2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
47 #include <machine/profile.h>
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
65 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_UNASSIGNED
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
80 #define SMC_BITMAP_USE_THRESHOLD 10
82 static TranslationBlock
*tbs
;
83 static int code_gen_max_blocks
;
84 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
100 #define code_gen_section \
101 __attribute__((aligned (32)))
104 uint8_t code_gen_prologue
[1024] code_gen_section
;
105 static uint8_t *code_gen_buffer
;
106 static unsigned long code_gen_buffer_size
;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size
;
109 static uint8_t *code_gen_ptr
;
111 #if !defined(CONFIG_USER_ONLY)
113 static int in_migration
;
115 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
117 static MemoryRegion
*system_memory
;
118 static MemoryRegion
*system_io
;
120 MemoryRegion io_mem_ram
, io_mem_rom
, io_mem_unassigned
, io_mem_notdirty
;
121 static MemoryRegion io_mem_subpage_ram
;
125 CPUArchState
*first_cpu
;
126 /* current CPU in the current thread. It is only valid inside
128 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
134 typedef struct PageDesc
{
135 /* list of TBs intersecting this ram page */
136 TranslationBlock
*first_tb
;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count
;
140 uint8_t *code_bitmap
;
141 #if defined(CONFIG_USER_ONLY)
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
158 /* Size of the L2 (and L3, etc) page tables. */
160 #define L2_SIZE (1 << L2_BITS)
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #define V_L1_BITS V_L1_BITS_REM
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179 uintptr_t qemu_real_host_page_size
;
180 uintptr_t qemu_host_page_size
;
181 uintptr_t qemu_host_page_mask
;
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map
[V_L1_SIZE
];
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry
;
190 static MemoryRegionSection
*phys_sections
;
191 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
192 static uint16_t phys_section_unassigned
;
193 static uint16_t phys_section_notdirty
;
194 static uint16_t phys_section_rom
;
195 static uint16_t phys_section_watch
;
197 struct PhysPageEntry
{
198 uint16_t is_leaf
: 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
205 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map
= { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
213 static void io_mem_init(void);
214 static void memory_map_init(void);
216 static MemoryRegion io_mem_watch
;
220 static int tb_flush_count
;
221 static int tb_phys_invalidate_count
;
224 static void map_exec(void *addr
, long size
)
227 VirtualProtect(addr
, size
,
228 PAGE_EXECUTE_READWRITE
, &old_protect
);
232 static void map_exec(void *addr
, long size
)
234 unsigned long start
, end
, page_size
;
236 page_size
= getpagesize();
237 start
= (unsigned long)addr
;
238 start
&= ~(page_size
- 1);
240 end
= (unsigned long)addr
+ size
;
241 end
+= page_size
- 1;
242 end
&= ~(page_size
- 1);
244 mprotect((void *)start
, end
- start
,
245 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
249 static void page_init(void)
251 /* NOTE: we can always suppose that qemu_host_page_size >=
255 SYSTEM_INFO system_info
;
257 GetSystemInfo(&system_info
);
258 qemu_real_host_page_size
= system_info
.dwPageSize
;
261 qemu_real_host_page_size
= getpagesize();
263 if (qemu_host_page_size
== 0)
264 qemu_host_page_size
= qemu_real_host_page_size
;
265 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
266 qemu_host_page_size
= TARGET_PAGE_SIZE
;
267 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry
*freep
;
275 freep
= kinfo_getvmmap(getpid(), &cnt
);
278 for (i
= 0; i
< cnt
; i
++) {
279 unsigned long startaddr
, endaddr
;
281 startaddr
= freep
[i
].kve_start
;
282 endaddr
= freep
[i
].kve_end
;
283 if (h2g_valid(startaddr
)) {
284 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
286 if (h2g_valid(endaddr
)) {
287 endaddr
= h2g(endaddr
);
288 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
292 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
303 last_brk
= (unsigned long)sbrk(0);
305 f
= fopen("/compat/linux/proc/self/maps", "r");
310 unsigned long startaddr
, endaddr
;
313 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
315 if (n
== 2 && h2g_valid(startaddr
)) {
316 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
318 if (h2g_valid(endaddr
)) {
319 endaddr
= h2g(endaddr
);
323 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
335 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
353 /* Level 1. Always allocated. */
354 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
357 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
364 ALLOC(p
, sizeof(void *) * L2_SIZE
);
368 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
376 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
382 return pd
+ (index
& (L2_SIZE
- 1));
385 static inline PageDesc
*page_find(tb_page_addr_t index
)
387 return page_find_alloc(index
, 0);
390 #if !defined(CONFIG_USER_ONLY)
392 static void phys_map_node_reserve(unsigned nodes
)
394 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
395 typedef PhysPageEntry Node
[L2_SIZE
];
396 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
397 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
398 phys_map_nodes_nb
+ nodes
);
399 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
400 phys_map_nodes_nb_alloc
);
404 static uint16_t phys_map_node_alloc(void)
409 ret
= phys_map_nodes_nb
++;
410 assert(ret
!= PHYS_MAP_NODE_NIL
);
411 assert(ret
!= phys_map_nodes_nb_alloc
);
412 for (i
= 0; i
< L2_SIZE
; ++i
) {
413 phys_map_nodes
[ret
][i
].is_leaf
= 0;
414 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
419 static void phys_map_nodes_reset(void)
421 phys_map_nodes_nb
= 0;
425 static void phys_page_set_level(PhysPageEntry
*lp
, target_phys_addr_t
*index
,
426 target_phys_addr_t
*nb
, uint16_t leaf
,
431 target_phys_addr_t step
= (target_phys_addr_t
)1 << (level
* L2_BITS
);
433 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
434 lp
->ptr
= phys_map_node_alloc();
435 p
= phys_map_nodes
[lp
->ptr
];
437 for (i
= 0; i
< L2_SIZE
; i
++) {
439 p
[i
].ptr
= phys_section_unassigned
;
443 p
= phys_map_nodes
[lp
->ptr
];
445 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
447 while (*nb
&& lp
< &p
[L2_SIZE
]) {
448 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
454 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
460 static void phys_page_set(target_phys_addr_t index
, target_phys_addr_t nb
,
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS
