4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 #ifndef OBSOLETE_KVM_IMPL
37 #define run_on_cpu on_vcpu
38 #endif /* !OBSOLETE_KVM_IMPL */
40 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
41 #define PAGE_SIZE TARGET_PAGE_SIZE
46 #define DPRINTF(fmt, ...) \
47 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
49 #define DPRINTF(fmt, ...) \
53 #ifdef OBSOLETE_KVM_IMPL
55 typedef struct KVMSlot
57 target_phys_addr_t start_addr
;
58 ram_addr_t memory_size
;
59 ram_addr_t phys_offset
;
64 typedef struct kvm_dirty_log KVMDirtyLog
;
72 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
73 int broken_set_mem_region
;
76 int robust_singlestep
;
78 #ifdef KVM_CAP_SET_GUEST_DEBUG
79 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
81 int irqchip_in_kernel
;
90 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
91 KVM_CAP_INFO(USER_MEMORY
),
92 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
98 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
102 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
103 if (s
->slots
[i
].memory_size
== 0) {
108 fprintf(stderr
, "%s: no free slot available\n", __func__
);
112 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
113 target_phys_addr_t start_addr
,
114 target_phys_addr_t end_addr
)
118 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
119 KVMSlot
*mem
= &s
->slots
[i
];
121 if (start_addr
== mem
->start_addr
&&
122 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
131 * Find overlapping slot with lowest start address
133 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
134 target_phys_addr_t start_addr
,
135 target_phys_addr_t end_addr
)
137 KVMSlot
*found
= NULL
;
140 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
141 KVMSlot
*mem
= &s
->slots
[i
];
143 if (mem
->memory_size
== 0 ||
144 (found
&& found
->start_addr
< mem
->start_addr
)) {
148 if (end_addr
> mem
->start_addr
&&
149 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
157 int kvm_physical_memory_addr_from_ram(KVMState
*s
, ram_addr_t ram_addr
,
158 target_phys_addr_t
*phys_addr
)
162 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
163 KVMSlot
*mem
= &s
->slots
[i
];
165 if (ram_addr
>= mem
->phys_offset
&&
166 ram_addr
< mem
->phys_offset
+ mem
->memory_size
) {
167 *phys_addr
= mem
->start_addr
+ (ram_addr
- mem
->phys_offset
);
175 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
177 struct kvm_userspace_memory_region mem
;
179 mem
.slot
= slot
->slot
;
180 mem
.guest_phys_addr
= slot
->start_addr
;
181 mem
.memory_size
= slot
->memory_size
;
182 mem
.userspace_addr
= (unsigned long)qemu_safe_ram_ptr(slot
->phys_offset
);
183 mem
.flags
= slot
->flags
;
184 if (s
->migration_log
) {
185 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
187 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
190 static void kvm_reset_vcpu(void *opaque
)
192 CPUState
*env
= opaque
;
194 kvm_arch_reset_vcpu(env
);
197 int kvm_irqchip_in_kernel(void)
199 return kvm_state
->irqchip_in_kernel
;
202 int kvm_pit_in_kernel(void)
204 return kvm_state
->pit_in_kernel
;
207 static int kvm_create_vcpu(CPUState
*env
)
209 KVMState
*s
= kvm_state
;
213 DPRINTF("kvm_init_vcpu\n");
215 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
217 DPRINTF("kvm_create_vcpu failed\n");
223 env
->kvm_vcpu_dirty
= 1;
225 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
228 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
232 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
234 if (env
->kvm_run
== MAP_FAILED
) {
236 DPRINTF("mmap'ing vcpu state failed\n");
240 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
241 s
->coalesced_mmio_ring
=
242 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
245 ret
= kvm_arch_init_vcpu(env
);
247 qemu_register_reset(kvm_reset_vcpu
, env
);
248 kvm_arch_reset_vcpu(env
);
255 * dirty pages logging control
258 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
260 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
263 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
265 KVMState
*s
= kvm_state
;
266 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
269 old_flags
= mem
->flags
;
271 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
274 /* If nothing changed effectively, no need to issue ioctl */
275 if (s
->migration_log
) {
276 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
279 if (flags
== old_flags
) {
283 return kvm_set_user_memory_region(s
, mem
);
286 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
