qga: implement qmp_guest_set_vcpus() for Linux with sysfs
[qemu-kvm.git] / util / qemu-thread-win32.c
blob517878dcc17ca6c1507b8e3b380e0b8fce50f11a
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu-common.h"
14 #include "qemu/thread.h"
15 #include <process.h>
16 #include <assert.h>
17 #include <limits.h>
19 static void error_exit(int err, const char *msg)
21 char *pstr;
23 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
24 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
25 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
26 LocalFree(pstr);
27 abort();
30 void qemu_mutex_init(QemuMutex *mutex)
32 mutex->owner = 0;
33 InitializeCriticalSection(&mutex->lock);
36 void qemu_mutex_destroy(QemuMutex *mutex)
38 assert(mutex->owner == 0);
39 DeleteCriticalSection(&mutex->lock);
42 void qemu_mutex_lock(QemuMutex *mutex)
44 EnterCriticalSection(&mutex->lock);
46 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
47 * using them as such.
49 assert(mutex->owner == 0);
50 mutex->owner = GetCurrentThreadId();
53 int qemu_mutex_trylock(QemuMutex *mutex)
55 int owned;
57 owned = TryEnterCriticalSection(&mutex->lock);
58 if (owned) {
59 assert(mutex->owner == 0);
60 mutex->owner = GetCurrentThreadId();
62 return !owned;
65 void qemu_mutex_unlock(QemuMutex *mutex)
67 assert(mutex->owner == GetCurrentThreadId());
68 mutex->owner = 0;
69 LeaveCriticalSection(&mutex->lock);
72 void qemu_cond_init(QemuCond *cond)
74 memset(cond, 0, sizeof(*cond));
76 cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
77 if (!cond->sema) {
78 error_exit(GetLastError(), __func__);
80 cond->continue_event = CreateEvent(NULL, /* security */
81 FALSE, /* auto-reset */
82 FALSE, /* not signaled */
83 NULL); /* name */
84 if (!cond->continue_event) {
85 error_exit(GetLastError(), __func__);
89 void qemu_cond_destroy(QemuCond *cond)
91 BOOL result;
92 result = CloseHandle(cond->continue_event);
93 if (!result) {
94 error_exit(GetLastError(), __func__);
96 cond->continue_event = 0;
97 result = CloseHandle(cond->sema);
98 if (!result) {
99 error_exit(GetLastError(), __func__);
101 cond->sema = 0;
104 void qemu_cond_signal(QemuCond *cond)
106 DWORD result;
109 * Signal only when there are waiters. cond->waiters is
110 * incremented by pthread_cond_wait under the external lock,
111 * so we are safe about that.
113 if (cond->waiters == 0) {
114 return;
118 * Waiting threads decrement it outside the external lock, but
119 * only if another thread is executing pthread_cond_broadcast and
120 * has the mutex. So, it also cannot be decremented concurrently
121 * with this particular access.
123 cond->target = cond->waiters - 1;
124 result = SignalObjectAndWait(cond->sema, cond->continue_event,
125 INFINITE, FALSE);
126 if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
127 error_exit(GetLastError(), __func__);
131 void qemu_cond_broadcast(QemuCond *cond)
133 BOOLEAN result;
135 * As in pthread_cond_signal, access to cond->waiters and
136 * cond->target is locked via the external mutex.
138 if (cond->waiters == 0) {
139 return;
142 cond->target = 0;
143 result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
144 if (!result) {
145 error_exit(GetLastError(), __func__);
149 * At this point all waiters continue. Each one takes its
150 * slice of the semaphore. Now it's our turn to wait: Since
151 * the external mutex is held, no thread can leave cond_wait,
152 * yet. For this reason, we can be sure that no thread gets
153 * a chance to eat *more* than one slice. OTOH, it means
154 * that the last waiter must send us a wake-up.
156 WaitForSingleObject(cond->continue_event, INFINITE);
159 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
162 * This access is protected under the mutex.
164 cond->waiters++;
167 * Unlock external mutex and wait for signal.
168 * NOTE: we've held mutex locked long enough to increment
169 * waiters count above, so there's no problem with
170 * leaving mutex unlocked before we wait on semaphore.
172 qemu_mutex_unlock(mutex);
173 WaitForSingleObject(cond->sema, INFINITE);
175 /* Now waiters must rendez-vous with the signaling thread and
176 * let it continue. For cond_broadcast this has heavy contention
177 * and triggers thundering herd. So goes life.
179 * Decrease waiters count. The mutex is not taken, so we have
180 * to do this atomically.
