Merge commit '5a4d701acde890a5ca134236424ece45545f70c7' into upstream-merge
[qemu-kvm.git] / kvm-all.c
blob979c8d794b7a8010b3364ceb27e3c1f3c5d327d6
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
27 #include "sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/msi.h"
30 #include "gdbstub.h"
31 #include "kvm.h"
32 #include "bswap.h"
33 #include "memory.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
42 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
43 #define PAGE_SIZE TARGET_PAGE_SIZE
45 //#define DEBUG_KVM
47 #ifdef DEBUG_KVM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50 #else
51 #define DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
55 #define KVM_MSI_HASHTAB_SIZE 256
57 typedef struct KVMSlot
59 target_phys_addr_t start_addr;
60 ram_addr_t memory_size;
61 void *ram;
62 int slot;
63 int flags;
64 } KVMSlot;
66 typedef struct kvm_dirty_log KVMDirtyLog;
68 struct KVMState
70 KVMSlot slots[32];
71 int fd;
72 int vmfd;
73 int coalesced_mmio;
74 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
75 bool coalesced_flush_in_progress;
76 int broken_set_mem_region;
77 int migration_log;
78 int vcpu_events;
79 int robust_singlestep;
80 int debugregs;
81 #ifdef KVM_CAP_SET_GUEST_DEBUG
82 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
83 #endif
84 int pit_state2;
85 int xsave, xcrs;
86 int many_ioeventfds;
87 int intx_set_mask;
88 /* The man page (and posix) say ioctl numbers are signed int, but
89 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
90 * unsigned, and treating them as signed here can break things */
91 unsigned irqchip_inject_ioctl;
92 #ifdef KVM_CAP_IRQ_ROUTING
93 struct kvm_irq_routing *irq_routes;
94 int nr_allocated_irq_routes;
95 uint32_t *used_gsi_bitmap;
96 unsigned int gsi_count;
97 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
98 bool direct_msi;
99 #endif
102 KVMState *kvm_state;
103 bool kvm_kernel_irqchip;
104 bool kvm_async_interrupts_allowed;
105 bool kvm_irqfds_allowed;
106 bool kvm_msi_via_irqfd_allowed;
107 bool kvm_gsi_routing_allowed;
109 static const KVMCapabilityInfo kvm_required_capabilites[] = {
110 KVM_CAP_INFO(USER_MEMORY),
111 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
112 KVM_CAP_LAST_INFO
115 static KVMSlot *kvm_alloc_slot(KVMState *s)
117 int i;
119 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
120 if (s->slots[i].memory_size == 0) {
121 return &s->slots[i];
125 fprintf(stderr, "%s: no free slot available\n", __func__);
126 abort();
129 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
130 target_phys_addr_t start_addr,
131 target_phys_addr_t end_addr)
133 int i;
135 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
136 KVMSlot *mem = &s->slots[i];
138 if (start_addr == mem->start_addr &&
139 end_addr == mem->start_addr + mem->memory_size) {
140 return mem;
144 return NULL;
148 * Find overlapping slot with lowest start address
150 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
151 target_phys_addr_t start_addr,
152 target_phys_addr_t end_addr)
154 KVMSlot *found = NULL;
155 int i;
157 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
158 KVMSlot *mem = &s->slots[i];
160 if (mem->memory_size == 0 ||
161 (found && found->start_addr < mem->start_addr)) {
162 continue;
165 if (end_addr > mem->start_addr &&
166 start_addr < mem->start_addr + mem->memory_size) {
167 found = mem;
171 return found;
174 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
175 target_phys_addr_t *phys_addr)
177 int i;
179 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
180 KVMSlot *mem = &s->slots[i];
182 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
183 *phys_addr = mem->start_addr + (ram - mem->ram);
184 return 1;
188 return 0;
191 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
193 struct kvm_userspace_memory_region mem;
195 mem.slot = slot->slot;
196 mem.guest_phys_addr = slot->start_addr;
197 mem.memory_size = slot->memory_size;
198 mem.userspace_addr = (unsigned long)slot->ram;
199 mem.flags = slot->flags;
200 if (s->migration_log) {
201 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
203 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
206 static void kvm_reset_vcpu(void *opaque)
208 CPUArchState *env = opaque;
210 kvm_arch_reset_vcpu(env);
213 int kvm_init_vcpu(CPUArchState *env)
215 KVMState *s = kvm_state;
216 long mmap_size;
217 int ret;
219 DPRINTF("kvm_init_vcpu\n");
221 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
222 if (ret < 0) {
223 DPRINTF("kvm_create_vcpu failed\n");
224 goto err;
227 env->kvm_fd = ret;
228 env->kvm_state = s;
229 env->kvm_vcpu_dirty = 1;
231 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
232 if (mmap_size < 0) {
233 ret = mmap_size;
234 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
235 goto err;
238 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
239 env->kvm_fd, 0);
240 if (env->kvm_run == MAP_FAILED) {
241 ret = -errno;
242 DPRINTF("mmap'ing vcpu state failed\n");
243 goto err;
246 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
247 s->coalesced_mmio_ring =
248 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
251 ret = kvm_arch_init_vcpu(env);
252 if (ret == 0) {
253 qemu_register_reset(kvm_reset_vcpu, env);
254 kvm_arch_reset_vcpu(env);
256 err:
257 return ret;
261 * dirty pages logging control
264 static int kvm_mem_flags(KVMState *s, bool log_dirty)
266 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
269 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
271 KVMState *s = kvm_state;
272 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
273 int old_flags;
275 old_flags = mem->flags;
277 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
