softfloat-native: remove
[qemu-kvm.git] / cpu-all.h
blobfc252ba6e51a1cca5356181f077093d6bdd17c2c
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
22 #include "qemu-common.h"
23 #include "cpu-common.h"
25 /* some important defines:
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 #include "softfloat.h"
40 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41 #define BSWAP_NEEDED
42 #endif
44 #ifdef BSWAP_NEEDED
46 static inline uint16_t tswap16(uint16_t s)
48 return bswap16(s);
51 static inline uint32_t tswap32(uint32_t s)
53 return bswap32(s);
56 static inline uint64_t tswap64(uint64_t s)
58 return bswap64(s);
61 static inline void tswap16s(uint16_t *s)
63 *s = bswap16(*s);
66 static inline void tswap32s(uint32_t *s)
68 *s = bswap32(*s);
71 static inline void tswap64s(uint64_t *s)
73 *s = bswap64(*s);
76 #else
78 static inline uint16_t tswap16(uint16_t s)
80 return s;
83 static inline uint32_t tswap32(uint32_t s)
85 return s;
88 static inline uint64_t tswap64(uint64_t s)
90 return s;
93 static inline void tswap16s(uint16_t *s)
97 static inline void tswap32s(uint32_t *s)
101 static inline void tswap64s(uint64_t *s)
105 #endif
107 #if TARGET_LONG_SIZE == 4
108 #define tswapl(s) tswap32(s)
109 #define tswapls(s) tswap32s((uint32_t *)(s))
110 #define bswaptls(s) bswap32s(s)
111 #else
112 #define tswapl(s) tswap64(s)
113 #define tswapls(s) tswap64s((uint64_t *)(s))
114 #define bswaptls(s) bswap64s(s)
115 #endif
117 typedef union {
118 float32 f;
119 uint32_t l;
120 } CPU_FloatU;
122 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
124 typedef union {
125 float64 d;
126 #if defined(HOST_WORDS_BIGENDIAN)
127 struct {
128 uint32_t upper;
129 uint32_t lower;
130 } l;
131 #else
132 struct {
133 uint32_t lower;
134 uint32_t upper;
135 } l;
136 #endif
137 uint64_t ll;
138 } CPU_DoubleU;
140 #if defined(FLOATX80)
141 typedef union {
142 floatx80 d;
143 struct {
144 uint64_t lower;
145 uint16_t upper;
146 } l;
147 } CPU_LDoubleU;
148 #endif
150 typedef union {
151 float128 q;
152 #if defined(HOST_WORDS_BIGENDIAN)
153 struct {
154 uint32_t upmost;
155 uint32_t upper;
156 uint32_t lower;
157 uint32_t lowest;
158 } l;
159 struct {
160 uint64_t upper;
161 uint64_t lower;
162 } ll;
163 #else
164 struct {
165 uint32_t lowest;
166 uint32_t lower;
167 uint32_t upper;
168 uint32_t upmost;
169 } l;
170 struct {
171 uint64_t lower;
172 uint64_t upper;
173 } ll;
174 #endif
175 } CPU_QuadU;
177 /* CPU memory access without any memory or io remapping */
180 * the generic syntax for the memory accesses is:
182 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
184 * store: st{type}{size}{endian}_{access_type}(ptr, val)
186 * type is:
187 * (empty): integer access
188 * f : float access
190 * sign is:
191 * (empty): for floats or 32 bit size
192 * u : unsigned
193 * s : signed
195 * size is:
196 * b: 8 bits
197 * w: 16 bits
198 * l: 32 bits
199 * q: 64 bits
201 * endian is:
202 * (empty): target cpu endianness or 8 bit access
203 * r : reversed target cpu endianness (not implemented yet)
204 * be : big endian (not implemented yet)
205 * le : little endian (not implemented yet)
207 * access_type is:
208 * raw : host memory access
209 * user : user mode access using soft MMU
210 * kernel : kernel mode access using soft MMU
212 static inline int ldub_p(const void *ptr)