287 ram_addr_t size
, bool log_dirty
)
289 KVMState
*s
= kvm_state
;
290 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
293 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
294 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
295 (target_phys_addr_t
)(phys_addr
+ size
- 1));
298 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
301 static int kvm_log_start(CPUPhysMemoryClient
*client
,
302 target_phys_addr_t phys_addr
, ram_addr_t size
)
304 return kvm_dirty_pages_log_change(phys_addr
, size
, true);
307 static int kvm_log_stop(CPUPhysMemoryClient
*client
,
308 target_phys_addr_t phys_addr
, ram_addr_t size
)
310 return kvm_dirty_pages_log_change(phys_addr
, size
, false);
313 static int kvm_set_migration_log(int enable
)
315 KVMState
*s
= kvm_state
;
319 s
->migration_log
= enable
;
321 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
324 if (!mem
->memory_size
) {
327 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
330 err
= kvm_set_user_memory_region(s
, mem
);
338 /* get kvm's dirty pages bitmap and update qemu's */
339 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
340 unsigned long *bitmap
,
341 unsigned long offset
,
342 unsigned long mem_size
)
345 unsigned long page_number
, addr
, addr1
, c
;
347 unsigned int len
= ((mem_size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) /
351 * bitmap-traveling is faster than memory-traveling (for addr...)
352 * especially when most of the memory is not dirty.
354 for (i
= 0; i
< len
; i
++) {
355 if (bitmap
[i
] != 0) {
356 c
= leul_to_cpu(bitmap
[i
]);
360 page_number
= i
* HOST_LONG_BITS
+ j
;
361 addr1
= page_number
* TARGET_PAGE_SIZE
;
362 addr
= offset
+ addr1
;
363 ram_addr
= cpu_get_physical_page_desc(addr
);
364 cpu_physical_memory_set_dirty(ram_addr
);
371 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
374 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
375 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
376 * This means all bits are set to dirty.
378 * @start_add: start of logged region.
379 * @end_addr: end of logged region.
381 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
382 target_phys_addr_t end_addr
)
384 KVMState
*s
= kvm_state
;
385 unsigned long size
, allocated_size
= 0;
390 d
.dirty_bitmap
= NULL
;
391 while (start_addr
< end_addr
) {
392 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
397 /* XXX bad kernel interface alert
398 * For dirty bitmap, kernel allocates array of size aligned to
399 * bits-per-long. But for case when the kernel is 64bits and
400 * the userspace is 32bits, userspace can't align to the same
401 * bits-per-long, since sizeof(long) is different between kernel
402 * and user space. This way, userspace will provide buffer which
403 * may be 4 bytes less than the kernel will use, resulting in
404 * userspace memory corruption (which is not detectable by valgrind
405 * too, in most cases).
406 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
407 * a hope that sizeof(long) wont become >8 any time soon.
409 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
410 /*HOST_LONG_BITS*/ 64) / 8;
411 if (!d
.dirty_bitmap
) {
412 d
.dirty_bitmap
= qemu_malloc(size
);
413 } else if (size
> allocated_size
) {
414 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
416 allocated_size
= size
;
417 memset(d
.dirty_bitmap
, 0, allocated_size
);
421 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
422 DPRINTF("ioctl failed %d\n", errno
);
427 kvm_get_dirty_pages_log_range(mem
->start_addr
, d
.dirty_bitmap
,
428 mem
->start_addr
, mem
->memory_size
);
429 start_addr
= mem
->start_addr
+ mem
->memory_size
;
431 qemu_free(d
.dirty_bitmap
);
436 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
439 KVMState
*s
= kvm_state
;
441 if (s
->coalesced_mmio
) {
442 struct kvm_coalesced_mmio_zone zone
;
447 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
453 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
456 KVMState
*s
= kvm_state
;
458 if (s
->coalesced_mmio
) {
459 struct kvm_coalesced_mmio_zone zone
;
464 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
470 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
474 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
482 static int kvm_check_many_ioeventfds(void)
484 /* Userspace can use ioeventfd for io notification. This requires a host
485 * that supports eventfd(2) and an I/O thread; since eventfd does not
486 * support SIGIO it cannot interrupt the vcpu.