278 mem->flags = flags;
280 /* If nothing changed effectively, no need to issue ioctl */
281 if (s->migration_log) {
282 flags |= KVM_MEM_LOG_DIRTY_PAGES;
285 if (flags == old_flags) {
286 return 0;
289 return kvm_set_user_memory_region(s, mem);
292 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
293 ram_addr_t size, bool log_dirty)
295 KVMState *s = kvm_state;
296 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
298 if (mem == NULL) {
299 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
300 TARGET_FMT_plx "\n", __func__, phys_addr,
301 (target_phys_addr_t)(phys_addr + size - 1));
302 return -EINVAL;
304 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
307 static void kvm_log_start(MemoryListener *listener,
308 MemoryRegionSection *section)
310 int r;
312 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
313 section->size, true);
314 if (r < 0) {
315 abort();
319 static void kvm_log_stop(MemoryListener *listener,
320 MemoryRegionSection *section)
322 int r;
324 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
325 section->size, false);
326 if (r < 0) {
327 abort();
331 static int kvm_set_migration_log(int enable)
333 KVMState *s = kvm_state;
334 KVMSlot *mem;
335 int i, err;
337 s->migration_log = enable;
339 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
340 mem = &s->slots[i];
342 if (!mem->memory_size) {
343 continue;
345 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
346 continue;
348 err = kvm_set_user_memory_region(s, mem);
349 if (err) {
350 return err;
353 return 0;
356 /* get kvm's dirty pages bitmap and update qemu's */
357 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
358 unsigned long *bitmap)
360 unsigned int i, j;
361 unsigned long page_number, c;
362 target_phys_addr_t addr, addr1;
363 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
364 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
367 * bitmap-traveling is faster than memory-traveling (for addr...)
368 * especially when most of the memory is not dirty.
370 for (i = 0; i < len; i++) {
371 if (bitmap[i] != 0) {
372 c = leul_to_cpu(bitmap[i]);
373 do {
374 j = ffsl(c) - 1;
375 c &= ~(1ul << j);
376 page_number = (i * HOST_LONG_BITS + j) * hpratio;
377 addr1 = page_number * TARGET_PAGE_SIZE;
378 addr = section->offset_within_region + addr1;
379 memory_region_set_dirty(section->mr, addr,
380 TARGET_PAGE_SIZE * hpratio);
381 } while (c != 0);
384 return 0;
387 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
390 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
391 * This function updates qemu's dirty bitmap using
392 * memory_region_set_dirty(). This means all bits are set
393 * to dirty.
395 * @start_add: start of logged region.
396 * @end_addr: end of logged region.
398 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
400 KVMState *s = kvm_state;
401 unsigned long size, allocated_size = 0;
402 KVMDirtyLog d;
403 KVMSlot *mem;
404 int ret = 0;
405 target_phys_addr_t start_addr = section->offset_within_address_space;
406 target_phys_addr_t end_addr = start_addr + section->size;
408 d.dirty_bitmap = NULL;
409 while (start_addr < end_addr) {
410 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
411 if (mem == NULL) {
412 break;
415 /* XXX bad kernel interface alert
416 * For dirty bitmap, kernel allocates array of size aligned to
417 * bits-per-long. But for case when the kernel is 64bits and
418 * the userspace is 32bits, userspace can't align to the same
419 * bits-per-long, since sizeof(long) is different between kernel
420 * and user space. This way, userspace will provide buffer which
421 * may be 4 bytes less than the kernel will use, resulting in
422 * userspace memory corruption (which is not detectable by valgrind
423 * too, in most cases).
424 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
425 * a hope that sizeof(long) wont become >8 any time soon.
427 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
428 /*HOST_LONG_BITS*/ 64) / 8;
429 if (!d.dirty_bitmap) {
430 d.dirty_bitmap = g_malloc(size);
431 } else if (size > allocated_size) {
432 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
434 allocated_size = size;
435 memset(d.dirty_bitmap, 0, allocated_size);
437 d.slot = mem->slot;
439 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
440 DPRINTF("ioctl failed %d\n", errno);
441 ret = -1;
442 break;
445 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
446 start_addr = mem->start_addr + mem->memory_size;
448 g_free(d.dirty_bitmap);
450 return ret;
453 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
455 int ret = -ENOSYS;
456 KVMState *s = kvm_state;
458 if (s->coalesced_mmio) {
459 struct kvm_coalesced_mmio_zone zone;
461 zone.addr = start;
462 zone.size = size;
463 zone.pad = 0;
465 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
468 return ret;
471 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
473 int ret = -ENOSYS;
474 KVMState *s = kvm_state;
476 if (s->coalesced_mmio) {
477 struct kvm_coalesced_mmio_zone zone;
479 zone.addr = start;
480 zone.size = size;
481 zone.pad = 0;
483 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
486 return ret;
489 int kvm_check_extension(KVMState *s, unsigned int extension)
491 int ret;
493 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
494 if (ret < 0) {
495 ret = 0;
498 return ret;
501 static int kvm_check_many_ioeventfds(void)
503 /* Userspace can use ioeventfd for io notification. This requires a host
504 * that supports eventfd(2) and an I/O thread; since eventfd does not
505 * support SIGIO it cannot interrupt the vcpu.
507 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
508 * can avoid creating too many ioeventfds.