214 return *(uint8_t *)ptr;
217 static inline int ldsb_p(const void *ptr)
219 return *(int8_t *)ptr;
222 static inline void stb_p(void *ptr, int v)
224 *(uint8_t *)ptr = v;
227 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
228 kernel handles unaligned load/stores may give better results, but
229 it is a system wide setting : bad */
230 #if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
232 /* conservative code for little endian unaligned accesses */
233 static inline int lduw_le_p(const void *ptr)
235 #ifdef _ARCH_PPC
236 int val;
237 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
238 return val;
239 #else
240 const uint8_t *p = ptr;
241 return p[0] | (p[1] << 8);
242 #endif
245 static inline int ldsw_le_p(const void *ptr)
247 #ifdef _ARCH_PPC
248 int val;
249 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
250 return (int16_t)val;
251 #else
252 const uint8_t *p = ptr;
253 return (int16_t)(p[0] | (p[1] << 8));
254 #endif
257 static inline int ldl_le_p(const void *ptr)
259 #ifdef _ARCH_PPC
260 int val;
261 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
262 return val;
263 #else
264 const uint8_t *p = ptr;
265 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
266 #endif
269 static inline uint64_t ldq_le_p(const void *ptr)
271 const uint8_t *p = ptr;
272 uint32_t v1, v2;
273 v1 = ldl_le_p(p);
274 v2 = ldl_le_p(p + 4);
275 return v1 | ((uint64_t)v2 << 32);
278 static inline void stw_le_p(void *ptr, int v)
280 #ifdef _ARCH_PPC
281 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
282 #else
283 uint8_t *p = ptr;
284 p[0] = v;
285 p[1] = v >> 8;
286 #endif
289 static inline void stl_le_p(void *ptr, int v)
291 #ifdef _ARCH_PPC
292 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
293 #else
294 uint8_t *p = ptr;
295 p[0] = v;
296 p[1] = v >> 8;
297 p[2] = v >> 16;
298 p[3] = v >> 24;
299 #endif
302 static inline void stq_le_p(void *ptr, uint64_t v)
304 uint8_t *p = ptr;
305 stl_le_p(p, (uint32_t)v);
306 stl_le_p(p + 4, v >> 32);
309 /* float access */
311 static inline float32 ldfl_le_p(const void *ptr)
313 union {
314 float32 f;
315 uint32_t i;
316 } u;
317 u.i = ldl_le_p(ptr);
318 return u.f;
321 static inline void stfl_le_p(void *ptr, float32 v)
323 union {
324 float32 f;
325 uint32_t i;
326 } u;
327 u.f = v;
328 stl_le_p(ptr, u.i);
331 static inline float64 ldfq_le_p(const void *ptr)
333 CPU_DoubleU u;
334 u.l.lower = ldl_le_p(ptr);
335 u.l.upper = ldl_le_p(ptr + 4);
336 return u.d;
339 static inline void stfq_le_p(void *ptr, float64 v)
341 CPU_DoubleU u;
342 u.d = v;
343 stl_le_p(ptr, u.l.lower);
344 stl_le_p(ptr + 4, u.l.upper);
347 #else
349 static inline int lduw_le_p(const void *ptr)
351 return *(uint16_t *)ptr;
354 static inline int ldsw_le_p(const void *ptr)
356 return *(int16_t *)ptr;
359 static inline int ldl_le_p(const void *ptr)
361 return *(uint32_t *)ptr;
364 static inline uint64_t ldq_le_p(const void *ptr)
366 return *(uint64_t *)ptr;
369 static inline void stw_le_p(void *ptr, int v)
371 *(uint16_t *)ptr = v;
374 static inline void stl_le_p(void *ptr, int v)
376 *(uint32_t *)ptr = v;
379 static inline void stq_le_p(void *ptr, uint64_t v)
381 *(uint64_t *)ptr = v;
384 /* float access */
386 static inline float32 ldfl_le_p(const void *ptr)
388 return *(float32 *)ptr;
391 static inline float64 ldfq_le_p(const void *ptr)
