mmu-hash*: Add header file for definitions
[qemu-kvm.git] / target-ppc / mmu-hash64.c
blobf3223dd38364021023adc6d37edafa8335196ad0
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "helper.h"
22 #include "sysemu/kvm.h"
23 #include "kvm_ppc.h"
24 #include "mmu-hash64.h"
26 //#define DEBUG_MMU
27 //#define DEBUG_SLB
29 #ifdef DEBUG_MMU
30 # define LOG_MMU(...) qemu_log(__VA_ARGS__)
31 # define LOG_MMU_STATE(env) log_cpu_state((env), 0)
32 #else
33 # define LOG_MMU(...) do { } while (0)
34 # define LOG_MMU_STATE(...) do { } while (0)
35 #endif
37 #ifdef DEBUG_SLB
38 # define LOG_SLB(...) qemu_log(__VA_ARGS__)
39 #else
40 # define LOG_SLB(...) do { } while (0)
41 #endif
43 struct mmu_ctx_hash64 {
44 hwaddr raddr; /* Real address */
45 hwaddr eaddr; /* Effective address */
46 int prot; /* Protection bits */
47 hwaddr hash[2]; /* Pagetable hash values */
48 target_ulong ptem; /* Virtual segment ID | API */
49 int key; /* Access key */
50 int nx; /* Non-execute area */
54 * SLB handling
57 static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr)
59 uint64_t esid_256M, esid_1T;
60 int n;
62 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
64 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
65 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
67 for (n = 0; n < env->slb_nr; n++) {
68 ppc_slb_t *slb = &env->slb[n];
70 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
71 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
72 /* We check for 1T matches on all MMUs here - if the MMU
73 * doesn't have 1T segment support, we will have prevented 1T
74 * entries from being inserted in the slbmte code. */
75 if (((slb->esid == esid_256M) &&
76 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
77 || ((slb->esid == esid_1T) &&
78 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
79 return slb;
83 return NULL;
86 void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env)
88 int i;
89 uint64_t slbe, slbv;
91 cpu_synchronize_state(env);
93 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
94 for (i = 0; i < env->slb_nr; i++) {
95 slbe = env->slb[i].esid;
96 slbv = env->slb[i].vsid;
97 if (slbe == 0 && slbv == 0) {
98 continue;
100 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
101 i, slbe, slbv);
105 void helper_slbia(CPUPPCState *env)
107 int n, do_invalidate;
109 do_invalidate = 0;
110 /* XXX: Warning: slbia never invalidates the first segment */
111 for (n = 1; n < env->slb_nr; n++) {
112 ppc_slb_t *slb = &env->slb[n];
114 if (slb->esid & SLB_ESID_V) {
115 slb->esid &= ~SLB_ESID_V;
116 /* XXX: given the fact that segment size is 256 MB or 1TB,
117 * and we still don't have a tlb_flush_mask(env, n, mask)
118 * in QEMU, we just invalidate all TLBs
120 do_invalidate = 1;
123 if (do_invalidate) {
124 tlb_flush(env, 1);
128 void helper_slbie(CPUPPCState *env, target_ulong addr)
130 ppc_slb_t *slb;
132 slb = slb_lookup(env, addr);
133 if (!slb) {
134 return;
137 if (slb->esid & SLB_ESID_V) {
138 slb->esid &= ~SLB_ESID_V;
140 /* XXX: given the fact that segment size is 256 MB or 1TB,
141 * and we still don't have a tlb_flush_mask(env, n, mask)
142 * in QEMU, we just invalidate all TLBs
144 tlb_flush(env, 1);
148 int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
150 int slot = rb & 0xfff;
151 ppc_slb_t *slb = &env->slb[slot];
153 if (rb & (0x1000 - env->slb_nr)) {
154 return -1; /* Reserved bits set or slot too high */
156 if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
157 return -1; /* Bad segment size */
159 if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
160 return -1; /* 1T segment on MMU that doesn't support it */
163 /* Mask out the slot number as we store the entry */
164 slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V);
165 slb->vsid = rs;
167 LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