488 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
489 * can avoid creating too many ioeventfds.
491 #if defined(CONFIG_EVENTFD) /* && defined(CONFIG_IOTHREAD) */
494 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
495 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
496 if (ioeventfds
[i
] < 0) {
499 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
501 close(ioeventfds
[i
]);
506 /* Decide whether many devices are supported or not */
507 ret
= i
== ARRAY_SIZE(ioeventfds
);
510 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
511 close(ioeventfds
[i
]);
519 #ifdef OBSOLETE_KVM_IMPL
520 static const KVMCapabilityInfo
*
521 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
524 if (!kvm_check_extension(s
, list
->value
)) {
533 static void kvm_set_phys_mem(target_phys_addr_t start_addr
, ram_addr_t size
,
534 ram_addr_t phys_offset
, bool log_dirty
)
536 KVMState
*s
= kvm_state
;
537 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
541 /* kvm works in page size chunks, but the function may be called
542 with sub-page size and unaligned start address. */
543 size
= TARGET_PAGE_ALIGN(size
);
544 start_addr
= TARGET_PAGE_ALIGN(start_addr
);
546 /* KVM does not support read-only slots */
547 phys_offset
&= ~IO_MEM_ROM
;
550 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
555 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
556 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
557 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
558 /* The new slot fits into the existing one and comes with
559 * identical parameters - update flags and done. */
560 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
566 /* unregister the overlapping slot */
567 mem
->memory_size
= 0;
568 err
= kvm_set_user_memory_region(s
, mem
);
570 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
571 __func__
, strerror(-err
));
575 /* Workaround for older KVM versions: we can't join slots, even not by
576 * unregistering the previous ones and then registering the larger
577 * slot. We have to maintain the existing fragmentation. Sigh.
579 * This workaround assumes that the new slot starts at the same
580 * address as the first existing one. If not or if some overlapping
581 * slot comes around later, we will fail (not seen in practice so far)
582 * - and actually require a recent KVM version. */
583 if (s
->broken_set_mem_region
&&
584 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
585 flags
< IO_MEM_UNASSIGNED
) {
586 mem
= kvm_alloc_slot(s
);
587 mem
->memory_size
= old
.memory_size
;
588 mem
->start_addr
= old
.start_addr
;
589 mem
->phys_offset
= old
.phys_offset
;
590 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
592 err
= kvm_set_user_memory_region(s
, mem
);
594 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
599 start_addr
+= old
.memory_size
;
600 phys_offset
+= old
.memory_size
;
601 size
-= old
.memory_size
;
605 /* register prefix slot */
606 if (old
.start_addr
< start_addr
) {
607 mem
= kvm_alloc_slot(s
);
608 mem
->memory_size
= start_addr
- old
.start_addr
;
609 mem
->start_addr
= old
.start_addr
;
610 mem
->phys_offset
= old
.phys_offset
;
611 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
613 err
= kvm_set_user_memory_region(s
, mem
);
615 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
616 __func__
, strerror(-err
));
618 fprintf(stderr
, "%s: This is probably because your kernel's " \
619 "PAGE_SIZE is too big. Please try to use 4k " \
620 "PAGE_SIZE!\n", __func__
);
626 /* register suffix slot */
627 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
628 ram_addr_t size_delta
;
630 mem
= kvm_alloc_slot(s
);
631 mem
->start_addr
= start_addr
+ size
;
632 size_delta
= mem
->start_addr
- old
.start_addr
;
633 mem
->memory_size
= old
.memory_size
- size_delta
;
634 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
635 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
637 err
= kvm_set_user_memory_region(s
, mem
);
639 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
640 __func__
, strerror(-err
));
646 /* in case the KVM bug workaround already "consumed" the new slot */
650 /* KVM does not need to know about this memory */
651 if (flags
>= IO_MEM_UNASSIGNED
) {
654 mem
= kvm_alloc_slot(s
);
655 mem
->memory_size
= size
;
656 mem
->start_addr
= start_addr