393 return *(float64 *)ptr;
396 static inline void stfl_le_p(void *ptr, float32 v)
398 *(float32 *)ptr = v;
401 static inline void stfq_le_p(void *ptr, float64 v)
403 *(float64 *)ptr = v;
405 #endif
407 #if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
409 static inline int lduw_be_p(const void *ptr)
411 #if defined(__i386__)
412 int val;
413 asm volatile ("movzwl %1, %0\n"
414 "xchgb %b0, %h0\n"
415 : "=q" (val)
416 : "m" (*(uint16_t *)ptr));
417 return val;
418 #else
419 const uint8_t *b = ptr;
420 return ((b[0] << 8) | b[1]);
421 #endif
424 static inline int ldsw_be_p(const void *ptr)
426 #if defined(__i386__)
427 int val;
428 asm volatile ("movzwl %1, %0\n"
429 "xchgb %b0, %h0\n"
430 : "=q" (val)
431 : "m" (*(uint16_t *)ptr));
432 return (int16_t)val;
433 #else
434 const uint8_t *b = ptr;
435 return (int16_t)((b[0] << 8) | b[1]);
436 #endif
439 static inline int ldl_be_p(const void *ptr)
441 #if defined(__i386__) || defined(__x86_64__)
442 int val;
443 asm volatile ("movl %1, %0\n"
444 "bswap %0\n"
445 : "=r" (val)
446 : "m" (*(uint32_t *)ptr));
447 return val;
448 #else
449 const uint8_t *b = ptr;
450 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
451 #endif
454 static inline uint64_t ldq_be_p(const void *ptr)
456 uint32_t a,b;
457 a = ldl_be_p(ptr);
458 b = ldl_be_p((uint8_t *)ptr + 4);
459 return (((uint64_t)a<<32)|b);
462 static inline void stw_be_p(void *ptr, int v)
464 #if defined(__i386__)
465 asm volatile ("xchgb %b0, %h0\n"
466 "movw %w0, %1\n"
467 : "=q" (v)
468 : "m" (*(uint16_t *)ptr), "0" (v));
469 #else
470 uint8_t *d = (uint8_t *) ptr;
471 d[0] = v >> 8;
472 d[1] = v;
473 #endif
476 static inline void stl_be_p(void *ptr, int v)
478 #if defined(__i386__) || defined(__x86_64__)
479 asm volatile ("bswap %0\n"
480 "movl %0, %1\n"
481 : "=r" (v)
482 : "m" (*(uint32_t *)ptr), "0" (v));
483 #else
484 uint8_t *d = (uint8_t *) ptr;
485 d[0] = v >> 24;
486 d[1] = v >> 16;
487 d[2] = v >> 8;
488 d[3] = v;
489 #endif
492 static inline void stq_be_p(void *ptr, uint64_t v)
494 stl_be_p(ptr, v >> 32);
495 stl_be_p((uint8_t *)ptr + 4, v);
498 /* float access */
500 static inline float32 ldfl_be_p(const void *ptr)
502 union {
503 float32 f;
504 uint32_t i;
505 } u;
506 u.i = ldl_be_p(ptr);
507 return u.f;
510 static inline void stfl_be_p(void *ptr, float32 v)
512 union {
513 float32 f;
514 uint32_t i;
515 } u;
516 u.f = v;
517 stl_be_p(ptr, u.i);
520 static inline float64 ldfq_be_p(const void *ptr)
522 CPU_DoubleU u;
523 u.l.upper = ldl_be_p(ptr);
524 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
525 return u.d;
528 static inline void stfq_be_p(void *ptr, float64 v)
530 CPU_DoubleU u;
531 u.d = v;
532 stl_be_p(ptr, u.l.upper);
533 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
536 #else
538 static inline int lduw_be_p(const void *ptr)
540 return *(uint16_t *)ptr;
543 static inline int ldsw_be_p(const void *ptr)
545 return *(int16_t *)ptr;
548 static inline int ldl_be_p(const void *ptr)
550 return *(uint32_t *)ptr;
553 static inline uint64_t ldq_be_p(const void *ptr)
555 return *(uint64_t *)ptr;
558 static inline void stw_be_p(void *ptr, int v)
560 *(uint16_t *)ptr = v;
563 static inline void stl_be_p(void *ptr, int v)
565 *(uint32_t *)ptr = v;
568 static inline void stq_be_p(void *ptr, uint64_t v)
570 *(uint64_t *)ptr = v;