510 #if defined(CONFIG_EVENTFD)
511 int ioeventfds[7];
512 int i, ret = 0;
513 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
514 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
515 if (ioeventfds[i] < 0) {
516 break;
518 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
519 if (ret < 0) {
520 close(ioeventfds[i]);
521 break;
525 /* Decide whether many devices are supported or not */
526 ret = i == ARRAY_SIZE(ioeventfds);
528 while (i-- > 0) {
529 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
530 close(ioeventfds[i]);
532 return ret;
533 #else
534 return 0;
535 #endif
538 static const KVMCapabilityInfo *
539 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
541 while (list->name) {
542 if (!kvm_check_extension(s, list->value)) {
543 return list;
545 list++;
547 return NULL;
550 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
552 KVMState *s = kvm_state;
553 KVMSlot *mem, old;
554 int err;
555 MemoryRegion *mr = section->mr;
556 bool log_dirty = memory_region_is_logging(mr);
557 target_phys_addr_t start_addr = section->offset_within_address_space;
558 ram_addr_t size = section->size;
559 void *ram = NULL;
560 unsigned delta;
562 /* kvm works in page size chunks, but the function may be called
563 with sub-page size and unaligned start address. */
564 delta = TARGET_PAGE_ALIGN(size) - size;
565 if (delta > size) {
566 return;
568 start_addr += delta;
569 size -= delta;
570 size &= TARGET_PAGE_MASK;
571 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
572 return;
575 if (!memory_region_is_ram(mr)) {
576 return;
579 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
581 while (1) {
582 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
583 if (!mem) {
584 break;
587 if (add && start_addr >= mem->start_addr &&
588 (start_addr + size <= mem->start_addr + mem->memory_size) &&
589 (ram - start_addr == mem->ram - mem->start_addr)) {
590 /* The new slot fits into the existing one and comes with
591 * identical parameters - update flags and done. */
592 kvm_slot_dirty_pages_log_change(mem, log_dirty);
593 return;
596 old = *mem;
598 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
599 kvm_physical_sync_dirty_bitmap(section);
602 /* unregister the overlapping slot */
603 mem->memory_size = 0;
604 err = kvm_set_user_memory_region(s, mem);
605 if (err) {
606 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
607 __func__, strerror(-err));
608 abort();
611 /* Workaround for older KVM versions: we can't join slots, even not by
612 * unregistering the previous ones and then registering the larger
613 * slot. We have to maintain the existing fragmentation. Sigh.
615 * This workaround assumes that the new slot starts at the same
616 * address as the first existing one. If not or if some overlapping
617 * slot comes around later, we will fail (not seen in practice so far)
618 * - and actually require a recent KVM version. */
619 if (s->broken_set_mem_region &&
620 old.start_addr == start_addr && old.memory_size < size && add) {
621 mem = kvm_alloc_slot(s);
622 mem->memory_size = old.memory_size;
623 mem->start_addr = old.start_addr;
624 mem->ram = old.ram;
625 mem->flags = kvm_mem_flags(s, log_dirty);
627 err = kvm_set_user_memory_region(s, mem);
628 if (err) {
629 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
630 strerror(-err));
631 abort();
634 start_addr += old.memory_size;
635 ram += old.memory_size;
636 size -= old.memory_size;
637 continue;
640 /* register prefix slot */
641 if (old.start_addr < start_addr) {
642 mem = kvm_alloc_slot(s);
643 mem->memory_size = start_addr - old.start_addr;
644 mem->start_addr = old.start_addr;
645 mem->ram = old.ram;
646 mem->flags = kvm_mem_flags(s, log_dirty);
648 err = kvm_set_user_memory_region(s, mem);
649 if (err) {
650 fprintf(stderr, "%s: error registering prefix slot: %s\n",
651 __func__, strerror(-err));
652 #ifdef TARGET_PPC
653 fprintf(stderr, "%s: This is probably because your kernel's " \
654 "PAGE_SIZE is too big. Please try to use 4k " \
655 "PAGE_SIZE!\n", __func__);
656 #endif
657 abort();
661 /* register suffix slot */
662 if (old.start_addr + old.memory_size > start_addr + size) {
663 ram_addr_t size_delta;
665 mem = kvm_alloc_slot(s);
666 mem->start_addr = start_addr + size;
667 size_delta = mem->start_addr - old.start_addr;
668 mem->memory_size = old.memory_size - size_delta;
669 mem->ram = old.ram + size_delta;
670 mem->flags = kvm_mem_flags(s, log_dirty);
672 err = kvm_set_user_memory_region(s, mem);
673 if (err) {
674 fprintf(stderr, "%s: error registering suffix slot: %s\n",
675 __func__, strerror(-err));
676 abort();
681 /* in case the KVM bug workaround already "consumed" the new slot */
682 if (!size) {
683 return;
685 if (!add) {
686 return;
688 mem = kvm_alloc_slot(s);
689 mem->memory_size = size;
690 mem->start_addr = start_addr;
691 mem->ram = ram;
692 mem->flags = kvm_mem_flags(s, log_dirty);
694 err = kvm_set_user_memory_region(s, mem);
695 if (err) {
696 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
697 strerror(-err));
698 abort();
702 static void kvm_begin(MemoryListener *listener)
706 static void kvm_commit(MemoryListener *listener)
710 static void kvm_region_add(MemoryListener *listener,
711 MemoryRegionSection *section)
713 kvm_set_phys_mem(section, true);
716 static void kvm_region_del(MemoryListener *listener,
717 MemoryRegionSection *section)
719 kvm_set_phys_mem(section, false);
722 static void kvm_region_nop(MemoryListener *listener,
723 MemoryRegionSection *section)
727 static void kvm_log_sync(MemoryListener *listener,
728 MemoryRegionSection *section)
730 int r;