;
657 mem
->phys_offset
= phys_offset
;
658 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
660 err
= kvm_set_user_memory_region(s
, mem
);
662 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
668 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
669 target_phys_addr_t start_addr
,
670 ram_addr_t size
, ram_addr_t phys_offset
,
673 kvm_set_phys_mem(start_addr
, size
, phys_offset
, log_dirty
);
676 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
677 target_phys_addr_t start_addr
,
678 target_phys_addr_t end_addr
)
680 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
683 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
686 return kvm_set_migration_log(enable
);
689 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
690 .set_memory
= kvm_client_set_memory
,
691 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
692 .migration_log
= kvm_client_migration_log
,
693 .log_start
= kvm_log_start
,
694 .log_stop
= kvm_log_stop
,
697 #ifdef OBSOLETE_KVM_IMPL
698 static void kvm_handle_interrupt(CPUState
*env
, int mask
)
700 env
->interrupt_request
|= mask
;
702 if (!qemu_cpu_is_self(env
)) {
709 static const char upgrade_note
[] =
710 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
711 "(see http://sourceforge.net/projects/kvm).\n";
713 const KVMCapabilityInfo
*missing_cap
;
717 s
= qemu_mallocz(sizeof(KVMState
));
719 #ifdef KVM_CAP_SET_GUEST_DEBUG
720 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
722 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
723 s
->slots
[i
].slot
= i
;
726 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
728 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
733 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
734 if (ret
< KVM_API_VERSION
) {
738 fprintf(stderr
, "kvm version too old\n");
742 if (ret
> KVM_API_VERSION
) {
744 fprintf(stderr
, "kvm version not supported\n");
748 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
751 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
752 "your host kernel command line\n");
757 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
760 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
764 fprintf(stderr
, "kvm does not support %s\n%s",
765 missing_cap
->name
, upgrade_note
);
769 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
771 s
->broken_set_mem_region
= 1;
772 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
773 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
775 s
->broken_set_mem_region
= 0;
780 #ifdef KVM_CAP_VCPU_EVENTS
781 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
784 s
->robust_singlestep
= 0;
785 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
786 s
->robust_singlestep
=
787 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
791 #ifdef KVM_CAP_DEBUGREGS
792 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
797 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
802 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
805 ret
= kvm_arch_init(s
);
811 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
813 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
815 cpu_interrupt_handler
= kvm_handle_interrupt
;
834 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
840 for (i
= 0; i
< count
; i
++) {
841 if (direction
== KVM_EXIT_IO_IN
) {
844 stb_p(ptr
, cpu_inb(port
));
847 stw_p(ptr
, cpu_inw(port
));
850 stl_p(ptr
, cpu_inl(port
));
856 cpu_outb(port
, ldub_p(ptr
));
859 cpu_outw(port
, lduw_p(ptr
));
862 cpu_outl(port
, ldl_p(ptr
));
871 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
872 static int kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
874 fprintf(stderr
, "KVM internal error.");
875 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
878 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
879 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
880 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
881 i
, (uint64_t)run
->internal
.data
[i
]);
884 fprintf(stderr
, "\n");
886 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
887 fprintf(stderr
, "emulation failure\n");
888 if (!kvm_arch_stop_on_emulation_error(env
)) {
889 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
890 return EXCP_INTERRUPT
;
893 /* FIXME: Should trigger a qmp message to let management know
894 * something went wrong.