573 /* float access */
575 static inline float32 ldfl_be_p(const void *ptr)
577 return *(float32 *)ptr;
580 static inline float64 ldfq_be_p(const void *ptr)
582 return *(float64 *)ptr;
585 static inline void stfl_be_p(void *ptr, float32 v)
587 *(float32 *)ptr = v;
590 static inline void stfq_be_p(void *ptr, float64 v)
592 *(float64 *)ptr = v;
595 #endif
597 /* target CPU memory access functions */
598 #if defined(TARGET_WORDS_BIGENDIAN)
599 #define lduw_p(p) lduw_be_p(p)
600 #define ldsw_p(p) ldsw_be_p(p)
601 #define ldl_p(p) ldl_be_p(p)
602 #define ldq_p(p) ldq_be_p(p)
603 #define ldfl_p(p) ldfl_be_p(p)
604 #define ldfq_p(p) ldfq_be_p(p)
605 #define stw_p(p, v) stw_be_p(p, v)
606 #define stl_p(p, v) stl_be_p(p, v)
607 #define stq_p(p, v) stq_be_p(p, v)
608 #define stfl_p(p, v) stfl_be_p(p, v)
609 #define stfq_p(p, v) stfq_be_p(p, v)
610 #else
611 #define lduw_p(p) lduw_le_p(p)
612 #define ldsw_p(p) ldsw_le_p(p)
613 #define ldl_p(p) ldl_le_p(p)
614 #define ldq_p(p) ldq_le_p(p)
615 #define ldfl_p(p) ldfl_le_p(p)
616 #define ldfq_p(p) ldfq_le_p(p)
617 #define stw_p(p, v) stw_le_p(p, v)
618 #define stl_p(p, v) stl_le_p(p, v)
619 #define stq_p(p, v) stq_le_p(p, v)
620 #define stfl_p(p, v) stfl_le_p(p, v)
621 #define stfq_p(p, v) stfq_le_p(p, v)
622 #endif
624 /* MMU memory access macros */
626 #if defined(CONFIG_USER_ONLY)
627 #include <assert.h>
628 #include "qemu-types.h"
630 /* On some host systems the guest address space is reserved on the host.
631 * This allows the guest address space to be offset to a convenient location.
633 #if defined(CONFIG_USE_GUEST_BASE)
634 extern unsigned long guest_base;
635 extern int have_guest_base;
636 extern unsigned long reserved_va;
637 #define GUEST_BASE guest_base
638 #define RESERVED_VA reserved_va
639 #else
640 #define GUEST_BASE 0ul
641 #define RESERVED_VA 0ul
642 #endif
644 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
645 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
647 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
648 #define h2g_valid(x) 1
649 #else
650 #define h2g_valid(x) ({ \
651 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
652 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
654 #endif
656 #define h2g(x) ({ \
657 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
658 /* Check if given address fits target address space */ \
659 assert(h2g_valid(x)); \
660 (abi_ulong)__ret; \
663 #define saddr(x) g2h(x)
664 #define laddr(x) g2h(x)
666 #else /* !CONFIG_USER_ONLY */
667 /* NOTE: we use double casts if pointers and target_ulong have
668 different sizes */
669 #define saddr(x) (uint8_t *)(long)(x)
670 #define laddr(x) (uint8_t *)(long)(x)
671 #endif
673 #define ldub_raw(p) ldub_p(laddr((p)))
674 #define ldsb_raw(p) ldsb_p(laddr((p)))
675 #define lduw_raw(p) lduw_p(laddr((p)))
676 #define ldsw_raw(p) ldsw_p(laddr((p)))
677 #define ldl_raw(p) ldl_p(laddr((p)))
678 #define ldq_raw(p) ldq_p(laddr((p)))
679 #define ldfl_raw(p) ldfl_p(laddr((p)))
680 #define ldfq_raw(p) ldfq_p(laddr((p)))
681 #define stb_raw(p, v) stb_p(saddr((p)), v)
682 #define stw_raw(p, v) stw_p(saddr((p)), v)
683 #define stl_raw(p, v) stl_p(saddr((p)), v)
684 #define stq_raw(p, v) stq_p(saddr((p)), v)
685 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
686 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