168 " %016" PRIx64 "\n", __func__, slot, rb, rs,
169 slb->esid, slb->vsid);
171 return 0;
174 static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb,
175 target_ulong *rt)
177 int slot = rb & 0xfff;
178 ppc_slb_t *slb = &env->slb[slot];
180 if (slot >= env->slb_nr) {
181 return -1;
184 *rt = slb->esid;
185 return 0;
188 static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb,
189 target_ulong *rt)
191 int slot = rb & 0xfff;
192 ppc_slb_t *slb = &env->slb[slot];
194 if (slot >= env->slb_nr) {
195 return -1;
198 *rt = slb->vsid;
199 return 0;
202 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
204 if (ppc_store_slb(env, rb, rs) < 0) {
205 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
206 POWERPC_EXCP_INVAL);
210 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
212 target_ulong rt = 0;
214 if (ppc_load_slb_esid(env, rb, &rt) < 0) {
215 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
216 POWERPC_EXCP_INVAL);
218 return rt;
221 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
223 target_ulong rt = 0;
225 if (ppc_load_slb_vsid(env, rb, &rt) < 0) {
226 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
227 POWERPC_EXCP_INVAL);
229 return rt;
233 * 64-bit hash table MMU handling
236 #define PTE64_CHECK_MASK (TARGET_PAGE_MASK | 0x7F)
238 static int ppc_hash64_pp_check(int key, int pp, int nx)
240 int access;
242 /* Compute access rights */
243 /* When pp is 4, 5 or 7, the result is undefined. Set it to noaccess */
244 access = 0;
245 if (key == 0) {
246 switch (pp) {
247 case 0x0:
248 case 0x1:
249 case 0x2:
250 access |= PAGE_WRITE;
251 /* No break here */
252 case 0x3:
253 case 0x6:
254 access |= PAGE_READ;
255 break;
257 } else {
258 switch (pp) {
259 case 0x0:
260 case 0x6:
261 access = 0;
262 break;
263 case 0x1:
264 case 0x3:
265 access = PAGE_READ;
266 break;
267 case 0x2:
268 access = PAGE_READ | PAGE_WRITE;
269 break;
272 if (nx == 0) {
273 access |= PAGE_EXEC;
276 return access;
279 static int ppc_hash64_check_prot(int prot, int rw, int access_type)
281 int ret;
283 if (access_type == ACCESS_CODE) {
284 if (prot & PAGE_EXEC) {
285 ret = 0;
286 } else {
287 ret = -2;
289 } else if (rw) {
290 if (prot & PAGE_WRITE) {
291 ret = 0;
292 } else {
293 ret = -2;
295 } else {
296 if (prot & PAGE_READ) {
297 ret = 0;
298 } else {
299 ret = -2;
303 return ret;
306 static int pte64_check(struct mmu_ctx_hash64 *ctx, target_ulong pte0,
307 target_ulong pte1, int h, int rw, int type)
309 target_ulong mmask;
310 int access, ret, pp;
312 ret = -1;
313 /* Check validity and table match */
314 if ((pte0 & HPTE64_V_VALID) && (h == !!(pte0 & HPTE64_V_SECONDARY))) {
315 /* Check vsid & api */
316 mmask = PTE64_CHECK_MASK;
317 pp = (pte1 & HPTE64_R_PP) | ((pte1 & HPTE64_R_PP0) >> 61);
318 /* No execute if either noexec or guarded bits set */
319 ctx->nx = (pte1 & HPTE64_R_N) || (pte1 & HPTE64_R_G);
320 if (HPTE64_V_COMPARE(pte0, ctx->ptem)) {
321 if (ctx->raddr != (hwaddr)-1ULL) {
322 /* all matches should have equal RPN, WIMG & PP */
323 if ((ctx->raddr & mmask) != (pte1 & mmask)) {
324 qemu_log("Bad RPN/WIMG/PP\n");
325 return -3;
328 /* Compute access rights */
329 access = ppc_hash64_pp_check(ctx->key, pp, ctx->nx);
330 /* Keep the matching PTE informations */
331 ctx->raddr = pte1;
332 ctx->prot = access;
333 ret = ppc_hash64_check_prot(ctx->prot, rw, type);
334 if (ret == 0) {
335 /* Access granted */
336 LOG_MMU("PTE access granted !\n");
337 } else {
338 /* Access right violation */
339 LOG_MMU("PTE access rejected\n");
344 return ret;
347 static int ppc_hash64_pte_update_flags(struct mmu_ctx_hash64 *ctx,
348 target_ulong *pte1p,
349 int ret, int rw)
351 int store = 0;
353 /* Update page flags */
354 if (!(*pte1p & HPTE64_R_R)) {
355 /* Update accessed flag */
356 *pte1p |= HPTE64_R_R;
357 store = 1;
359 if (!(*pte1p & HPTE64_R_C)) {