);
466 phys_page_set_level(&phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
469 MemoryRegionSection
*phys_page_find(target_phys_addr_t index
)
471 PhysPageEntry lp
= phys_map
;
474 uint16_t s_index
= phys_section_unassigned
;
476 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
477 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
480 p
= phys_map_nodes
[lp
.ptr
];
481 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
486 return &phys_sections
[s_index
];
489 bool memory_region_is_unassigned(MemoryRegion
*mr
)
491 return mr
!= &io_mem_ram
&& mr
!= &io_mem_rom
492 && mr
!= &io_mem_notdirty
&& !mr
->rom_device
493 && mr
!= &io_mem_watch
;
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
510 __attribute__((aligned (CODE_GEN_ALIGN
)));
513 static void code_gen_alloc(unsigned long tb_size
)
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer
= static_code_gen_buffer
;
517 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
518 map_exec(code_gen_buffer
, code_gen_buffer_size
);
520 code_gen_buffer_size
= tb_size
;
521 if (code_gen_buffer_size
== 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
525 /* XXX: needs adjustments */
526 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
529 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
530 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
538 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
539 #if defined(__x86_64__)
541 /* Cannot map more than that */
542 if (code_gen_buffer_size
> (800 * 1024 * 1024))
543 code_gen_buffer_size
= (800 * 1024 * 1024);
544 #elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
547 start
= (void *) 0x60000000UL
;
548 if (code_gen_buffer_size
> (512 * 1024 * 1024))
549 code_gen_buffer_size
= (512 * 1024 * 1024);
550 #elif defined(__arm__)
551 /* Keep the buffer no bigger than 16MB to branch between blocks */
552 if (code_gen_buffer_size
> 16 * 1024 * 1024)
553 code_gen_buffer_size
= 16 * 1024 * 1024;
554 #elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
560 start
= (void *)0x90000000UL
;
562 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
563 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
565 if (code_gen_buffer
== MAP_FAILED
) {
566 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
570 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
576 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
577 #if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
581 addr
= (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size
> (800 * 1024 * 1024))
584 code_gen_buffer_size
= (800 * 1024 * 1024);
585 #elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
588 addr
= (void *) 0x60000000UL
;
589 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
590 code_gen_buffer_size
= (512 * 1024 * 1024);
593 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
594 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
596 if (code_gen_buffer
== MAP_FAILED
) {
597 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
602 code_gen_buffer
= g_malloc(code_gen_buffer_size
);
603 map_exec(code_gen_buffer
, code_gen_buffer_size
);
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
607 code_gen_buffer_max_size
= code_gen_buffer_size
-
608 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
609 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
610 tbs
= g_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
616 void tcg_exec_init(unsigned long tb_size
)
619 code_gen_alloc(tb_size
);
620 code_gen_ptr
= code_gen_buffer
;
621 tcg_register_jit(code_gen_buffer
, code_gen_buffer_size
);
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx
);
630 bool tcg_enabled(void)
632 return code_gen_buffer
!= NULL
;
635 void cpu_exec_init_all(void)
637 #if !defined(CONFIG_USER_ONLY)
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
645 static int cpu_common_post_load(void *opaque
, int version_id
)
647 CPUArchState
*env
= opaque
;
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env
->interrupt_request
&= ~0x01;
657 static const VMStateDescription vmstate_cpu_common
= {
658 .name
= "cpu_common",
660 .minimum_version_id
= 1,
661 .minimum_version_id_old
= 1,
662 .post_load
= cpu_common_post_load
,
663 .fields
= (VMStateField
[]) {
664 VMSTATE_UINT32(halted
, CPUArchState
),
665 VMSTATE_UINT32(interrupt_request
, CPUArchState
),
666 VMSTATE_END_OF_LIST()
671 CPUArchState
*qemu_get_cpu(int cpu
)
673 CPUArchState
*env
= first_cpu
;
676 if (env
->cpu_index
== cpu
)
684 void cpu_exec_init(CPUArchState
*env
)
689 #if defined(CONFIG_USER_ONLY)
692 env
->next_cpu
= NULL
;
695 while (*penv
!= NULL
) {
696 penv
= &(*penv
)->next_cpu
;
699 env
->cpu_index
= cpu_index
;
701 QTAILQ_INIT(&env
->breakpoints
);
702 QTAILQ_INIT(&env
->watchpoints
);
703 #ifndef CONFIG_USER_ONLY
704 env
->thread_id
= qemu_get_thread_id();
707 #if defined(CONFIG_USER_ONLY)
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
712 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
713 cpu_save
, cpu_load
, env
);
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock
*tb_alloc(target_ulong pc
)
721 TranslationBlock
*tb
;
723 if (nb_tbs
>= code_gen_max_blocks
||
724 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
732 void tb_free(TranslationBlock
*tb
)
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
738 code_gen_ptr
= tb
->tc_ptr
;
743 static inline void invalidate_page_bitmap(PageDesc
*p
)
745 if (p
->code_bitmap
) {
746 g_free(p
->code_bitmap
);
747 p
->code_bitmap
= NULL
;
749 p
->code_write_count
= 0;
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
754 static void page_flush_tb_1 (int level
, void **lp
)
763 for (i
= 0; i
< L2_SIZE
; ++i
) {
764 pd
[i
].first_tb
= NULL
;
765 invalidate_page_bitmap(pd
+ i
);
769 for (i
= 0; i
< L2_SIZE
; ++i
) {
770 page_flush_tb_1 (level
- 1, pp
+ i
);
775 static void page_flush_tb(void)
778 for (i
= 0; i
< V_L1_SIZE
; i
++) {
779 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState
*env1
)
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
792 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
794 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
795 cpu_abort(env1
, "Internal error: code buffer overflow\n");
799 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
800 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
803 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
806 code_gen_ptr
= code_gen_buffer
;
807 /* XXX: flush processor icache at this point if cache flush is
812 #ifdef DEBUG_TB_CHECK
814 static void tb_invalidate_check(target_ulong address
)
816 TranslationBlock
*tb
;
818 address
&= TARGET_PAGE_MASK
;
