3470 static void io_mem_init(void)
3472 int i;
3474 /* Must be first: */
3475 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3476 assert(io_mem_ram.ram_addr == 0);
3477 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3478 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3479 "unassigned", UINT64_MAX);
3480 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3481 "notdirty", UINT64_MAX);
3482 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3483 "subpage-ram", UINT64_MAX);
3484 for (i=0; i<5; i++)
3485 io_mem_used[i] = 1;
3487 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3488 "watch", UINT64_MAX);
3491 static void memory_map_init(void)
3493 system_memory = g_malloc(sizeof(*system_memory));
3494 memory_region_init(system_memory, "system", INT64_MAX);
3495 set_system_memory_map(system_memory);
3497 system_io = g_malloc(sizeof(*system_io));
3498 memory_region_init(system_io, "io", 65536);
3499 set_system_io_map(system_io);
3502 MemoryRegion *get_system_memory(void)
3504 return system_memory;
3507 MemoryRegion *get_system_io(void)
3509 return system_io;
3512 #endif /* !defined(CONFIG_USER_ONLY) */
3514 /* physical memory access (slow version, mainly for debug) */
3515 #if defined(CONFIG_USER_ONLY)
3516 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3517 uint8_t *buf, int len, int is_write)
3519 int l, flags;
3520 target_ulong page;
3521 void * p;
3523 while (len > 0) {
3524 page = addr & TARGET_PAGE_MASK;
3525 l = (page + TARGET_PAGE_SIZE) - addr;
3526 if (l > len)
3527 l = len;
3528 flags = page_get_flags(page);
3529 if (!(flags & PAGE_VALID))
3530 return -1;
3531 if (is_write) {
3532 if (!(flags & PAGE_WRITE))
3533 return -1;
3534 /* XXX: this code should not depend on lock_user */
3535 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3536 return -1;
3537 memcpy(p, buf, l);
3538 unlock_user(p, addr, l);
3539 } else {
3540 if (!(flags & PAGE_READ))
3541 return -1;
3542 /* XXX: this code should not depend on lock_user */
3543 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3544 return -1;
3545 memcpy(buf, p, l);
3546 unlock_user(p, addr, 0);
3548 len -= l;
3549 buf += l;
3550 addr += l;
3552 return 0;
3555 #else
3556 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3557 int len, int is_write)
3559 int l, io_index;
3560 uint8_t *ptr;
3561 uint32_t val;
3562 target_phys_addr_t page;
3563 ram_addr_t pd;
3564 PhysPageDesc p;
3566 while (len > 0) {
3567 page = addr & TARGET_PAGE_MASK;
3568 l = (page + TARGET_PAGE_SIZE) - addr;
3569 if (l > len)
3570 l = len;
3571 p = phys_page_find(page >> TARGET_PAGE_BITS);
3572 pd = p.phys_offset;
3574 if (is_write) {
3575 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
3576 target_phys_addr_t addr1;
3577 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
3578 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3579 /* XXX: could force cpu_single_env to NULL to avoid
3580 potential bugs */
3581 if (l >= 4 && ((addr1 & 3) == 0)) {
3582 /* 32 bit write access */
3583 val = ldl_p(buf);
3584 io_mem_write(io_index, addr1, val, 4);
3585 l = 4;
3586 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3587 /* 16 bit write access */
3588 val = lduw_p(buf);
3589 io_mem_write(io_index, addr1, val, 2);
3590 l = 2;
3591 } else {
3592 /* 8 bit write access */
3593 val = ldub_p(buf);
3594 io_mem_write(io_index, addr1, val, 1);
3595 l = 1;
3597 } else {
3598 ram_addr_t addr1;
3599 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3600 /* RAM case */
3601 ptr = qemu_get_ram_ptr(addr1);
3602 memcpy(ptr, buf, l);
3603 if (!cpu_physical_memory_is_dirty(addr1)) {
3604 /* invalidate code */
3605 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3606 /* set dirty bit */
3607 cpu_physical_memory_set_dirty_flags(
3608 addr1, (0xff & ~CODE_DIRTY_FLAG));
3610 qemu_put_ram_ptr(ptr);
3612 } else {
3613 if (!is_ram_rom_romd(pd)) {
3614 target_phys_addr_t addr1;
3615 /* I/O case */
3616 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
3617 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3618 if (l >= 4 && ((addr1 & 3) == 0)) {
3619 /* 32 bit read access */