732 r = kvm_physical_sync_dirty_bitmap(section);
733 if (r < 0) {
734 abort();
738 static void kvm_log_global_start(struct MemoryListener *listener)
740 int r;
742 r = kvm_set_migration_log(1);
743 assert(r >= 0);
746 static void kvm_log_global_stop(struct MemoryListener *listener)
748 int r;
750 r = kvm_set_migration_log(0);
751 assert(r >= 0);
754 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
755 bool match_data, uint64_t data, int fd)
757 int r;
759 assert(match_data && section->size <= 8);
761 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
762 data, true, section->size);
763 if (r < 0) {
764 abort();
768 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
769 bool match_data, uint64_t data, int fd)
771 int r;
773 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
774 data, false, section->size);
775 if (r < 0) {
776 abort();
780 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
781 bool match_data, uint64_t data, int fd)
783 int r;
785 assert(match_data && section->size == 2);
787 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
788 data, true);
789 if (r < 0) {
790 abort();
794 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
795 bool match_data, uint64_t data, int fd)
798 int r;
800 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
801 data, false);
802 if (r < 0) {
803 abort();
807 static void kvm_eventfd_add(MemoryListener *listener,
808 MemoryRegionSection *section,
809 bool match_data, uint64_t data,
810 EventNotifier *e)
812 if (section->address_space == get_system_memory()) {
813 kvm_mem_ioeventfd_add(section, match_data, data,
814 event_notifier_get_fd(e));
815 } else {
816 kvm_io_ioeventfd_add(section, match_data, data,
817 event_notifier_get_fd(e));
821 static void kvm_eventfd_del(MemoryListener *listener,
822 MemoryRegionSection *section,
823 bool match_data, uint64_t data,
824 EventNotifier *e)
826 if (section->address_space == get_system_memory()) {
827 kvm_mem_ioeventfd_del(section, match_data, data,
828 event_notifier_get_fd(e));
829 } else {
830 kvm_io_ioeventfd_del(section, match_data, data,
831 event_notifier_get_fd(e));
835 static MemoryListener kvm_memory_listener = {
836 .begin = kvm_begin,
837 .commit = kvm_commit,
838 .region_add = kvm_region_add,
839 .region_del = kvm_region_del,
840 .region_nop = kvm_region_nop,
841 .log_start = kvm_log_start,
842 .log_stop = kvm_log_stop,
843 .log_sync = kvm_log_sync,
844 .log_global_start = kvm_log_global_start,
845 .log_global_stop = kvm_log_global_stop,
846 .eventfd_add = kvm_eventfd_add,
847 .eventfd_del = kvm_eventfd_del,
848 .priority = 10,
851 static void kvm_handle_interrupt(CPUArchState *env, int mask)
853 env->interrupt_request |= mask;
855 if (!qemu_cpu_is_self(env)) {
856 qemu_cpu_kick(env);
860 int kvm_set_irq(KVMState *s, int irq, int level)
862 struct kvm_irq_level event;
863 int ret;
865 assert(kvm_async_interrupts_enabled());
867 event.level = level;
868 event.irq = irq;
869 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
870 if (ret < 0) {
871 perror("kvm_set_irq");
872 abort();
875 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
878 #ifdef KVM_CAP_IRQ_ROUTING
879 typedef struct KVMMSIRoute {
880 struct kvm_irq_routing_entry kroute;
881 QTAILQ_ENTRY(KVMMSIRoute) entry;
882 } KVMMSIRoute;
884 static void set_gsi(KVMState *s, unsigned int gsi)
886 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
889 static void clear_gsi(KVMState *s, unsigned int gsi)
891 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
894 static void kvm_init_irq_routing(KVMState *s)
896 int gsi_count, i;
898 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
899 if (gsi_count > 0) {
900 unsigned int gsi_bits, i;
902 /* Round up so we can search ints using ffs */
903 gsi_bits = ALIGN(gsi_count, 32);
904 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
905 s->gsi_count = gsi_count;
907 /* Mark any over-allocated bits as already in use */
908 for (i = gsi_count; i < gsi_bits; i++) {
909 set_gsi(s, i);
913 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
914 s->nr_allocated_irq_routes = 0;
916 if (!s->direct_msi) {
917 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
918 QTAILQ_INIT(&s->msi_hashtab[i]);
922 kvm_arch_init_irq_routing(s);
925 void kvm_irqchip_commit_routes(KVMState *s)
927 int ret;
929 s->irq_routes->flags = 0;
930 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
931 assert(ret == 0);
934 void kvm_add_routing_entry(KVMState *s,
935 struct kvm_irq_routing_entry *entry)
937 struct kvm_irq_routing_entry *new;
938 int n, size;
940 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
941 n = s->nr_allocated_irq_routes * 2;
942 if (n < 64) {
943 n = 64;
945 size = sizeof(struct kvm_irq_routing);
946 size += n * sizeof(*new);
947 s->irq_routes = g_realloc(s->irq_routes, size);
948 s->nr_allocated_irq_routes = n;
950 n = s->irq_routes->nr++;
951 new = &s->irq_routes->entries[n];
952 memset(new, 0, sizeof(*new));
953 new->gsi = entry->gsi;
954 new->type = entry->type;
955 new->flags = entry->flags;
956 new->u = entry->u;
958 set_gsi(s, entry->gsi);
960 kvm_irqchip_commit_routes(s);
963 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
965 struct kvm_irq_routing_entry e;
967 assert(pin < s->gsi_count);
969 e.gsi = irq;
970 e.type = KVM_IRQ_ROUTING_IRQCHIP;
971 e.flags = 0;
972 e.u.irqchip.irqchip = irqchip;
973 e.u.irqchip.pin = pin;
974 kvm_add_routing_entry(s, &e);
977 void kvm_irqchip_release_virq(KVMState *s, int virq)
979 struct kvm_irq_routing_entry *e;
980 int i;
982 for (i = 0; i < s->irq_routes->nr; i++) {
983 e = &s->irq_routes->entries[i];
984 if (e->gsi == virq) {