182 * All waiters contend for the mutex at the end of this function
183 * until the signaling thread relinquishes it. To ensure
184 * each waiter consumes exactly one slice of the semaphore,
185 * the signaling thread stops until it is told by the last
186 * waiter that it can go on.
188 if (InterlockedDecrement(&cond->waiters) == cond->target) {
189 SetEvent(cond->continue_event);
192 qemu_mutex_lock(mutex);
195 void qemu_sem_init(QemuSemaphore *sem, int init)
197 /* Manual reset. */
198 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
201 void qemu_sem_destroy(QemuSemaphore *sem)
203 CloseHandle(sem->sema);
206 void qemu_sem_post(QemuSemaphore *sem)
208 ReleaseSemaphore(sem->sema, 1, NULL);
211 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
213 int rc = WaitForSingleObject(sem->sema, ms);
214 if (rc == WAIT_OBJECT_0) {
215 return 0;
217 if (rc != WAIT_TIMEOUT) {
218 error_exit(GetLastError(), __func__);
220 return -1;
223 void qemu_sem_wait(QemuSemaphore *sem)
225 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
226 error_exit(GetLastError(), __func__);
230 struct QemuThreadData {
231 /* Passed to win32_start_routine. */
232 void *(*start_routine)(void *);
233 void *arg;
234 short mode;
236 /* Only used for joinable threads. */
237 bool exited;
238 void *ret;
239 CRITICAL_SECTION cs;
242 static __thread QemuThreadData *qemu_thread_data;
244 static unsigned __stdcall win32_start_routine(void *arg)
246 QemuThreadData *data = (QemuThreadData *) arg;
247 void *(*start_routine)(void *) = data->start_routine;
248 void *thread_arg = data->arg;
250 if (data->mode == QEMU_THREAD_DETACHED) {
251 g_free(data);
252 data = NULL;
254 qemu_thread_data = data;
255 qemu_thread_exit(start_routine(thread_arg));
256 abort();
259 void qemu_thread_exit(void *arg)
261 QemuThreadData *data = qemu_thread_data;
263 if (data) {
264 assert(data->mode != QEMU_THREAD_DETACHED);
265 data->ret = arg;
266 EnterCriticalSection(&data->cs);
267 data->exited = true;
268 LeaveCriticalSection(&data->cs);
270 _endthreadex(0);
273 void *qemu_thread_join(QemuThread *thread)
275 QemuThreadData *data;
276 void *ret;
277 HANDLE handle;
279 data = thread->data;
280 if (!data) {
281 return NULL;
284 * Because multiple copies of the QemuThread can exist via
285 * qemu_thread_get_self, we need to store a value that cannot
286 * leak there. The simplest, non racy way is to store the TID,
287 * discard the handle that _beginthreadex gives back, and
288 * get another copy of the handle here.
290 handle = qemu_thread_get_handle(thread);
291 if (handle) {
292 WaitForSingleObject(handle, INFINITE);
293 CloseHandle(handle);
295 ret = data->ret;
296 assert(data->mode != QEMU_THREAD_DETACHED);
297 DeleteCriticalSection(&data->cs);
298 g_free(data);
299 return ret;
302 void qemu_thread_create(QemuThread *thread,
303 void *(*start_routine)(void *),
304 void *arg, int mode)
306 HANDLE hThread;
307 struct QemuThreadData *data;
309 data = g_malloc(sizeof *data);
310 data->start_routine = start_routine;
311 data->arg = arg;
312 data->mode = mode;
313 data->exited = false;
315 if (data->mode != QEMU_THREAD_DETACHED) {
316 InitializeCriticalSection(&data->cs);
319 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
320 data, 0, &thread->tid);
321 if (!hThread) {
322 error_exit(GetLastError(), __func__);
324 CloseHandle(hThread);
325 thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data;
328 void qemu_thread_get_self(QemuThread *thread)
330 thread->data = qemu_thread_data;
331 thread->tid = GetCurrentThreadId();
334 HANDLE qemu_thread_get_handle(QemuThread *thread)
336 QemuThreadData *data;
337 HANDLE handle;
339 data = thread->data;
340 if (!data) {
341 return NULL;
344 assert(data->mode != QEMU_THREAD_DETACHED);
345 EnterCriticalSection(&data->cs);
346 if (!data->exited) {
347 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
348 thread->tid);
349 } else {
350 handle = NULL;
352 LeaveCriticalSection(&data->cs);
353 return handle;
356 bool qemu_thread_is_self(QemuThread *thread)
358 return GetCurrentThreadId() == thread->tid;