3620 val = io_mem_read(io_index, addr1, 4);
3621 stl_p(buf, val);
3622 l = 4;
3623 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3624 /* 16 bit read access */
3625 val = io_mem_read(io_index, addr1, 2);
3626 stw_p(buf, val);
3627 l = 2;
3628 } else {
3629 /* 8 bit read access */
3630 val = io_mem_read(io_index, addr1, 1);
3631 stb_p(buf, val);
3632 l = 1;
3634 } else {
3635 /* RAM case */
3636 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3637 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3638 qemu_put_ram_ptr(ptr);
3641 len -= l;
3642 buf += l;
3643 addr += l;
3647 /* used for ROM loading : can write in RAM and ROM */
3648 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3649 const uint8_t *buf, int len)
3651 int l;
3652 uint8_t *ptr;
3653 target_phys_addr_t page;
3654 unsigned long pd;
3655 PhysPageDesc p;
3657 while (len > 0) {
3658 page = addr & TARGET_PAGE_MASK;
3659 l = (page + TARGET_PAGE_SIZE) - addr;
3660 if (l > len)
3661 l = len;
3662 p = phys_page_find(page >> TARGET_PAGE_BITS);
3663 pd = p.phys_offset;
3665 if (!is_ram_rom_romd(pd)) {
3666 /* do nothing */
3667 } else {
3668 unsigned long addr1;
3669 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3670 /* ROM/RAM case */
3671 ptr = qemu_get_ram_ptr(addr1);
3672 memcpy(ptr, buf, l);
3673 qemu_put_ram_ptr(ptr);
3675 len -= l;
3676 buf += l;
3677 addr += l;
3681 typedef struct {
3682 void *buffer;
3683 target_phys_addr_t addr;
3684 target_phys_addr_t len;
3685 } BounceBuffer;
3687 static BounceBuffer bounce;
3689 typedef struct MapClient {
3690 void *opaque;
3691 void (*callback)(void *opaque);
3692 QLIST_ENTRY(MapClient) link;
3693 } MapClient;
3695 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3696 = QLIST_HEAD_INITIALIZER(map_client_list);
3698 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3700 MapClient *client = g_malloc(sizeof(*client));
3702 client->opaque = opaque;
3703 client->callback = callback;
3704 QLIST_INSERT_HEAD(&map_client_list, client, link);
3705 return client;
3708 void cpu_unregister_map_client(void *_client)
3710 MapClient *client = (MapClient *)_client;
3712 QLIST_REMOVE(client, link);
3713 g_free(client);
3716 static void cpu_notify_map_clients(void)
3718 MapClient *client;
3720 while (!QLIST_EMPTY(&map_client_list)) {
3721 client = QLIST_FIRST(&map_client_list);
3722 client->callback(client->opaque);
3723 cpu_unregister_map_client(client);
3727 /* Map a physical memory region into a host virtual address.
3728 * May map a subset of the requested range, given by and returned in *plen.
3729 * May return NULL if resources needed to perform the mapping are exhausted.
3730 * Use only for reads OR writes - not for read-modify-write operations.
3731 * Use cpu_register_map_client() to know when retrying the map operation is
3732 * likely to succeed.
3734 void *cpu_physical_memory_map(target_phys_addr_t addr,
3735 target_phys_addr_t *plen,
3736 int is_write)
3738 target_phys_addr_t len = *plen;
3739 target_phys_addr_t todo = 0;
3740 int l;
3741 target_phys_addr_t page;
3742 unsigned long pd;
3743 PhysPageDesc p;
3744 ram_addr_t raddr = RAM_ADDR_MAX;
3745 ram_addr_t rlen;
3746 void *ret;
3748 while (len > 0) {
3749 page = addr & TARGET_PAGE_MASK;
3750 l = (page + TARGET_PAGE_SIZE) - addr;
3751 if (l > len)
3752 l = len;
3753 p = phys_page_find(page >> TARGET_PAGE_BITS);
3754 pd = p.phys_offset;
3756 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
3757 if (todo || bounce.buffer) {
3758 break;
3760 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3761 bounce.addr = addr;
3762 bounce.len = l;
3763 if (!is_write) {
3764 cpu_physical_memory_read(addr, bounce.buffer, l);
3767 *plen = l;
3768 return bounce.buffer;
3770 if (!todo) {
3771 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3774 len -= l;
3775 addr += l;
3776 todo += l;
3778 rlen = todo;
3779 ret = qemu_ram_ptr_length(raddr, &rlen);
3780 *plen = rlen;
3781 return ret;
3784 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3785 * Will also mark the memory as dirty if is_write == 1. access_len gives
3786 * the amount of memory that was actually read or written by the caller.