819 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
820 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
821 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
822 address
>= tb
->pc
+ tb
->size
)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address
, (long)tb
->pc
, tb
->size
);
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
834 TranslationBlock
*tb
;
835 int i
, flags1
, flags2
;
837 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
838 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
839 flags1
= page_get_flags(tb
->pc
);
840 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
841 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
855 TranslationBlock
*tb1
;
859 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
862 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
866 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
868 TranslationBlock
*tb1
;
873 n1
= (uintptr_t)tb1
& 3;
874 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
876 *ptb
= tb1
->page_next
[n1
];
879 ptb
= &tb1
->page_next
[n1
];
883 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
885 TranslationBlock
*tb1
, **ptb
;
888 ptb
= &tb
->jmp_next
[n
];
891 /* find tb(n) in circular list */
894 n1
= (uintptr_t)tb1
& 3;
895 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
896 if (n1
== n
&& tb1
== tb
)
899 ptb
= &tb1
->jmp_first
;
901 ptb
= &tb1
->jmp_next
[n1
];
904 /* now we can suppress tb(n) from the list */
905 *ptb
= tb
->jmp_next
[n
];
907 tb
->jmp_next
[n
] = NULL
;
911 /* reset the jump entry 'n' of a TB so that it is not chained to
913 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
915 tb_set_jmp_target(tb
, n
, (uintptr_t)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
918 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
923 tb_page_addr_t phys_pc
;
924 TranslationBlock
*tb1
, *tb2
;
926 /* remove the TB from the hash list */
927 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
928 h
= tb_phys_hash_func(phys_pc
);
929 tb_remove(&tb_phys_hash
[h
], tb
,
930 offsetof(TranslationBlock
, phys_hash_next
));
932 /* remove the TB from the page list */
933 if (tb
->page_addr
[0] != page_addr
) {
934 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
935 tb_page_remove(&p
->first_tb
, tb
);
936 invalidate_page_bitmap(p
);
938 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
939 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
940 tb_page_remove(&p
->first_tb
, tb
);
941 invalidate_page_bitmap(p
);
944 tb_invalidated_flag
= 1;
946 /* remove the TB from the hash list */
947 h
= tb_jmp_cache_hash_func(tb
->pc
);
948 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
949 if (env
->tb_jmp_cache
[h
] == tb
)
950 env
->tb_jmp_cache
[h
] = NULL
;
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb
, 0);
955 tb_jmp_remove(tb
, 1);
957 /* suppress any remaining jumps to this TB */
960 n1
= (uintptr_t)tb1
& 3;
963 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
964 tb2
= tb1
->jmp_next
[n1
];
965 tb_reset_jump(tb1
, n1
);
966 tb1
->jmp_next
[n1
] = NULL
;
969 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2); /* fail safe */
971 tb_phys_invalidate_count
++;
974 static inline void set_bits(uint8_t *tab
, int start
, int len
)
980 mask
= 0xff << (start
& 7);
981 if ((start
& ~7) == (end
& ~7)) {
983 mask
&= ~(0xff << (end
& 7));
988 start
= (start
+ 8) & ~7;
990 while (start
< end1
) {
995 mask
= ~(0xff << (end
& 7));
1001 static void build_page_bitmap(PageDesc
*p
)
1003 int n
, tb_start
, tb_end
;
1004 TranslationBlock
*tb
;
1006 p
->code_bitmap
= g_malloc0(TARGET_PAGE_SIZE
/ 8);
1009 while (tb
!= NULL
) {
1010 n
= (uintptr_t)tb
& 3;
1011 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1017 tb_end
= tb_start
+ tb
->size
;
1018 if (tb_end
> TARGET_PAGE_SIZE
)
1019 tb_end
= TARGET_PAGE_SIZE
;
1022 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1024 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1025 tb
= tb
->page_next
[n
];
1029 TranslationBlock
*tb_gen_code(CPUArchState
*env
,
1030 target_ulong pc
, target_ulong cs_base
,
1031 int flags
, int cflags
)
1033 TranslationBlock
*tb
;
1035 tb_page_addr_t phys_pc
, phys_page2
;
1036 target_ulong virt_page2
;
1039 phys_pc
= get_page_addr_code(env
, pc
);
1042 /* flush must be done */
1044 /* cannot fail at this point */
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag
= 1;
1049 tc_ptr
= code_gen_ptr
;
1050 tb
->tc_ptr
= tc_ptr
;
1051 tb
->cs_base
= cs_base
;
1053 tb
->cflags
= cflags
;
1054 cpu_gen_code(env
, tb
, &code_gen_size
);
1055 code_gen_ptr
= (void *)(((uintptr_t)code_gen_ptr
+ code_gen_size
+
1056 CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
1058 /* check next page if needed */
1059 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1061 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1062 phys_page2
= get_page_addr_code(env
, virt_page2
);
1064 tb_link_page(tb
, phys_pc
, phys_page2
);
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1075 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
,
1076 int is_cpu_write_access
)
1078 while (start
< end
) {
1079 tb_invalidate_phys_page_range(start
, end
, is_cpu_write_access
);
1080 start
&= TARGET_PAGE_MASK
;
1081 start
+= TARGET_PAGE_SIZE
;
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1093 int is_cpu_write_access
)
1095 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1096 CPUArchState
*env
= cpu_single_env
;
1097 tb_page_addr_t tb_start
, tb_end
;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found
= is_cpu_write_access
;
1102 TranslationBlock
*current_tb
= NULL
;
1103 int current_tb_modified
= 0;
1104 target_ulong current_pc
= 0;
1105 target_ulong current_cs_base
= 0;
1106 int current_flags
= 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1109 p
= page_find(start
>> TARGET_PAGE_BITS
);
1112 if (!p
->code_bitmap
&&
1113 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1114 is_cpu_write_access
) {
1115 /* build code bitmap */
1116 build_page_bitmap(p
);
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1122 while (tb
!= NULL
) {
1123 n
= (uintptr_t)tb
& 3;
1124 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1125 tb_next
= tb
->page_next
[n
];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1131 tb_end
= tb_start
+ tb
->size
;
1133 tb_start
= tb
->page_addr
[1];
1134 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1136 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found
) {
1139 current_tb_not_found
= 0;
1141 if (env
->mem_io_pc
) {
1142 /* now we have a real cpu fault */
1143 current_tb
= tb_find_pc(env
->mem_io_pc
);
1146 if (current_tb
== tb
&&