689 #if defined(CONFIG_USER_ONLY)
691 /* if user mode, no other memory access functions */
692 #define ldub(p) ldub_raw(p)
693 #define ldsb(p) ldsb_raw(p)
694 #define lduw(p) lduw_raw(p)
695 #define ldsw(p) ldsw_raw(p)
696 #define ldl(p) ldl_raw(p)
697 #define ldq(p) ldq_raw(p)
698 #define ldfl(p) ldfl_raw(p)
699 #define ldfq(p) ldfq_raw(p)
700 #define stb(p, v) stb_raw(p, v)
701 #define stw(p, v) stw_raw(p, v)
702 #define stl(p, v) stl_raw(p, v)
703 #define stq(p, v) stq_raw(p, v)
704 #define stfl(p, v) stfl_raw(p, v)
705 #define stfq(p, v) stfq_raw(p, v)
707 #define ldub_code(p) ldub_raw(p)
708 #define ldsb_code(p) ldsb_raw(p)
709 #define lduw_code(p) lduw_raw(p)
710 #define ldsw_code(p) ldsw_raw(p)
711 #define ldl_code(p) ldl_raw(p)
712 #define ldq_code(p) ldq_raw(p)
714 #define ldub_kernel(p) ldub_raw(p)
715 #define ldsb_kernel(p) ldsb_raw(p)
716 #define lduw_kernel(p) lduw_raw(p)
717 #define ldsw_kernel(p) ldsw_raw(p)
718 #define ldl_kernel(p) ldl_raw(p)
719 #define ldq_kernel(p) ldq_raw(p)
720 #define ldfl_kernel(p) ldfl_raw(p)
721 #define ldfq_kernel(p) ldfq_raw(p)
722 #define stb_kernel(p, v) stb_raw(p, v)
723 #define stw_kernel(p, v) stw_raw(p, v)
724 #define stl_kernel(p, v) stl_raw(p, v)
725 #define stq_kernel(p, v) stq_raw(p, v)
726 #define stfl_kernel(p, v) stfl_raw(p, v)
727 #define stfq_kernel(p, vt) stfq_raw(p, v)
729 #endif /* defined(CONFIG_USER_ONLY) */
731 /* page related stuff */
733 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
734 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
735 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
737 /* ??? These should be the larger of unsigned long and target_ulong. */
738 extern unsigned long qemu_real_host_page_size;
739 extern unsigned long qemu_host_page_bits;
740 extern unsigned long qemu_host_page_size;
741 extern unsigned long qemu_host_page_mask;
743 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
745 /* same as PROT_xxx */
746 #define PAGE_READ 0x0001
747 #define PAGE_WRITE 0x0002
748 #define PAGE_EXEC 0x0004
749 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
750 #define PAGE_VALID 0x0008
751 /* original state of the write flag (used when tracking self-modifying
752 code */
753 #define PAGE_WRITE_ORG 0x0010
754 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
755 /* FIXME: Code that sets/uses this is broken and needs to go away. */
756 #define PAGE_RESERVED 0x0020
757 #endif
759 #if defined(CONFIG_USER_ONLY)
760 void page_dump(FILE *f);
762 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
763 abi_ulong, unsigned long);
764 int walk_memory_regions(void *, walk_memory_regions_fn);
766 int page_get_flags(target_ulong address);
767 void page_set_flags(target_ulong start, target_ulong end, int flags);
768 int page_check_range(target_ulong start, target_ulong len, int flags);
769 #endif
771 CPUState *cpu_copy(CPUState *env);
772 CPUState *qemu_get_cpu(int cpu);
774 #define CPU_DUMP_CODE 0x00010000
776 void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
777 int flags);
778 void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
779 int flags);
781 void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
782 GCC_FMT_ATTR(2, 3);
783 extern CPUState *first_cpu;
784 extern CPUState *cpu_single_env;
786 /* Flags for use in ENV->INTERRUPT_PENDING.