3788 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3789 int is_write, target_phys_addr_t access_len)
3791 if (buffer != bounce.buffer) {
3792 if (is_write) {
3793 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3794 while (access_len) {
3795 unsigned l;
3796 l = TARGET_PAGE_SIZE;
3797 if (l > access_len)
3798 l = access_len;
3799 if (!cpu_physical_memory_is_dirty(addr1)) {
3800 /* invalidate code */
3801 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3802 /* set dirty bit */
3803 cpu_physical_memory_set_dirty_flags(
3804 addr1, (0xff & ~CODE_DIRTY_FLAG));
3806 addr1 += l;
3807 access_len -= l;
3810 if (xen_enabled()) {
3811 xen_invalidate_map_cache_entry(buffer);
3813 return;
3815 if (is_write) {
3816 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3818 qemu_vfree(bounce.buffer);
3819 bounce.buffer = NULL;
3820 cpu_notify_map_clients();
3823 /* warning: addr must be aligned */
3824 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3825 enum device_endian endian)
3827 int io_index;
3828 uint8_t *ptr;
3829 uint32_t val;
3830 unsigned long pd;
3831 PhysPageDesc p;
3833 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3834 pd = p.phys_offset;
3836 if (!is_ram_rom_romd(pd)) {
3837 /* I/O case */
3838 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
3839 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3840 val = io_mem_read(io_index, addr, 4);
3841 #if defined(TARGET_WORDS_BIGENDIAN)
3842 if (endian == DEVICE_LITTLE_ENDIAN) {
3843 val = bswap32(val);
3845 #else
3846 if (endian == DEVICE_BIG_ENDIAN) {
3847 val = bswap32(val);
3849 #endif
3850 } else {
3851 /* RAM case */
3852 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3853 (addr & ~TARGET_PAGE_MASK);
3854 switch (endian) {
3855 case DEVICE_LITTLE_ENDIAN:
3856 val = ldl_le_p(ptr);
3857 break;
3858 case DEVICE_BIG_ENDIAN:
3859 val = ldl_be_p(ptr);
3860 break;
3861 default:
3862 val = ldl_p(ptr);
3863 break;
3866 return val;
3869 uint32_t ldl_phys(target_phys_addr_t addr)
3871 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3874 uint32_t ldl_le_phys(target_phys_addr_t addr)
3876 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3879 uint32_t ldl_be_phys(target_phys_addr_t addr)
3881 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3884 /* warning: addr must be aligned */
3885 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3886 enum device_endian endian)
3888 int io_index;
3889 uint8_t *ptr;
3890 uint64_t val;
3891 unsigned long pd;
3892 PhysPageDesc p;
3894 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3895 pd = p.phys_offset;
3897 if (!is_ram_rom_romd(pd)) {
3898 /* I/O case */
3899 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
3900 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3902 /* XXX This is broken when device endian != cpu endian.