1147 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1154 current_tb_modified
= 1;
1155 cpu_restore_state(current_tb
, env
, env
->mem_io_pc
);
1156 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1164 saved_tb
= env
->current_tb
;
1165 env
->current_tb
= NULL
;
1167 tb_phys_invalidate(tb
, -1);
1169 env
->current_tb
= saved_tb
;
1170 if (env
->interrupt_request
&& env
->current_tb
)
1171 cpu_interrupt(env
, env
->interrupt_request
);
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1179 invalidate_page_bitmap(p
);
1180 if (is_cpu_write_access
) {
1181 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified
) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1190 env
->current_tb
= NULL
;
1191 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1192 cpu_resume_from_signal(env
, NULL
);
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env
->mem_io_vaddr
, len
,
1206 cpu_single_env
->eip
,
1207 cpu_single_env
->eip
+
1208 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1211 p
= page_find(start
>> TARGET_PAGE_BITS
);
1214 if (p
->code_bitmap
) {
1215 offset
= start
& ~TARGET_PAGE_MASK
;
1216 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1217 if (b
& ((1 << len
) - 1))
1221 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1227 uintptr_t pc
, void *puc
)
1229 TranslationBlock
*tb
;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock
*current_tb
= NULL
;
1234 CPUArchState
*env
= cpu_single_env
;
1235 int current_tb_modified
= 0;
1236 target_ulong current_pc
= 0;
1237 target_ulong current_cs_base
= 0;
1238 int current_flags
= 0;
1241 addr
&= TARGET_PAGE_MASK
;
1242 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb
&& pc
!= 0) {
1248 current_tb
= tb_find_pc(pc
);
1251 while (tb
!= NULL
) {
1252 n
= (uintptr_t)tb
& 3;
1253 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb
== tb
&&
1256 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1263 current_tb_modified
= 1;
1264 cpu_restore_state(current_tb
, env
, pc
);
1265 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb
, addr
);
1270 tb
= tb
->page_next
[n
];
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified
) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1278 env
->current_tb
= NULL
;
1279 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1280 cpu_resume_from_signal(env
, puc
);
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock
*tb
,
1288 unsigned int n
, tb_page_addr_t page_addr
)
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected
;
1295 tb
->page_addr
[n
] = page_addr
;
1296 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1297 tb
->page_next
[n
] = p
->first_tb
;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected
= p
->first_tb
!= NULL
;
1301 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1302 invalidate_page_bitmap(p
);
1304 #if defined(TARGET_HAS_SMC) || 1
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p
->flags
& PAGE_WRITE
) {
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr
&= qemu_host_page_mask
;
1316 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1317 addr
+= TARGET_PAGE_SIZE
) {
1319 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1323 p2
->flags
&= ~PAGE_WRITE
;
1325 mprotect(g2h(page_addr
), qemu_host_page_size
,
1326 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected
) {
1337 tlb_protect_code(page_addr
);
1341 #endif /* TARGET_HAS_SMC */
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock
*tb
,
1347 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1350 TranslationBlock
**ptb
;
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1355 /* add in the physical hash table */
1356 h
= tb_phys_hash_func(phys_pc
);
1357 ptb
= &tb_phys_hash
[h
];
1358 tb
->phys_hash_next
= *ptb
;
1361 /* add in the page list */
1362 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1363 if (phys_page2
!= -1)
1364 tb_alloc_page(tb
, 1, phys_page2
);
1366 tb
->page_addr
[1] = -1;
1368 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2);
1369 tb
->jmp_next
[0] = NULL
;
1370 tb
->jmp_next
[1] = NULL
;
1372 /* init original jump addresses */
1373 if (tb
->tb_next_offset
[0] != 0xffff)
1374 tb_reset_jump(tb
, 0);
1375 if (tb
->tb_next_offset
[1] != 0xffff)
1376 tb_reset_jump(tb
, 1);
1378 #ifdef DEBUG_TB_CHECK
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1388 int m_min
, m_max
, m
;
1390 TranslationBlock
*tb
;
1394 if (tc_ptr
< (uintptr_t)code_gen_buffer
||
1395 tc_ptr
>= (uintptr_t)code_gen_ptr
) {
1398 /* binary search (cf Knuth) */
1401 while (m_min
<= m_max
) {
1402 m
= (m_min
+ m_max
) >> 1;
1404 v
= (uintptr_t)tb
->tc_ptr
;
1407 else if (tc_ptr
< v
) {
1416 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1418 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1420 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1423 tb1
= tb
->jmp_next
[n
];
1425 /* find head of list */
1427 n1
= (uintptr_t)tb1
& 3;
1428 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1431 tb1
= tb1
->jmp_next
[n1
];
1433 /* we are now sure now that tb jumps to tb1 */
1436 /* remove tb from the jmp_first list */
1437 ptb
= &tb_next
->jmp_first
;
1440 n1
= (uintptr_t)tb1
& 3;
1441 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1442 if (n1
== n
&& tb1
== tb
)
1444 ptb
= &tb1
->jmp_next
[n1
];
1446 *ptb
= tb
->jmp_next
[n
];
1447 tb
->jmp_next
[n
] = NULL
;
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb
, n
);
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next
);
1457 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1459 tb_reset_jump_recursive2(tb
, 0);
1460 tb_reset_jump_recursive2(tb
, 1);
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1467 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr
)
1472 ram_addr_t ram_addr
;
1473 MemoryRegionSection
*section
;
1475 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1476 if (!(memory_region_is_ram(section
->mr
)
1477 || (section
->mr
->rom_device
&& section
->mr
->readable
))) {
1480 ram_addr
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1481 + memory_region_section_addr(section
, addr
);
1482 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1485 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
1488 (pc
& ~TARGET_PAGE_MASK
));
1491 #endif /* TARGET_HAS_ICE */
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1499 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1500 int flags
, CPUWatchpoint
**watchpoint
)
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1507 int flags
, CPUWatchpoint
**watchpoint
)
1509 target_ulong len_mask
= ~(len
- 1);
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
1514 len
== 0 || len
> TARGET_PAGE_SIZE
) {