900 void kvm_flush_coalesced_mmio_buffer(void)
902 KVMState
*s
= kvm_state
;
903 if (s
->coalesced_mmio_ring
) {
904 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
905 while (ring
->first
!= ring
->last
) {
906 struct kvm_coalesced_mmio
*ent
;
908 ent
= &ring
->coalesced_mmio
[ring
->first
];
910 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
912 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
917 static void do_kvm_cpu_synchronize_state(void *_env
)
919 CPUState
*env
= _env
;
921 if (!env
->kvm_vcpu_dirty
) {
922 kvm_arch_get_registers(env
);
923 env
->kvm_vcpu_dirty
= 1;
927 void kvm_cpu_synchronize_state(CPUState
*env
)
929 if (!env
->kvm_vcpu_dirty
) {
930 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
934 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
936 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
937 env
->kvm_vcpu_dirty
= 0;
940 void kvm_cpu_synchronize_post_init(CPUState
*env
)
942 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
943 env
->kvm_vcpu_dirty
= 0;
946 #ifdef OBSOLETE_KVM_IMPL
948 int kvm_cpu_exec(CPUState
*env
)
950 struct kvm_run
*run
= env
->kvm_run
;
953 DPRINTF("kvm_cpu_exec()\n");
955 if (kvm_arch_process_async_events(env
)) {
956 env
->exit_request
= 0;
960 cpu_single_env
= env
;
963 if (env
->kvm_vcpu_dirty
) {
964 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
965 env
->kvm_vcpu_dirty
= 0;
968 kvm_arch_pre_run(env
, run
);
969 if (env
->exit_request
) {
970 DPRINTF("interrupt exit requested\n");
972 * KVM requires us to reenter the kernel after IO exits to complete
973 * instruction emulation. This self-signal will ensure that we
976 qemu_cpu_kick_self();
978 cpu_single_env
= NULL
;
979 qemu_mutex_unlock_iothread();
981 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
983 qemu_mutex_lock_iothread();
984 cpu_single_env
= env
;
985 kvm_arch_post_run(env
, run
);
987 kvm_flush_coalesced_mmio_buffer();
990 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
991 DPRINTF("io window exit\n");
992 ret
= EXCP_INTERRUPT
;
995 DPRINTF("kvm run failed %s\n", strerror(-run_ret
));
999 switch (run
->exit_reason
) {
1001 DPRINTF("handle_io\n");
1002 kvm_handle_io(run
->io
.port
,
1003 (uint8_t *)run
+ run
->io
.data_offset
,
1010 DPRINTF("handle_mmio\n");
1011 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1014 run
->mmio
.is_write
);
1017 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1018 DPRINTF("irq_window_open\n");
1019 ret
= EXCP_INTERRUPT
;
1021 case KVM_EXIT_SHUTDOWN
:
1022 DPRINTF("shutdown\n");
1023 qemu_system_reset_request();
1024 ret
= EXCP_INTERRUPT
;
1026 case KVM_EXIT_UNKNOWN
:
1027 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1028 (uint64_t)run
->hw
.hardware_exit_reason
);
1031 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
1032 case KVM_EXIT_INTERNAL_ERROR
:
1033 ret
= kvm_handle_internal_error(env
, run
);
1037 DPRINTF("kvm_arch_handle_exit\n");
1038 ret
= kvm_arch_handle_exit(env
, run
);
1044 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1045 vm_stop(VMSTOP_PANIC
);
1048 env
->exit_request
= 0;
1049 cpu_single_env
= NULL
;
1054 int kvm_ioctl(KVMState
*s
, int type
, ...)