788 The numbers assigned here are non-sequential in order to preserve
789 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
790 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
791 the vmstate dump. */
793 /* External hardware interrupt pending. This is typically used for
794 interrupts from devices. */
795 #define CPU_INTERRUPT_HARD 0x0002
797 /* Exit the current TB. This is typically used when some system-level device
798 makes some change to the memory mapping. E.g. the a20 line change. */
799 #define CPU_INTERRUPT_EXITTB 0x0004
801 /* Halt the CPU. */
802 #define CPU_INTERRUPT_HALT 0x0020
804 /* Debug event pending. */
805 #define CPU_INTERRUPT_DEBUG 0x0080
807 /* Several target-specific external hardware interrupts. Each target/cpu.h
808 should define proper names based on these defines. */
809 #define CPU_INTERRUPT_TGT_EXT_0 0x0008
810 #define CPU_INTERRUPT_TGT_EXT_1 0x0010
811 #define CPU_INTERRUPT_TGT_EXT_2 0x0040
812 #define CPU_INTERRUPT_TGT_EXT_3 0x0200
813 #define CPU_INTERRUPT_TGT_EXT_4 0x1000
815 /* Several target-specific internal interrupts. These differ from the
816 preceeding target-specific interrupts in that they are intended to
817 originate from within the cpu itself, typically in response to some
818 instruction being executed. These, therefore, are not masked while
819 single-stepping within the debugger. */
820 #define CPU_INTERRUPT_TGT_INT_0 0x0100
821 #define CPU_INTERRUPT_TGT_INT_1 0x0400
822 #define CPU_INTERRUPT_TGT_INT_2 0x0800
824 /* First unused bit: 0x2000. */
826 /* The set of all bits that should be masked when single-stepping. */
827 #define CPU_INTERRUPT_SSTEP_MASK \
828 (CPU_INTERRUPT_HARD \
829 | CPU_INTERRUPT_TGT_EXT_0 \
830 | CPU_INTERRUPT_TGT_EXT_1 \
831 | CPU_INTERRUPT_TGT_EXT_2 \
832 | CPU_INTERRUPT_TGT_EXT_3 \
833 | CPU_INTERRUPT_TGT_EXT_4)
835 #ifndef CONFIG_USER_ONLY
836 typedef void (*CPUInterruptHandler)(CPUState *, int);
838 extern CPUInterruptHandler cpu_interrupt_handler;
840 static inline void cpu_interrupt(CPUState *s, int mask)
842 cpu_interrupt_handler(s, mask);
844 #else /* USER_ONLY */
845 void cpu_interrupt(CPUState *env, int mask);
846 #endif /* USER_ONLY */
848 void cpu_reset_interrupt(CPUState *env, int mask);
850 void cpu_exit(CPUState *s);
852 int qemu_cpu_has_work(CPUState *env);
854 /* Breakpoint/watchpoint flags */
855 #define BP_MEM_READ 0x01
856 #define BP_MEM_WRITE 0x02
857 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
858 #define BP_STOP_BEFORE_ACCESS 0x04
859 #define BP_WATCHPOINT_HIT 0x08
860 #define BP_GDB 0x10
861 #define BP_CPU 0x20
863 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
864 CPUBreakpoint **breakpoint);
865 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
866 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
867 void cpu_breakpoint_remove_all(CPUState *env, int mask);
868 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
869 int flags, CPUWatchpoint **watchpoint);
870 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
871 target_ulong len, int flags);
872 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
873 void cpu_watchpoint_remove_all(CPUState *env, int mask);
875 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
876 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
877 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
879 void cpu_single_step(CPUState *env, int enabled);
880 void cpu_reset(CPUState *s);
881 int cpu_is_stopped(CPUState *env);
882 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
884 #define CPU_LOG_TB_OUT_ASM (1 << 0)
885 #define CPU_LOG_TB_IN_ASM (1 << 1)
886 #define CPU_LOG_TB_OP (1 << 2)
887 #define CPU_LOG_TB_OP_OPT (1 << 3)
888 #define CPU_LOG_INT (1 << 4)
889 #define CPU_LOG_EXEC (1 << 5)
890 #define CPU_LOG_PCALL (1 << 6)
891 #define CPU_LOG_IOPORT (1 << 7)