1515 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1519 wp
= g_malloc(sizeof(*wp
));
1522 wp
->len_mask
= len_mask
;
1525 /* keep all GDB-injected watchpoints in front */
1527 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1529 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1531 tlb_flush_page(env
, addr
);
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1542 target_ulong len_mask
= ~(len
- 1);
1545 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1546 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1547 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1548 cpu_watchpoint_remove_by_ref(env
, wp
);
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
1558 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1560 tlb_flush_page(env
, watchpoint
->vaddr
);
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1568 CPUWatchpoint
*wp
, *next
;
1570 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1571 if (wp
->flags
& mask
)
1572 cpu_watchpoint_remove_by_ref(env
, wp
);
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
1579 CPUBreakpoint
**breakpoint
)
1581 #if defined(TARGET_HAS_ICE)
1584 bp
= g_malloc(sizeof(*bp
));
1589 /* keep all GDB-injected breakpoints in front */
1591 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1593 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1595 breakpoint_invalidate(env
, pc
);
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
1608 #if defined(TARGET_HAS_ICE)
1611 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1612 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1613 cpu_breakpoint_remove_by_ref(env
, bp
);
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1629 breakpoint_invalidate(env
, breakpoint
->pc
);
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint
*bp
, *next
;
1641 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1642 if (bp
->flags
& mask
)
1643 cpu_breakpoint_remove_by_ref(env
, bp
);
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState
*env
, int enabled
)
1652 #if defined(TARGET_HAS_ICE)
1653 if (env
->singlestep_enabled
!= enabled
) {
1654 env
->singlestep_enabled
= enabled
;
1656 kvm_update_guest_debug(env
, 0);
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1666 static void cpu_unlink_tb(CPUArchState
*env
)
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock
*tb
;
1673 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1675 spin_lock(&interrupt_lock
);
1676 tb
= env
->current_tb
;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1680 env
->current_tb
= NULL
;
1681 tb_reset_jump_recursive(tb
);
1683 spin_unlock(&interrupt_lock
);
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState
*env
, int mask
)
1692 old_mask
= env
->interrupt_request
;
1693 env
->interrupt_request
|= mask
;
1696 * If called from iothread context, wake the target cpu in
1699 if (!qemu_cpu_is_self(env
)) {
1705 env
->icount_decr
.u16
.high
= 0xffff;
1707 && (mask
& ~old_mask
) != 0) {
1708 cpu_abort(env
, "Raised interrupt while not in I/O function");
1715 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1717 #else /* CONFIG_USER_ONLY */
1719 void cpu_interrupt(CPUArchState
*env
, int mask
)
1721 env
->interrupt_request
|= mask
;
1724 #endif /* CONFIG_USER_ONLY */
1726 void cpu_reset_interrupt(CPUArchState
*env
, int mask
)
1728 env
->interrupt_request
&= ~mask
;
1731 void cpu_exit(CPUArchState
*env
)
1733 env
->exit_request
= 1;
1737 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
1744 fprintf(stderr
, "qemu: fatal: ");
1745 vfprintf(stderr
, fmt
, ap
);
1746 fprintf(stderr
, "\n");
1748 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1750 cpu_dump_state(env
, stderr
, fprintf
, 0);
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt
, ap2
);
1757 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1759 log_cpu_state(env
, 0);
1766 #if defined(CONFIG_USER_ONLY)
1768 struct sigaction act
;
1769 sigfillset(&act
.sa_mask
);
1770 act
.sa_handler
= SIG_DFL
;
1771 sigaction(SIGABRT
, &act
, NULL
);
1777 CPUArchState
*cpu_copy(CPUArchState
*env
)
1779 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
1780 CPUArchState
*next_cpu
= new_env
->next_cpu
;
1781 int cpu_index
= new_env
->cpu_index
;
1782 #if defined(TARGET_HAS_ICE)
1787 memcpy(new_env
, env
, sizeof(CPUArchState
));
1789 /* Preserve chaining and index. */
1790 new_env
->next_cpu
= next_cpu
;
1791 new_env
->cpu_index
= cpu_index
;
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
1796 QTAILQ_INIT(&env
->breakpoints
);
1797 QTAILQ_INIT(&env
->watchpoints
);
1798 #if defined(TARGET_HAS_ICE)
1799 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1800 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1802 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1803 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1811 #if !defined(CONFIG_USER_ONLY)
1812 void tb_flush_jmp_cache(CPUArchState
*env
, target_ulong addr
)
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1819 memset (&env
->tb_jmp_cache
[i
], 0,
1820 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1822 i
= tb_jmp_cache_hash_page(addr
);
1823 memset (&env
->tb_jmp_cache
[i
], 0,
1824 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1827 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
1832 /* we modify the TLB cache so that the dirty bit will be set again
1833 when accessing the range */
1834 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
1835 /* Check that we don't span multiple blocks - this breaks the
1836 address comparisons below. */
1837 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
1838 != (end
- 1) - start
) {
1841 cpu_tlb_reset_dirty_all(start1
, length
);
1845 /* Note: start and end must be within the same ram block. */
1846 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1851 start
&= TARGET_PAGE_MASK
;
1852 end
= TARGET_PAGE_ALIGN(end
);
1854 length
= end
- start
;
1857 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
1859 if (tcg_enabled()) {
1860 tlb_reset_dirty_range_all(start
, end
, length
);
1864 int cpu_physical_memory_set_dirty_tracking(int enable
)
1867 in_migration
= enable
;
1871 target_phys_addr_t
memory_region_section_get_iotlb(CPUArchState
*env
,
1872 MemoryRegionSection
*section
,
1874 target_phys_addr_t paddr
,
1876 target_ulong
*address
)
1878 target_phys_addr_t iotlb
;
1881 if (memory_region_is_ram(section
->mr
)) {
1883 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1884 + memory_region_section_addr(section
, paddr
);
1885 if (!section
->readonly
) {
1886 iotlb
|= phys_section_notdirty
;
1888 iotlb
|= phys_section_rom
;
1891 /* IO handlers are currently passed a physical address.