985 s->irq_routes->nr--;
986 *e = s->irq_routes->entries[s->irq_routes->nr];
989 clear_gsi(s, virq);
991 kvm_irqchip_commit_routes(s);
994 static unsigned int kvm_hash_msi(uint32_t data)
996 /* This is optimized for IA32 MSI layout. However, no other arch shall
997 * repeat the mistake of not providing a direct MSI injection API. */
998 return data & 0xff;
1001 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1003 KVMMSIRoute *route, *next;
1004 unsigned int hash;
1006 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1007 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1008 kvm_irqchip_release_virq(s, route->kroute.gsi);
1009 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1010 g_free(route);
1015 static int kvm_irqchip_get_virq(KVMState *s)
1017 uint32_t *word = s->used_gsi_bitmap;
1018 int max_words = ALIGN(s->gsi_count, 32) / 32;
1019 int i, bit;
1020 bool retry = true;
1022 again:
1023 /* Return the lowest unused GSI in the bitmap */
1024 for (i = 0; i < max_words; i++) {
1025 bit = ffs(~word[i]);
1026 if (!bit) {
1027 continue;
1030 return bit - 1 + i * 32;
1032 if (!s->direct_msi && retry) {
1033 retry = false;
1034 kvm_flush_dynamic_msi_routes(s);
1035 goto again;
1037 return -ENOSPC;
1041 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1043 unsigned int hash = kvm_hash_msi(msg.data);
1044 KVMMSIRoute *route;
1046 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1047 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1048 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1049 route->kroute.u.msi.data == msg.data) {
1050 return route;
1053 return NULL;
1056 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1058 struct kvm_msi msi;
1059 KVMMSIRoute *route;
1061 if (s->direct_msi) {
1062 msi.address_lo = (uint32_t)msg.address;
1063 msi.address_hi = msg.address >> 32;
1064 msi.data = msg.data;
1065 msi.flags = 0;
1066 memset(msi.pad, 0, sizeof(msi.pad));
1068 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1071 route = kvm_lookup_msi_route(s, msg);
1072 if (!route) {
1073 int virq;
1075 virq = kvm_irqchip_get_virq(s);
1076 if (virq < 0) {
1077 return virq;
1080 route = g_malloc(sizeof(KVMMSIRoute));
1081 route->kroute.gsi = virq;
1082 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1083 route->kroute.flags = 0;
1084 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1085 route->kroute.u.msi.address_hi = msg.address >> 32;
1086 route->kroute.u.msi.data = msg.data;
1088 kvm_add_routing_entry(s, &route->kroute);
1090 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1091 entry);
1094 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1096 return kvm_set_irq(s, route->kroute.gsi, 1);
1099 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1101 struct kvm_irq_routing_entry kroute;
1102 int virq;
1104 if (!kvm_gsi_routing_enabled()) {
1105 return -ENOSYS;
1108 virq = kvm_irqchip_get_virq(s);
1109 if (virq < 0) {
1110 return virq;
1113 kroute.gsi = virq;
1114 kroute.type = KVM_IRQ_ROUTING_MSI;
1115 kroute.flags = 0;
1116 kroute.u.msi.address_lo = (uint32_t)msg.address;
1117 kroute.u.msi.address_hi = msg.address >> 32;
1118 kroute.u.msi.data = msg.data;
1120 kvm_add_routing_entry(s, &kroute);
1122 return virq;
1125 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1127 struct kvm_irqfd irqfd = {
1128 .fd = fd,
1129 .gsi = virq,
1130 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1133 if (!kvm_irqfds_enabled()) {
1134 return -ENOSYS;
1137 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1140 #else /* !KVM_CAP_IRQ_ROUTING */
1142 static void kvm_init_irq_routing(KVMState *s)
1146 int kvm_irqchip_commit_routes(KVMState *s)
1148 return -ENOSYS;
1151 void kvm_irqchip_release_virq(KVMState *s, int virq)
1155 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1157 abort();
1160 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1162 return -ENOSYS;
1165 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1167 abort();
1169 #endif /* !KVM_CAP_IRQ_ROUTING */
1171 int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1173 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1176 int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1178 return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
1181 int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1183 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1186 int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1188 return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
1191 static int kvm_irqchip_create(KVMState *s)
1193 QemuOptsList *list = qemu_find_opts("machine");
1194 int ret;
1196 if (QTAILQ_EMPTY(&list->head) ||
1197 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1198 "kernel_irqchip", true) ||
1199 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1200 return 0;
1203 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1204 if (ret < 0) {
1205 fprintf(stderr, "Create kernel irqchip failed\n");
1206 return ret;
1209 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1210 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1211 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1213 kvm_kernel_irqchip = true;
1214 /* If we have an in-kernel IRQ chip then we must have asynchronous
1215 * interrupt delivery (though the reverse is not necessarily true)
1217 kvm_async_interrupts_allowed = true;
1219 kvm_init_irq_routing(s);
1221 return 0;
1224 static int kvm_max_vcpus(KVMState *s)
1226 int ret;
1228 /* Find number of supported CPUs using the recommended
1229 * procedure from the kernel API documentation to cope with
1230 * older kernels that may be missing capabilities.