3903 Fix and add "endian" variable check */
3904 #ifdef TARGET_WORDS_BIGENDIAN
3905 val = io_mem_read(io_index, addr, 4) << 32;
3906 val |= io_mem_read(io_index, addr + 4, 4);
3907 #else
3908 val = io_mem_read(io_index, addr, 4);
3909 val |= io_mem_read(io_index, addr + 4, 4) << 32;
3910 #endif
3911 } else {
3912 /* RAM case */
3913 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3914 (addr & ~TARGET_PAGE_MASK);
3915 switch (endian) {
3916 case DEVICE_LITTLE_ENDIAN:
3917 val = ldq_le_p(ptr);
3918 break;
3919 case DEVICE_BIG_ENDIAN:
3920 val = ldq_be_p(ptr);
3921 break;
3922 default:
3923 val = ldq_p(ptr);
3924 break;
3927 return val;
3930 uint64_t ldq_phys(target_phys_addr_t addr)
3932 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3935 uint64_t ldq_le_phys(target_phys_addr_t addr)
3937 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3940 uint64_t ldq_be_phys(target_phys_addr_t addr)
3942 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3945 /* XXX: optimize */
3946 uint32_t ldub_phys(target_phys_addr_t addr)
3948 uint8_t val;
3949 cpu_physical_memory_read(addr, &val, 1);
3950 return val;
3953 /* warning: addr must be aligned */
3954 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3955 enum device_endian endian)
3957 int io_index;
3958 uint8_t *ptr;
3959 uint64_t val;
3960 unsigned long pd;
3961 PhysPageDesc p;
3963 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3964 pd = p.phys_offset;
3966 if (!is_ram_rom_romd(pd)) {
3967 /* I/O case */
3968 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
3969 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3970 val = io_mem_read(io_index, addr, 2);
3971 #if defined(TARGET_WORDS_BIGENDIAN)
3972 if (endian == DEVICE_LITTLE_ENDIAN) {
3973 val = bswap16(val);
3975 #else
3976 if (endian == DEVICE_BIG_ENDIAN) {
3977 val = bswap16(val);
3979 #endif
3980 } else {
3981 /* RAM case */
3982 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3983 (addr & ~TARGET_PAGE_MASK);
3984 switch (endian) {
3985 case DEVICE_LITTLE_ENDIAN:
3986 val = lduw_le_p(ptr);
3987 break;
3988 case DEVICE_BIG_ENDIAN:
3989 val = lduw_be_p(ptr);
3990 break;
3991 default:
3992 val = lduw_p(ptr);
3993 break;
3996 return val;
3999 uint32_t lduw_phys(target_phys_addr_t addr)
4001 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4004 uint32_t lduw_le_phys(target_phys_addr_t addr)
4006 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4009 uint32_t lduw_be_phys(target_phys_addr_t addr)
4011 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4014 /* warning: addr must be aligned. The ram page is not masked as dirty
4015 and the code inside is not invalidated. It is useful if the dirty
4016 bits are used to track modified PTEs */
4017 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4019 int io_index;
4020 uint8_t *ptr;
4021 unsigned long pd;
4022 PhysPageDesc p;
4024 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4025 pd = p.phys_offset;
4027 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4028 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4029 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4030 io_mem_write(io_index, addr, val, 4);
4031 } else {
4032 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4033 ptr = qemu_get_ram_ptr(addr1);
4034 stl_p(ptr, val);
4036 if (unlikely(in_migration)) {
4037 if (!cpu_physical_memory_is_dirty(addr1)) {
4038 /* invalidate code */
4039 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4040 /* set dirty bit */
4041 cpu_physical_memory_set_dirty_flags(
4042 addr1, (0xff & ~CODE_DIRTY_FLAG));
4048 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4050 int io_index;
4051 uint8_t *ptr;
4052 unsigned long pd;
4053 PhysPageDesc p;
4055 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4056 pd = p.phys_offset;
4058 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4059 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4060 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4061 #ifdef TARGET_WORDS_BIGENDIAN
4062 io_mem_write(io_index, addr, val >> 32, 4);
4063 io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
4064 #else
4065 io_mem_write(io_index, addr, (uint32_t)val, 4);
4066 io_mem_write(io_index, addr + 4, val >> 32, 4);
4067 #endif
4068 } else {
4069 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4070 (addr & ~TARGET_PAGE_MASK);
4071 stq_p(ptr, val);
4075 /* warning: addr must be aligned */
4076 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4077 enum device_endian endian)
4079 int io_index;
4080 uint8_t *ptr;
4081 unsigned long pd;
4082 PhysPageDesc p;
4084 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4085 pd = p.phys_offset;
4087 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4088 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4089 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4090 #if defined(TARGET_WORDS_BIGENDIAN)
4091 if (endian == DEVICE_LITTLE_ENDIAN) {
4092 val = bswap32(val);
4094 #else
4095 if (endian == DEVICE_BIG_ENDIAN) {
4096 val = bswap32(val);
4098 #endif
4099 io_mem_write(io_index, addr, val, 4);
4100 } else {
4101 unsigned long addr1;
4102 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4103 /* RAM case */
4104 ptr = qemu_get_ram_ptr(addr1);
4105 switch (endian) {
4106 case DEVICE_LITTLE_ENDIAN:
4107 stl_le_p(ptr, val);
4108 break;
4109 case DEVICE_BIG_ENDIAN:
4110 stl_be_p(ptr, val);
4111 break;
4112 default:
4113 stl_p(ptr, val);
4114 break;
4116 if (!cpu_physical_memory_is_dirty(addr1)) {
4117 /* invalidate code */