892 #define CPU_LOG_TB_CPU (1 << 8)
893 #define CPU_LOG_RESET (1 << 9)
895 /* define log items */
896 typedef struct CPULogItem {
897 int mask;
898 const char *name;
899 const char *help;
900 } CPULogItem;
902 extern const CPULogItem cpu_log_items[];
904 void cpu_set_log(int log_flags);
905 void cpu_set_log_filename(const char *filename);
906 int cpu_str_to_log_mask(const char *str);
908 #if !defined(CONFIG_USER_ONLY)
910 /* Return the physical page corresponding to a virtual one. Use it
911 only for debugging because no protection checks are done. Return -1
912 if no page found. */
913 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
915 /* memory API */
917 extern int phys_ram_fd;
918 extern ram_addr_t ram_size;
920 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
921 #define RAM_PREALLOC_MASK (1 << 0)
923 typedef struct RAMBlock {
924 uint8_t *host;
925 ram_addr_t offset;
926 ram_addr_t length;
927 uint32_t flags;
928 char idstr[256];
929 QLIST_ENTRY(RAMBlock) next;
930 #if defined(__linux__) && !defined(TARGET_S390X)
931 int fd;
932 #endif
933 } RAMBlock;
935 typedef struct RAMList {
936 uint8_t *phys_dirty;
937 QLIST_HEAD(ram, RAMBlock) blocks;
938 } RAMList;
939 extern RAMList ram_list;
941 extern const char *mem_path;
942 extern int mem_prealloc;
944 /* physical memory access */
946 /* MMIO pages are identified by a combination of an IO device index and
947 3 flags. The ROMD code stores the page ram offset in iotlb entry,
948 so only a limited number of ids are avaiable. */
950 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
952 /* Flags stored in the low bits of the TLB virtual address. These are
953 defined so that fast path ram access is all zeros. */
954 /* Zero if TLB entry is valid. */
955 #define TLB_INVALID_MASK (1 << 3)
956 /* Set if TLB entry references a clean RAM page. The iotlb entry will
957 contain the page physical address. */
958 #define TLB_NOTDIRTY (1 << 4)
959 /* Set if TLB entry is an IO callback. */
960 #define TLB_MMIO (1 << 5)
962 #define VGA_DIRTY_FLAG 0x01
963 #define CODE_DIRTY_FLAG 0x02
964 #define MIGRATION_DIRTY_FLAG 0x08
966 /* read dirty bit (return 0 or 1) */
967 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
969 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
972 static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
974 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
977 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
978 int dirty_flags)
980 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
983 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
985 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
988 static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
989 int dirty_flags)
991 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
994 static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
995 int length,
996 int dirty_flags)
998 int i, mask, len;
999 uint8_t *p;
1001 len = length >> TARGET_PAGE_BITS;
1002 mask = ~dirty_flags;
1003 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
1004 for (i = 0; i < len; i++) {
1005 p[i] &= mask;
1009 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1010 int dirty_flags);
1011 void cpu_tlb_update_dirty(CPUState *env);
1013 int cpu_physical_memory_set_dirty_tracking(int enable);
1015 int cpu_physical_memory_get_dirty_tracking(void);
1017 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1018 target_phys_addr_t end_addr);
1020 int cpu_physical_log_start(target_phys_addr_t start_addr,
1021 ram_addr_t size);
1023 int cpu_physical_log_stop(target_phys_addr_t start_addr,
1024 ram_addr_t size);
1026 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
1027 #endif /* !CONFIG_USER_ONLY */
1029 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1030 uint8_t *buf, int len, int is_write);
1032 #endif /* CPU_ALL_H */