1232 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1233 if (ret) {
1234 return ret;
1236 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1237 if (ret) {
1238 return ret;
1241 return 4;
1244 int kvm_init(void)
1246 static const char upgrade_note[] =
1247 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1248 "(see http://sourceforge.net/projects/kvm).\n";
1249 KVMState *s;
1250 const KVMCapabilityInfo *missing_cap;
1251 int ret;
1252 int i;
1253 int max_vcpus;
1255 s = g_malloc0(sizeof(KVMState));
1258 * On systems where the kernel can support different base page
1259 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1260 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1261 * page size for the system though.
1263 assert(TARGET_PAGE_SIZE <= getpagesize());
1265 #ifdef KVM_CAP_SET_GUEST_DEBUG
1266 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1267 #endif
1268 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1269 s->slots[i].slot = i;
1271 s->vmfd = -1;
1272 s->fd = qemu_open("/dev/kvm", O_RDWR);
1273 if (s->fd == -1) {
1274 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1275 ret = -errno;
1276 goto err;
1279 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1280 if (ret < KVM_API_VERSION) {
1281 if (ret > 0) {
1282 ret = -EINVAL;
1284 fprintf(stderr, "kvm version too old\n");
1285 goto err;
1288 if (ret > KVM_API_VERSION) {
1289 ret = -EINVAL;
1290 fprintf(stderr, "kvm version not supported\n");
1291 goto err;
1294 max_vcpus = kvm_max_vcpus(s);
1295 if (smp_cpus > max_vcpus) {
1296 ret = -EINVAL;
1297 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1298 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1299 goto err;
1302 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1303 if (s->vmfd < 0) {
1304 #ifdef TARGET_S390X
1305 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1306 "your host kernel command line\n");
1307 #endif
1308 ret = s->vmfd;
1309 goto err;
1312 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1313 if (!missing_cap) {
1314 missing_cap =
1315 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1317 if (missing_cap) {
1318 ret = -EINVAL;
1319 fprintf(stderr, "kvm does not support %s\n%s",
1320 missing_cap->name, upgrade_note);
1321 goto err;
1324 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1326 s->broken_set_mem_region = 1;
1327 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1328 if (ret > 0) {
1329 s->broken_set_mem_region = 0;
1332 #ifdef KVM_CAP_VCPU_EVENTS
1333 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1334 #endif
1336 s->robust_singlestep =
1337 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1339 #ifdef KVM_CAP_DEBUGREGS
1340 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1341 #endif
1343 #ifdef KVM_CAP_XSAVE
1344 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1345 #endif
1347 #ifdef KVM_CAP_XCRS
1348 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1349 #endif
1351 #ifdef KVM_CAP_PIT_STATE2
1352 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1353 #endif
1355 #ifdef KVM_CAP_IRQ_ROUTING
1356 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1357 #endif
1359 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1361 ret = kvm_arch_init(s);
1362 if (ret < 0) {
1363 goto err;
1366 ret = kvm_irqchip_create(s);
1367 if (ret < 0) {
1368 goto err;
1371 kvm_state = s;
1372 memory_listener_register(&kvm_memory_listener, NULL);
1374 s->many_ioeventfds = kvm_check_many_ioeventfds();
1376 cpu_interrupt_handler = kvm_handle_interrupt;
1378 return 0;
1380 err:
1381 if (s) {
1382 if (s->vmfd >= 0) {
1383 close(s->vmfd);
1385 if (s->fd != -1) {
1386 close(s->fd);
1389 g_free(s);
1391 return ret;
1394 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1395 uint32_t count)
1397 int i;
1398 uint8_t *ptr = data;
1400 for (i = 0; i < count; i++) {
1401 if (direction == KVM_EXIT_IO_IN) {
1402 switch (size) {
1403 case 1:
1404 stb_p(ptr, cpu_inb(port));
1405 break;
1406 case 2:
1407 stw_p(ptr, cpu_inw(port));
1408 break;
1409 case 4:
1410 stl_p(ptr, cpu_inl(port));
1411 break;
1413 } else {
1414 switch (size) {
1415 case 1:
1416 cpu_outb(port, ldub_p(ptr));
1417 break;
1418 case 2:
1419 cpu_outw(port, lduw_p(ptr));
1420 break;
1421 case 4:
1422 cpu_outl(port, ldl_p(ptr));
1423 break;
1427 ptr += size;
1431 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1433 fprintf(stderr, "KVM internal error.");
1434 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1435 int i;
1437 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1438 for (i = 0; i < run->internal.ndata; ++i) {
1439 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1440 i, (uint64_t)run->internal.data[i]);
1442 } else {
1443 fprintf(stderr, "\n");
1445 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1446 fprintf(stderr, "emulation failure\n");
1447 if (!kvm_arch_stop_on_emulation_error(env)) {
1448 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1449 return EXCP_INTERRUPT;
1452 /* FIXME: Should trigger a qmp message to let management know
1453 * something went wrong.