1061 arg
= va_arg(ap
, void *);
1064 ret
= ioctl(s
->fd
, type
, arg
);
1071 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1078 arg
= va_arg(ap
, void *);
1081 ret
= ioctl(s
->vmfd
, type
, arg
);
1088 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1095 arg
= va_arg(ap
, void *);
1098 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1105 int kvm_has_sync_mmu(void)
1107 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1110 int kvm_has_vcpu_events(void)
1112 return kvm_state
->vcpu_events
;
1115 int kvm_has_robust_singlestep(void)
1117 return kvm_state
->robust_singlestep
;
1120 int kvm_has_debugregs(void)
1122 return kvm_state
->debugregs
;
1125 int kvm_has_xsave(void)
1127 return kvm_state
->xsave
;
1130 int kvm_has_xcrs(void)
1132 return kvm_state
->xcrs
;
1135 int kvm_has_many_ioeventfds(void)
1137 if (!kvm_enabled()) {
1140 return kvm_state
->many_ioeventfds
;
1143 void kvm_setup_guest_memory(void *start
, size_t size
)
1145 if (!kvm_has_sync_mmu()) {
1146 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1149 perror("qemu_madvise");
1151 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1157 #ifdef KVM_CAP_SET_GUEST_DEBUG
1158 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1161 struct kvm_sw_breakpoint
*bp
;
1163 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1171 int kvm_sw_breakpoints_active(CPUState
*env
)
1173 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1176 struct kvm_set_guest_debug_data
{
1177 struct kvm_guest_debug dbg
;
1182 static void kvm_invoke_set_guest_debug(void *data
)
1184 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1185 CPUState
*env
= dbg_data
->env
;
1187 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1190 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1192 struct kvm_set_guest_debug_data data
;
1194 data
.dbg
.control
= reinject_trap
;
1196 if (env
->singlestep_enabled
) {
1197 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1199 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1202 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1206 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1207 target_ulong len
, int type
)
1209 struct kvm_sw_breakpoint
*bp
;
1213 if (type
== GDB_BREAKPOINT_SW
) {
1214 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1220 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1227 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1233 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1236 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1242 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1243 err
= kvm_update_guest_debug(env
, 0);
1251 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1252 target_ulong len
, int type
)
1254 struct kvm_sw_breakpoint
*bp
;
1258 if (type
== GDB_BREAKPOINT_SW
) {
1259 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1264 if (bp
->use_count
> 1) {
1269 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1274 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1277 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1283 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1284 err
= kvm_update_guest_debug(env
, 0);
1292 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1294 struct kvm_sw_breakpoint
*bp
, *next
;
1295 KVMState
*s
= current_env
->kvm_state
;
1298 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1299 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1300 /* Try harder to find a CPU that currently sees the breakpoint. */
1301 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1302 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1308 kvm_arch_remove_all_hw_breakpoints();
1310 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1311 kvm_update_guest_debug(env
, 0);
1315 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1317 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1322 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1323 target_ulong len
, int type
)
1328 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1329 target_ulong len
, int type
)
1334 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1337 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1339 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1341 struct kvm_signal_mask
*sigmask
;
1345 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1348 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1351 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1352 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1358 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1360 #ifdef KVM_IOEVENTFD
1362 struct kvm_ioeventfd iofd
;
1364 iofd
.datamatch
= val
;
1367 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1370 if (!kvm_enabled()) {
1375 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1378 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1390 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1392 #ifdef KVM_IOEVENTFD
1393 struct kvm_ioeventfd kick
= {
1397 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1401 if (!kvm_enabled()) {
1405 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1407 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1417 #if defined(KVM_IRQFD)
1418 int kvm_set_irqfd(int gsi
, int fd
, bool assigned
)
1420 struct kvm_irqfd irqfd
= {
1423 .flags
= assigned
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1426 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1429 r
= kvm_vm_ioctl(kvm_state
, KVM_IRQFD
, &irqfd
);
1436 int kvm_on_sigbus_vcpu(CPUState
*env
, int code
, void *addr
)
1438 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
1441 int kvm_on_sigbus(int code
, void *addr
)
1443 return kvm_arch_on_sigbus(code
, addr
);
1447 #include "qemu-kvm.c"