1892 It would be nice to pass an offset from the base address
1893 of that region. This would avoid having to special case RAM,
1894 and avoid full address decoding in every device.
1895 We can't use the high bits of pd for this because
1896 IO_MEM_ROMD uses these as a ram address. */
1897 iotlb
= section
- phys_sections
;
1898 iotlb
+= memory_region_section_addr(section
, paddr
);
1901 /* Make accesses to pages with watchpoints go via the
1902 watchpoint trap routines. */
1903 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1904 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
1905 /* Avoid trapping reads of pages with a write breakpoint. */
1906 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1907 iotlb
= phys_section_watch
+ paddr
;
1908 *address
|= TLB_MMIO
;
1919 * Walks guest process memory "regions" one by one
1920 * and calls callback function 'fn' for each region.
1923 struct walk_memory_regions_data
1925 walk_memory_regions_fn fn
;
1931 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1932 abi_ulong end
, int new_prot
)
1934 if (data
->start
!= -1ul) {
1935 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1941 data
->start
= (new_prot
? end
: -1ul);
1942 data
->prot
= new_prot
;
1947 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1948 abi_ulong base
, int level
, void **lp
)
1954 return walk_memory_regions_end(data
, base
, 0);
1959 for (i
= 0; i
< L2_SIZE
; ++i
) {
1960 int prot
= pd
[i
].flags
;
1962 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1963 if (prot
!= data
->prot
) {
1964 rc
= walk_memory_regions_end(data
, pa
, prot
);
1972 for (i
= 0; i
< L2_SIZE
; ++i
) {
1973 pa
= base
| ((abi_ulong
)i
<<
1974 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
1975 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1985 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1987 struct walk_memory_regions_data data
;
1995 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1996 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
1997 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2003 return walk_memory_regions_end(&data
, 0, 0);
2006 static int dump_region(void *priv
, abi_ulong start
,
2007 abi_ulong end
, unsigned long prot
)
2009 FILE *f
= (FILE *)priv
;
2011 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2012 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2013 start
, end
, end
- start
,
2014 ((prot
& PAGE_READ
) ? 'r' : '-'),
2015 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2016 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2021 /* dump memory mappings */
2022 void page_dump(FILE *f
)
2024 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2025 "start", "end", "size", "prot");
2026 walk_memory_regions(f
, dump_region
);
2029 int page_get_flags(target_ulong address
)
2033 p
= page_find(address
>> TARGET_PAGE_BITS
);
2039 /* Modify the flags of a page and invalidate the code if necessary.
2040 The flag PAGE_WRITE_ORG is positioned automatically depending
2041 on PAGE_WRITE. The mmap_lock should already be held. */
2042 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2044 target_ulong addr
, len
;
2046 /* This function should never be called with addresses outside the
2047 guest address space. If this assert fires, it probably indicates
2048 a missing call to h2g_valid. */
2049 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2052 assert(start
< end
);
2054 start
= start
& TARGET_PAGE_MASK
;
2055 end
= TARGET_PAGE_ALIGN(end
);
2057 if (flags
& PAGE_WRITE
) {
2058 flags
|= PAGE_WRITE_ORG
;
2061 for (addr
= start
, len
= end
- start
;
2063 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2064 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2066 /* If the write protection bit is set, then we invalidate
2068 if (!(p
->flags
& PAGE_WRITE
) &&
2069 (flags
& PAGE_WRITE
) &&
2071 tb_invalidate_phys_page(addr
, 0, NULL
);
2077 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2083 /* This function should never be called with addresses outside the
2084 guest address space. If this assert fires, it probably indicates
2085 a missing call to h2g_valid. */
2086 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2087 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2093 if (start
+ len
- 1 < start
) {
2094 /* We've wrapped around. */
2098 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2099 start
= start
& TARGET_PAGE_MASK
;
2101 for (addr
= start
, len
= end
- start
;
2103 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2104 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2107 if( !(p
->flags
& PAGE_VALID
) )
2110 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2112 if (flags
& PAGE_WRITE
) {
2113 if (!(p
->flags
& PAGE_WRITE_ORG
))
2115 /* unprotect the page if it was put read-only because it
2116 contains translated code */
2117 if (!(p
->flags
& PAGE_WRITE
)) {
2118 if (!page_unprotect(addr
, 0, NULL
))
2127 /* called from signal handler: invalidate the code and unprotect the
2128 page. Return TRUE if the fault was successfully handled. */
2129 int page_unprotect(target_ulong address
, uintptr_t pc
, void *puc
)
2133 target_ulong host_start
, host_end
, addr
;
2135 /* Technically this isn't safe inside a signal handler. However we
2136 know this only ever happens in a synchronous SEGV handler, so in
2137 practice it seems to be ok. */
2140 p
= page_find(address
>> TARGET_PAGE_BITS
);
2146 /* if the page was really writable, then we change its
2147 protection back to writable */
2148 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2149 host_start
= address
& qemu_host_page_mask
;
2150 host_end