360 if (rw == 1 && ret == 0) {
361 /* Update changed flag */
362 *pte1p |= HPTE64_R_C;
363 store = 1;
364 } else {
365 /* Force page fault for first write access */
366 ctx->prot &= ~PAGE_WRITE;
370 return store;
373 /* PTE table lookup */
374 static int find_pte64(CPUPPCState *env, struct mmu_ctx_hash64 *ctx, int h,
375 int rw, int type, int target_page_bits)
377 hwaddr pteg_off;
378 target_ulong pte0, pte1;
379 int i, good = -1;
380 int ret, r;
382 ret = -1; /* No entry found */
383 pteg_off = (ctx->hash[h] * HASH_PTEG_SIZE_64) & env->htab_mask;
384 for (i = 0; i < HPTES_PER_GROUP; i++) {
385 if (env->external_htab) {
386 pte0 = ldq_p(env->external_htab + pteg_off + (i * 16));
387 pte1 = ldq_p(env->external_htab + pteg_off + (i * 16) + 8);
388 } else {
389 pte0 = ldq_phys(env->htab_base + pteg_off + (i * 16));
390 pte1 = ldq_phys(env->htab_base + pteg_off + (i * 16) + 8);
393 r = pte64_check(ctx, pte0, pte1, h, rw, type);
394 LOG_MMU("Load pte from %016" HWADDR_PRIx " => " TARGET_FMT_lx " "
395 TARGET_FMT_lx " %d %d %d " TARGET_FMT_lx "\n",
396 pteg_off + (i * 16), pte0, pte1, (int)(pte0 & 1), h,
397 (int)((pte0 >> 1) & 1), ctx->ptem);
398 switch (r) {
399 case -3:
400 /* PTE inconsistency */
401 return -1;
402 case -2:
403 /* Access violation */
404 ret = -2;
405 good = i;
406 break;
407 case -1:
408 default:
409 /* No PTE match */
410 break;
411 case 0:
412 /* access granted */
413 /* XXX: we should go on looping to check all PTEs consistency
414 * but if we can speed-up the whole thing as the
415 * result would be undefined if PTEs are not consistent.
417 ret = 0;
418 good = i;
419 goto done;
422 if (good != -1) {
423 done:
424 LOG_MMU("found PTE at addr %08" HWADDR_PRIx " prot=%01x ret=%d\n",
425 ctx->raddr, ctx->prot, ret);
426 /* Update page flags */
427 pte1 = ctx->raddr;
428 if (ppc_hash64_pte_update_flags(ctx, &pte1, ret, rw) == 1) {
429 if (env->external_htab) {
430 stq_p(env->external_htab + pteg_off + (good * 16) + 8,
431 pte1);
432 } else {
433 stq_phys_notdirty(env->htab_base + pteg_off +
434 (good * 16) + 8, pte1);
439 /* We have a TLB that saves 4K pages, so let's
440 * split a huge page to 4k chunks */
441 if (target_page_bits != TARGET_PAGE_BITS) {
442 ctx->raddr |= (ctx->eaddr & ((1 << target_page_bits) - 1))
443 & TARGET_PAGE_MASK;
445 return ret;
448 static int get_segment64(CPUPPCState *env, struct mmu_ctx_hash64 *ctx,
449 target_ulong eaddr, int rw, int type)
451 hwaddr hash;
452 target_ulong vsid;
453 int pr, target_page_bits;
454 int ret, ret2;
456 pr = msr_pr;
457 ctx->eaddr = eaddr;
458 ppc_slb_t *slb;
459 target_ulong pageaddr;
460 int segment_bits;
462 LOG_MMU("Check SLBs\n");
463 slb = slb_lookup(env, eaddr);
464 if (!slb) {
465 return -5;
468 if (slb->vsid & SLB_VSID_B) {
469 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
470 segment_bits = 40;
471 } else {
472 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
473 segment_bits = 28;
476 target_page_bits = (slb->vsid & SLB_VSID_L)
477 ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS;
478 ctx->key = !!(pr ? (slb->vsid & SLB_VSID_KP)
479 : (slb->vsid & SLB_VSID_KS));
480 ctx->nx = !!(slb->vsid & SLB_VSID_N);
482 pageaddr = eaddr & ((1ULL << segment_bits)
483 - (1ULL << target_page_bits));
484 if (slb->vsid & SLB_VSID_B) {
485 hash = vsid ^ (vsid << 25) ^ (pageaddr >> target_page_bits);
486 } else {
487 hash = vsid ^ (pageaddr >> target_page_bits);
489 /* Only 5 bits of the page index are used in the AVPN */
490 ctx->ptem = (slb->vsid & SLB_VSID_PTEM) |
491 ((pageaddr >> 16) & ((1ULL << segment_bits) - 0x80));
493 LOG_MMU("pte segment: key=%d nx %d vsid " TARGET_FMT_lx "\n",
494 ctx->key, ctx->nx, vsid);
495 ret = -1;
497 /* Check if instruction fetch is allowed, if needed */
498 if (type != ACCESS_CODE || ctx->nx == 0) {
499 /* Page address translation */