4118 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4119 /* set dirty bit */
4120 cpu_physical_memory_set_dirty_flags(addr1,
4121 (0xff & ~CODE_DIRTY_FLAG));
4126 void stl_phys(target_phys_addr_t addr, uint32_t val)
4128 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4131 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4133 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4136 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4138 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4141 /* XXX: optimize */
4142 void stb_phys(target_phys_addr_t addr, uint32_t val)
4144 uint8_t v = val;
4145 cpu_physical_memory_write(addr, &v, 1);
4148 /* warning: addr must be aligned */
4149 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4150 enum device_endian endian)
4152 int io_index;
4153 uint8_t *ptr;
4154 unsigned long pd;
4155 PhysPageDesc p;
4157 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4158 pd = p.phys_offset;
4160 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4161 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4162 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4163 #if defined(TARGET_WORDS_BIGENDIAN)
4164 if (endian == DEVICE_LITTLE_ENDIAN) {
4165 val = bswap16(val);
4167 #else
4168 if (endian == DEVICE_BIG_ENDIAN) {
4169 val = bswap16(val);
4171 #endif
4172 io_mem_write(io_index, addr, val, 2);
4173 } else {
4174 unsigned long addr1;
4175 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4176 /* RAM case */
4177 ptr = qemu_get_ram_ptr(addr1);
4178 switch (endian) {
4179 case DEVICE_LITTLE_ENDIAN:
4180 stw_le_p(ptr, val);
4181 break;
4182 case DEVICE_BIG_ENDIAN:
4183 stw_be_p(ptr, val);
4184 break;
4185 default:
4186 stw_p(ptr, val);
4187 break;
4189 if (!cpu_physical_memory_is_dirty(addr1)) {
4190 /* invalidate code */
4191 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4192 /* set dirty bit */
4193 cpu_physical_memory_set_dirty_flags(addr1,
4194 (0xff & ~CODE_DIRTY_FLAG));
4199 void stw_phys(target_phys_addr_t addr, uint32_t val)
4201 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4204 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4206 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4209 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4211 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4214 /* XXX: optimize */
4215 void stq_phys(target_phys_addr_t addr, uint64_t val)
4217 val = tswap64(val);
4218 cpu_physical_memory_write(addr, &val, 8);
4221 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4223 val = cpu_to_le64(val);
4224 cpu_physical_memory_write(addr, &val, 8);
4227 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4229 val = cpu_to_be64(val);
4230 cpu_physical_memory_write(addr, &val, 8);
4233 /* virtual memory access for debug (includes writing to ROM) */
4234 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4235 uint8_t *buf, int len, int is_write)
4237 int l;
4238 target_phys_addr_t phys_addr;
4239 target_ulong page;
4241 while (len > 0) {
4242 page = addr & TARGET_PAGE_MASK;
4243 phys_addr = cpu_get_phys_page_debug(env, page);
4244 /* if no physical page mapped, return an error */
4245 if (phys_addr == -1)
4246 return -1;
4247 l = (page + TARGET_PAGE_SIZE) - addr;
4248 if (l > len)
4249 l = len;
4250 phys_addr += (addr & ~TARGET_PAGE_MASK);
4251 if (is_write)
4252 cpu_physical_memory_write_rom(phys_addr, buf, l);
4253 else
4254 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4255 len -= l;
4256 buf += l;
4257 addr += l;
4259 return 0;
4261 #endif
4263 /* in deterministic execution mode, instructions doing device I/Os
4264 must be at the end of the TB */
4265 void cpu_io_recompile(CPUState *env, void *retaddr)
4267 TranslationBlock *tb;
4268 uint32_t n, cflags;
4269 target_ulong pc, cs_base;
4270 uint64_t flags;
4272 tb = tb_find_pc((unsigned long)retaddr);
4273 if (!tb) {
4274 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4275 retaddr);
4277 n = env->icount_decr.u16.low + tb->icount;
4278 cpu_restore_state(tb, env, (unsigned long)retaddr);
4279 /* Calculate how many instructions had been executed before the fault
4280 occurred. */
4281 n = n - env->icount_decr.u16.low;
4282 /* Generate a new TB ending on the I/O insn. */
4283 n++;
4284 /* On MIPS and SH, delay slot instructions can only be restarted if
4285 they were already the first instruction in the TB. If this is not
4286 the first instruction in a TB then re-execute the preceding
4287 branch. */
4288 #if defined(TARGET_MIPS)
4289 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4290 env->active_tc.PC -= 4;
4291 env->icount_decr.u16.low++;
4292 env->hflags &= ~MIPS_HFLAG_BMASK;
4294 #elif defined(TARGET_SH4)
4295 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4296 && n > 1) {
4297 env->pc -= 2;
4298 env->icount_decr.u16.low++;
4299 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4301 #endif
4302 /* This should never happen. */
4303 if (n > CF_COUNT_MASK)
4304 cpu_abort(env, "TB too big during recompile");
4306 cflags = n | CF_LAST_IO;
4307 pc = tb->pc;
4308 cs_base = tb->cs_base;
4309 flags = tb->flags;
4310 tb_phys_invalidate(tb, -1);
4311 /* FIXME: In theory this could raise an exception. In practice
4312 we have already translated the block once so it's probably ok. */
4313 tb_gen_code(env, pc, cs_base, flags, cflags);
4314 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4315 the first in the TB) then we end up generating a whole new TB and
4316 repeating the fault, which is horribly inefficient.