= host_start
+ qemu_host_page_size
;
2153 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2154 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2155 p
->flags
|= PAGE_WRITE
;
2158 /* and since the content will be modified, we must invalidate
2159 the corresponding translated code. */
2160 tb_invalidate_phys_page(addr
, pc
, puc
);
2161 #ifdef DEBUG_TB_CHECK
2162 tb_invalidate_check(addr
);
2165 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2174 #endif /* defined(CONFIG_USER_ONLY) */
2176 #if !defined(CONFIG_USER_ONLY)
2178 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2179 typedef struct subpage_t
{
2181 target_phys_addr_t base
;
2182 uint16_t sub_section
[TARGET_PAGE_SIZE
];
2185 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2187 static subpage_t
*subpage_init(target_phys_addr_t base
);
2188 static void destroy_page_desc(uint16_t section_index
)
2190 MemoryRegionSection
*section
= &phys_sections
[section_index
];
2191 MemoryRegion
*mr
= section
->mr
;
2194 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
2195 memory_region_destroy(&subpage
->iomem
);
2200 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
2205 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
2209 p
= phys_map_nodes
[lp
->ptr
];
2210 for (i
= 0; i
< L2_SIZE
; ++i
) {
2211 if (!p
[i
].is_leaf
) {
2212 destroy_l2_mapping(&p
[i
], level
- 1);
2214 destroy_page_desc(p
[i
].ptr
);
2218 lp
->ptr
= PHYS_MAP_NODE_NIL
;
2221 static void destroy_all_mappings(void)
2223 destroy_l2_mapping(&phys_map
, P_L2_LEVELS
- 1);
2224 phys_map_nodes_reset();
2227 static uint16_t phys_section_add(MemoryRegionSection
*section
)
2229 if (phys_sections_nb
== phys_sections_nb_alloc
) {
2230 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
2231 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
2232 phys_sections_nb_alloc
);
2234 phys_sections
[phys_sections_nb
] = *section
;
2235 return phys_sections_nb
++;
2238 static void phys_sections_clear(void)
2240 phys_sections_nb
= 0;
2243 static void register_subpage(MemoryRegionSection
*section
)
2246 target_phys_addr_t base
= section
->offset_within_address_space
2248 MemoryRegionSection
*existing
= phys_page_find(base
>> TARGET_PAGE_BITS
);
2249 MemoryRegionSection subsection
= {
2250 .offset_within_address_space
= base
,
2251 .size
= TARGET_PAGE_SIZE
,
2253 target_phys_addr_t start
, end
;
2255 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
2257 if (!(existing
->mr
->subpage
)) {
2258 subpage
= subpage_init(base
);
2259 subsection
.mr
= &subpage
->iomem
;
2260 phys_page_set(base
>> TARGET_PAGE_BITS
, 1,
2261 phys_section_add(&subsection
));
2263 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
2265 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
2266 end
= start
+ section
->size
- 1;
2267 subpage_register(subpage
, start
, end
, phys_section_add(section
));
2271 static void register_multipage(MemoryRegionSection
*section
)
2273 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
2274 ram_addr_t size
= section
->size
;
2275 target_phys_addr_t addr
;
2276 uint16_t section_index
= phys_section_add(section
);
2281 phys_page_set(addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
2285 void cpu_register_physical_memory_log(MemoryRegionSection
*section
,
2288 MemoryRegionSection now
= *section
, remain
= *section
;
2290 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
2291 || (now
.size
< TARGET_PAGE_SIZE
)) {
2292 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
2293 - now
.offset_within_address_space
,
2295 register_subpage(&now
);
2296 remain
.size
-= now
.size
;
2297 remain
.offset_within_address_space
+= now
.size
;
2298 remain
.offset_within_region
+= now
.size
;
2300 while (remain
.size
>= TARGET_PAGE_SIZE
) {
2302 if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
2303 now
.size
= TARGET_PAGE_SIZE
;
2304 register_subpage(&now
);
2306 now
.size
&= TARGET_PAGE_MASK
;
2307 register_multipage(&now
);
2309 remain
.size
-= now
.size
;
2310 remain
.offset_within_address_space
+= now
.size
;
2311 remain
.offset_within_region
+= now
.size
;
2315 register_subpage(&now
);
2320 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2323 kvm_coalesce_mmio_region(addr
, size
);
2326 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2329 kvm_uncoalesce_mmio_region(addr
, size
);
2332 void qemu_flush_coalesced_mmio_buffer(void)
2335 kvm_flush_coalesced_mmio_buffer();
2338 #if defined(__linux__) && !defined(TARGET_S390X)
2340 #include <sys/vfs.h>
2342 #define HUGETLBFS_MAGIC 0x958458f6
2344 static long gethugepagesize(const char *path
)
2350 ret
= statfs(path
, &fs
);
2351 } while (ret
!= 0 && errno
== EINTR
);
2358 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2359 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2364 static void *file_ram_alloc(RAMBlock
*block
,
2374 unsigned long hpagesize
;
2376 hpagesize
= gethugepagesize(path
);
2381 if (memory
< hpagesize
) {
2385 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2386 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2390 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2394 fd
= mkstemp(filename
);
2396 perror("unable to create backing store for hugepages");
2403 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2406 * ftruncate is not supported by hugetlbfs in older
2407 * hosts, so don't bother bailing out on errors.
2408 * If anything goes wrong with it under other filesystems,
2411 if (ftruncate(fd
, memory
))
2412 perror("ftruncate");
2415 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2416 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2417 * to sidestep this quirk.