500 LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
501 " hash " TARGET_FMT_plx "\n",
502 env->htab_base, env->htab_mask, hash);
503 ctx->hash[0] = hash;
504 ctx->hash[1] = ~hash;
506 /* Initialize real address with an invalid value */
507 ctx->raddr = (hwaddr)-1ULL;
508 LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
509 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
510 " hash=" TARGET_FMT_plx "\n",
511 env->htab_base, env->htab_mask, vsid, ctx->ptem,
512 ctx->hash[0]);
513 /* Primary table lookup */
514 ret = find_pte64(env, ctx, 0, rw, type, target_page_bits);
515 if (ret < 0) {
516 /* Secondary table lookup */
517 LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
518 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
519 " hash=" TARGET_FMT_plx "\n", env->htab_base,
520 env->htab_mask, vsid, ctx->ptem, ctx->hash[1]);
521 ret2 = find_pte64(env, ctx, 1, rw, type, target_page_bits);
522 if (ret2 != -1) {
523 ret = ret2;
526 } else {
527 LOG_MMU("No access allowed\n");
528 ret = -3;
531 return ret;
534 static int ppc_hash64_get_physical_address(CPUPPCState *env,
535 struct mmu_ctx_hash64 *ctx,
536 target_ulong eaddr, int rw,
537 int access_type)
539 bool real_mode = (access_type == ACCESS_CODE && msr_ir == 0)
540 || (access_type != ACCESS_CODE && msr_dr == 0);
542 if (real_mode) {
543 ctx->raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
544 ctx->prot = PAGE_READ | PAGE_EXEC | PAGE_WRITE;
545 return 0;
546 } else {
547 return get_segment64(env, ctx, eaddr, rw, access_type);
551 hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr)
553 struct mmu_ctx_hash64 ctx;
555 if (unlikely(ppc_hash64_get_physical_address(env, &ctx, addr, 0, ACCESS_INT)
556 != 0)) {
557 return -1;
560 return ctx.raddr & TARGET_PAGE_MASK;
563 int ppc_hash64_handle_mmu_fault(CPUPPCState *env, target_ulong address, int rw,
564 int mmu_idx)
566 struct mmu_ctx_hash64 ctx;
567 int access_type;
568 int ret = 0;
570 if (rw == 2) {
571 /* code access */
572 rw = 0;
573 access_type = ACCESS_CODE;
574 } else {
575 /* data access */
576 access_type = env->access_type;
578 ret = ppc_hash64_get_physical_address(env, &ctx, address, rw, access_type);
579 if (ret == 0) {
580 tlb_set_page(env, address & TARGET_PAGE_MASK,
581 ctx.raddr & TARGET_PAGE_MASK, ctx.prot,
582 mmu_idx, TARGET_PAGE_SIZE);
583 ret = 0;
584 } else if (ret < 0) {
585 LOG_MMU_STATE(env);
586 if (access_type == ACCESS_CODE) {
587 switch (ret) {
588 case -1:
589 env->exception_index = POWERPC_EXCP_ISI;
590 env->error_code = 0x40000000;
591 break;
592 case -2:
593 /* Access rights violation */
594 env->exception_index = POWERPC_EXCP_ISI;
595 env->error_code = 0x08000000;
596 break;
597 case -3:
598 /* No execute protection violation */
599 env->exception_index = POWERPC_EXCP_ISI;
600 env->error_code = 0x10000000;
601 break;
602 case -5:
603 /* No match in segment table */
604 env->exception_index = POWERPC_EXCP_ISEG;
605 env->error_code = 0;
606 break;
608 } else {
609 switch (ret) {
610 case -1:
611 /* No matches in page tables or TLB */
612 env->exception_index = POWERPC_EXCP_DSI;
613 env->error_code = 0;
614 env->spr[SPR_DAR] = address;
615 if (rw == 1) {
616 env->spr[SPR_DSISR] = 0x42000000;
617 } else {
618 env->spr[SPR_DSISR] = 0x40000000;
620 break;
621 case -2:
622 /* Access rights violation */
623 env->exception_index = POWERPC_EXCP_DSI;
624 env->error_code = 0;
625 env->spr[SPR_DAR] = address;
626 if (rw == 1) {
627 env->spr[SPR_DSISR] = 0x0A000000;
628 } else {
629 env->spr[SPR_DSISR] = 0x08000000;
631 break;
632 case -5:
633 /* No match in segment table */
634 env->exception_index = POWERPC_EXCP_DSEG;
635 env->error_code = 0;
636 env->spr[SPR_DAR] = address;
637 break;
640 #if 0
641 printf("%s: set exception to %d %02x\n", __func__,
642 env->exception, env->error_code);
643 #endif
644 ret = 1;
647 return ret;