4317 Better would be to execute just this insn uncached, or generate a
4318 second new TB. */
4319 cpu_resume_from_signal(env, NULL);
4322 #if !defined(CONFIG_USER_ONLY)
4324 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4326 int i, target_code_size, max_target_code_size;
4327 int direct_jmp_count, direct_jmp2_count, cross_page;
4328 TranslationBlock *tb;
4330 target_code_size = 0;
4331 max_target_code_size = 0;
4332 cross_page = 0;
4333 direct_jmp_count = 0;
4334 direct_jmp2_count = 0;
4335 for(i = 0; i < nb_tbs; i++) {
4336 tb = &tbs[i];
4337 target_code_size += tb->size;
4338 if (tb->size > max_target_code_size)
4339 max_target_code_size = tb->size;
4340 if (tb->page_addr[1] != -1)
4341 cross_page++;
4342 if (tb->tb_next_offset[0] != 0xffff) {
4343 direct_jmp_count++;
4344 if (tb->tb_next_offset[1] != 0xffff) {
4345 direct_jmp2_count++;
4349 /* XXX: avoid using doubles ? */
4350 cpu_fprintf(f, "Translation buffer state:\n");
4351 cpu_fprintf(f, "gen code size %td/%ld\n",
4352 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4353 cpu_fprintf(f, "TB count %d/%d\n",
4354 nb_tbs, code_gen_max_blocks);
4355 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4356 nb_tbs ? target_code_size / nb_tbs : 0,
4357 max_target_code_size);
4358 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4359 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4360 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4361 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4362 cross_page,
4363 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4364 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4365 direct_jmp_count,
4366 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4367 direct_jmp2_count,
4368 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4369 cpu_fprintf(f, "\nStatistics:\n");
4370 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4371 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4372 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4373 tcg_dump_info(f, cpu_fprintf);
4376 /* NOTE: this function can trigger an exception */
4377 /* NOTE2: the returned address is not exactly the physical address: it
4378 is the offset relative to phys_ram_base */
4379 tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
4381 int mmu_idx, page_index, pd;
4382 void *p;
4384 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4385 mmu_idx = cpu_mmu_index(env1);
4386 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4387 (addr & TARGET_PAGE_MASK))) {
4388 ldub_code(addr);
4390 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
4391 if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
4392 && !is_romd(pd)) {
4393 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4394 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4395 #else
4396 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4397 #endif
4399 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4400 return qemu_ram_addr_from_host_nofail(p);
4404 * A helper function for the _utterly broken_ virtio device model to find out if
4405 * it's running on a big endian machine. Don't do this at home kids!
4407 bool virtio_is_big_endian(void);
4408 bool virtio_is_big_endian(void)
4410 #if defined(TARGET_WORDS_BIGENDIAN)
4411 return true;
4412 #else
4413 return false;
4414 #endif
4417 #define MMUSUFFIX _cmmu
4418 #undef GETPC
4419 #define GETPC() NULL
4420 #define env cpu_single_env
4421 #define SOFTMMU_CODE_ACCESS
4423 #define SHIFT 0
4424 #include "softmmu_template.h"
4426 #define SHIFT 1
4427 #include "softmmu_template.h"
4429 #define SHIFT 2
4430 #include "softmmu_template.h"
4432 #define SHIFT 3
4433 #include "softmmu_template.h"
4435 #undef env
4437 #endif