1455 return -1;
1458 void kvm_flush_coalesced_mmio_buffer(void)
1460 KVMState *s = kvm_state;
1462 if (s->coalesced_flush_in_progress) {
1463 return;
1466 s->coalesced_flush_in_progress = true;
1468 if (s->coalesced_mmio_ring) {
1469 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1470 while (ring->first != ring->last) {
1471 struct kvm_coalesced_mmio *ent;
1473 ent = &ring->coalesced_mmio[ring->first];
1475 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1476 smp_wmb();
1477 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1481 s->coalesced_flush_in_progress = false;
1484 static void do_kvm_cpu_synchronize_state(void *_env)
1486 CPUArchState *env = _env;
1488 if (!env->kvm_vcpu_dirty) {
1489 kvm_arch_get_registers(env);
1490 env->kvm_vcpu_dirty = 1;
1494 void kvm_cpu_synchronize_state(CPUArchState *env)
1496 if (!env->kvm_vcpu_dirty) {
1497 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1501 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1503 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1504 env->kvm_vcpu_dirty = 0;
1507 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1509 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1510 env->kvm_vcpu_dirty = 0;
1513 int kvm_cpu_exec(CPUArchState *env)
1515 struct kvm_run *run = env->kvm_run;
1516 int ret, run_ret;
1518 DPRINTF("kvm_cpu_exec()\n");
1520 if (kvm_arch_process_async_events(env)) {
1521 env->exit_request = 0;
1522 return EXCP_HLT;
1525 do {
1526 if (env->kvm_vcpu_dirty) {
1527 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1528 env->kvm_vcpu_dirty = 0;
1531 kvm_arch_pre_run(env, run);
1532 if (env->exit_request) {
1533 DPRINTF("interrupt exit requested\n");
1535 * KVM requires us to reenter the kernel after IO exits to complete
1536 * instruction emulation. This self-signal will ensure that we
1537 * leave ASAP again.
1539 qemu_cpu_kick_self();
1541 qemu_mutex_unlock_iothread();
1543 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1545 qemu_mutex_lock_iothread();
1546 kvm_arch_post_run(env, run);
1548 kvm_flush_coalesced_mmio_buffer();
1550 if (run_ret < 0) {
1551 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1552 DPRINTF("io window exit\n");
1553 ret = EXCP_INTERRUPT;
1554 break;
1556 fprintf(stderr, "error: kvm run failed %s\n",
1557 strerror(-run_ret));
1558 abort();
1561 switch (run->exit_reason) {
1562 case KVM_EXIT_IO:
1563 DPRINTF("handle_io\n");
1564 kvm_handle_io(run->io.port,
1565 (uint8_t *)run + run->io.data_offset,
1566 run->io.direction,
1567 run->io.size,
1568 run->io.count);
1569 ret = 0;
1570 break;
1571 case KVM_EXIT_MMIO:
1572 DPRINTF("handle_mmio\n");
1573 cpu_physical_memory_rw(run->mmio.phys_addr,
1574 run->mmio.data,
1575 run->mmio.len,
1576 run->mmio.is_write);
1577 ret = 0;
1578 break;
1579 case KVM_EXIT_IRQ_WINDOW_OPEN:
1580 DPRINTF("irq_window_open\n");
1581 ret = EXCP_INTERRUPT;
1582 break;
1583 case KVM_EXIT_SHUTDOWN:
1584 DPRINTF("shutdown\n");
1585 qemu_system_reset_request();
1586 ret = EXCP_INTERRUPT;
1587 break;
1588 case KVM_EXIT_UNKNOWN:
1589 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1590 (uint64_t)run->hw.hardware_exit_reason);
1591 ret = -1;
1592 break;
1593 case KVM_EXIT_INTERNAL_ERROR:
1594 ret = kvm_handle_internal_error(env, run);
1595 break;
1596 default:
1597 DPRINTF("kvm_arch_handle_exit\n");
1598 ret = kvm_arch_handle_exit(env, run);
1599 break;
1601 } while (ret == 0);
1603 if (ret < 0) {
1604 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1605 vm_stop(RUN_STATE_INTERNAL_ERROR);
1608 env->exit_request = 0;
1609 return ret;
1612 int kvm_ioctl(KVMState *s, int type, ...)
1614 int ret;
1615 void *arg;
1616 va_list ap;
1618 va_start(ap, type);
1619 arg = va_arg(ap, void *);
1620 va_end(ap);
1622 ret = ioctl(s->fd, type, arg);
1623 if (ret == -1) {
1624 ret = -errno;
1626 return ret;
1629 int kvm_vm_ioctl(KVMState *s, int type, ...)
1631 int ret;
1632 void *arg;
1633 va_list ap;
1635 va_start(ap, type);
1636 arg = va_arg(ap, void *);
1637 va_end(ap);
1639 ret = ioctl(s->vmfd, type, arg);
1640 if (ret == -1) {
1641 ret = -errno;
1643 return ret;
1646 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1648 int ret;
1649 void *arg;
1650 va_list ap;
1652 va_start(ap, type);
1653 arg = va_arg(ap, void *);
1654 va_end(ap);
1656 ret = ioctl(env->kvm_fd, type, arg);
1657 if (ret == -1) {
1658 ret = -errno;
1660 return ret;
1663 int kvm_has_sync_mmu(void)
1665 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1668 int kvm_has_vcpu_events(void)
1670 return kvm_state->vcpu_events;
1673 int kvm_has_robust_singlestep(void)
1675 return kvm_state->robust_singlestep;
1678 int kvm_has_debugregs(void)
1680 return kvm_state->debugregs;
1683 int kvm_has_xsave(void)
1685 return kvm_state->xsave;
1688 int kvm_has_xcrs(void)
1690 return kvm_state->xcrs;
1693 int kvm_has_pit_state2(void)
1695 return kvm_state->pit_state2;
1698 int kvm_has_many_ioeventfds(void)
1700 if (!kvm_enabled()) {
1701 return 0;
1703 return kvm_state->many_ioeventfds;
1706 int kvm_has_gsi_routing(void)
1708 #ifdef KVM_CAP_IRQ_ROUTING
1709 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1710 #else
1711 return false;
1712 #endif
1715 int kvm_has_intx_set_mask(void)
1717 return kvm_state->intx_set_mask;
1720 void *kvm_vmalloc(ram_addr_t size)
1722 #ifdef TARGET_S390X
1723 void *mem;
1725 mem = kvm_arch_vmalloc(size);
1726 if (mem) {
1727 return mem;
1729 #endif
1730 return qemu_vmalloc(size);
1733 void kvm_setup_guest_memory(void *start, size_t size)
1735 if (!kvm_has_sync_mmu()) {
1736 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1738 if (ret) {
1739 perror("qemu_madvise");
1740 fprintf(stderr,
1741 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1742 exit(1);
1747 #ifdef KVM_CAP_SET_GUEST_DEBUG
1748 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1749 target_ulong pc)
1751 struct kvm_sw_breakpoint *bp;
1753 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1754 if (bp->pc == pc) {
1755 return bp;
1758 return NULL;
1761 int kvm_sw_breakpoints_active(CPUArchState *env)
1763 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1766 struct kvm_set_guest_debug_data {
1767 struct kvm_guest_debug dbg;
1768 CPUArchState *env;
1769 int err;
1772 static void kvm_invoke_set_guest_debug(void *data)
1774 struct kvm_set_guest_debug_data *dbg_data = data;
1775 CPUArchState *env = dbg_data->env;
1777 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1780 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1782 struct kvm_set_guest_debug_data data;
1784 data.dbg.control = reinject_trap;
1786 if (env->singlestep_enabled) {
1787 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1789 kvm_arch_update_guest_debug(env, &data.dbg);
1790 data.env = env;
1792 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1793 return data.err;
1796 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1797 target_ulong len, int type)
1799 struct kvm_sw_breakpoint *bp;
1800 CPUArchState *env;
1801 int err;
1803 if (type == GDB_BREAKPOINT_SW) {
1804 bp = kvm_find_sw_breakpoint(current_env, addr);
1805 if (bp) {
1806 bp->use_count++;
1807 return 0;
1810 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1811 if (!bp) {
1812 return -ENOMEM;
1815 bp->pc = addr;
1816 bp->use_count = 1;
1817 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1818 if (err) {
1819 g_free(bp);
1820 return err;
1823 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1824 bp, entry);
1825 } else {
1826 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1827 if (err) {
1828 return err;
1832 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1833 err = kvm_update_guest_debug(env, 0);
1834 if (err) {
1835 return err;
1838 return 0;
1841 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1842 target_ulong len, int type)
1844 struct kvm_sw_breakpoint *bp;
1845 CPUArchState *env;
1846 int err;
1848 if (type == GDB_BREAKPOINT_SW) {
1849 bp = kvm_find_sw_breakpoint(current_env, addr);
1850 if (!bp) {
1851 return -ENOENT;
1854 if (bp->use_count > 1) {
1855 bp->use_count--;
1856 return 0;
1859 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1860 if (err) {
1861 return err;
1864 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1865 g_free(bp);
1866 } else {
1867 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1868 if (err) {
1869 return err;
1873 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1874 err = kvm_update_guest_debug(env, 0);
1875 if (err) {
1876 return err;
1879 return 0;
1882 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1884 struct kvm_sw_breakpoint *bp, *next;
1885 KVMState *s = current_env->kvm_state;
1886 CPUArchState *env;
1888 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1889 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1890 /* Try harder to find a CPU that currently sees the breakpoint. */
1891 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1892 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1893 break;
1898 kvm_arch_remove_all_hw_breakpoints();
1900 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1901 kvm_update_guest_debug(env, 0);
1905 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1907 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1909 return -EINVAL;
1912 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1913 target_ulong len, int type)
1915 return -EINVAL;
1918 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1919 target_ulong len, int type)
1921 return -EINVAL;
1924 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1927 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1929 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1931 struct kvm_signal_mask *sigmask;
1932 int r;
1934 if (!sigset) {
1935 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1938 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1940 sigmask->len = 8;
1941 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1942 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1943 g_free(sigmask);
1945 return r;
1948 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1949 uint32_t size)
1951 int ret;
1952 struct kvm_ioeventfd iofd;
1954 iofd.datamatch = val;
1955 iofd.addr = addr;
1956 iofd.len = size;
1957 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1958 iofd.fd = fd;
1960 if (!kvm_enabled()) {
1961 return -ENOSYS;
1964 if (!assign) {
1965 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1968 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1970 if (ret < 0) {
1971 return -errno;
1974 return 0;
1977 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1979 struct kvm_ioeventfd kick = {
1980 .datamatch = val,
1981 .addr = addr,
1982 .len = 2,
1983 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1984 .fd = fd,
1986 int r;
1987 if (!kvm_enabled()) {
1988 return -ENOSYS;
1990 if (!assign) {
1991 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1993 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1994 if (r < 0) {
1995 return r;
1997 return 0;
2000 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
2002 return kvm_arch_on_sigbus_vcpu(env, code, addr);
2005 int kvm_on_sigbus(int code, void *addr)
2007 return kvm_arch_on_sigbus(code, addr);
2010 #undef PAGE_SIZE
2011 #include "qemu-kvm.c"