2419 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2420 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2422 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2424 if (area
== MAP_FAILED
) {
2425 perror("file_ram_alloc: can't mmap RAM pages");
2434 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2436 RAMBlock
*block
, *next_block
;
2437 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
2439 if (QLIST_EMPTY(&ram_list
.blocks
))
2442 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2443 ram_addr_t end
, next
= RAM_ADDR_MAX
;
2445 end
= block
->offset
+ block
->length
;
2447 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2448 if (next_block
->offset
>= end
) {
2449 next
= MIN(next
, next_block
->offset
);
2452 if (next
- end
>= size
&& next
- end
< mingap
) {
2454 mingap
= next
- end
;
2458 if (offset
== RAM_ADDR_MAX
) {
2459 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
2467 static ram_addr_t
last_ram_offset(void)
2470 ram_addr_t last
= 0;
2472 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2473 last
= MAX(last
, block
->offset
+ block
->length
);
2478 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
2481 QemuOpts
*machine_opts
;
2483 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2484 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
2486 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
2487 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
2489 perror("qemu_madvise");
2490 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
2491 "but dump_guest_core=off specified\n");
2496 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
2498 RAMBlock
*new_block
, *block
;
2501 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2502 if (block
->offset
== addr
) {
2508 assert(!new_block
->idstr
[0]);
2511 char *id
= qdev_get_dev_path(dev
);
2513 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2517 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2519 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2520 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
2521 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2528 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2531 RAMBlock
*new_block
;
2533 size
= TARGET_PAGE_ALIGN(size
);
2534 new_block
= g_malloc0(sizeof(*new_block
));
2537 new_block
->offset
= find_ram_offset(size
);
2539 new_block
->host
= host
;
2540 new_block
->flags
|= RAM_PREALLOC_MASK
;
2543 #if defined (__linux__) && !defined(TARGET_S390X)
2544 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2545 if (!new_block
->host
) {
2546 new_block
->host
= qemu_vmalloc(size
);
2547 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2550 fprintf(stderr
, "-mem-path option unsupported\n");
2554 if (xen_enabled()) {
2555 xen_ram_alloc(new_block
->offset
, size
, mr
);
2556 } else if (kvm_enabled()) {
2557 /* some s390/kvm configurations have special constraints */
2558 new_block
->host
= kvm_vmalloc(size
);
2560 new_block
->host
= qemu_vmalloc(size
);
2562 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2565 new_block
->length
= size
;
2567 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2569 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
2570 last_ram_offset() >> TARGET_PAGE_BITS
);
2571 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2572 0, size
>> TARGET_PAGE_BITS
);
2573 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
2575 qemu_ram_setup_dump(new_block
->host
, size
);
2578 kvm_setup_guest_memory(new_block
->host
, size
);
2580 return new_block
->offset
;
2583 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
2585 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
2588 void qemu_ram_free_from_ptr(ram_addr_t addr
)
2592 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2593 if (addr
== block
->offset
) {
2594 QLIST_REMOVE(block
, next
);
2601 void qemu_ram_free(ram_addr_t addr
)
2605 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2606 if (addr
== block
->offset
) {
2607 QLIST_REMOVE(block
, next
);
2608 if (block
->flags
& RAM_PREALLOC_MASK
) {
2610 } else if (mem_path
) {
2611 #if defined (__linux__) && !defined(TARGET_S390X)
2613 munmap(block
->host
, block
->length
);
2616 qemu_vfree(block
->host
);
2622 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2623 munmap(block
->host
, block
->length
);
2625 if (xen_enabled()) {
2626 xen_invalidate_map_cache_entry(block
->host
);
2628 qemu_vfree(block
->host
);
2640 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2647 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2648 offset
= addr
- block
->offset
;
2649 if (offset
< block
->length
) {
2650 vaddr
= block
->host
+ offset
;
2651 if (block
->flags
& RAM_PREALLOC_MASK
) {
2655 munmap(vaddr
, length
);
2657 #if defined(__linux__) && !defined(TARGET_S390X)
2660 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
2663 flags
|= MAP_PRIVATE
;
2665 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2666 flags
, block
->fd
, offset
);
2668 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2669 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2676 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2677 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
2678 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2681 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2682 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2686 if (area
!= vaddr
) {
2687 fprintf(stderr
, "Could not remap addr: "
2688 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2692 qemu_madvise(vaddr
, length
, QEMU_MADV_MERGEABLE
);
2693 qemu_ram_setup_dump(vaddr
, length
);
2699 #endif /* !_WIN32 */
2701 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2702 With the exception of the softmmu code in this file, this should
2703 only be used for local memory (e.g. video ram) that the device owns,
2704 and knows it isn't going to access beyond the end of the block.
2706 It should not be used for general purpose DMA.
2707 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2709 void *qemu_get_ram_ptr(ram_addr_t addr
)
2713 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2714 if (addr
- block
->offset
< block
->length
) {
2715 /* Move this entry to to start of the list. */
2716 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
2717 QLIST_REMOVE(block
, next
);
2718 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
2720 if (xen_enabled()) {
2721 /* We need to check if the requested address is in the RAM
2722 * because we don't want to map the entire memory in QEMU.
2723 * In that case just map until the end of the page.
2725 if (block
->offset
== 0) {
2726 return xen_map_cache(addr
, 0, 0);
2727 } else if (block
->host
== NULL
) {
2729 xen_map_cache(block
->offset
, block
->length
, 1);
2732 return block
->host
+ (addr
- block
->offset
);
2736 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2742 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2743 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2745 void *qemu_safe_ram_ptr(ram_addr_t addr
)
2749 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2750 if (addr
- block
->offset
< block
->length
) {
2751 if (xen_enabled()) {
2752 /* We need to check if the requested address is in the RAM
2753 * because we don't want to map the entire memory in QEMU.
2754 * In that case just map until the end of the page.
2756 if (block
->offset
== 0) {
2757 return xen_map_cache(addr
, 0, 0);
2758 } else if (block
->host
== NULL
) {
2760 xen_map_cache(block
->offset
, block
->length
, 1);
2763 return block
->host
+ (addr
- block
->offset
);
2767 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2773 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2774 * but takes a size argument */
2775 void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
2780 if (xen_enabled()) {
2781 return xen_map_cache(addr
, *size
, 1);
2785 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2786 if (addr
- block
->offset
< block
->length
) {
2787 if (addr
- block
->offset
+ *size
> block
->length
)
2788 *size
= block
->length
- addr
+ block
->offset
;
2789 return block
->host
+ (addr
- block
->offset
);
2793 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2798 void qemu_put_ram_ptr(void *addr
)
2800 trace_qemu_put_ram_ptr(addr
);
2803 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2806 uint8_t *host
= ptr
;
2808 if (xen_enabled()) {
2809 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2813 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2814 /* This case append when the block is not mapped. */
2815 if (block
->host
== NULL
) {
2818 if (host
- block
->host
< block
->length
) {
2819 *ram_addr
= block
->offset
+ (host
- block
->host
);
2827 /* Some of the softmmu routines need to translate from a host pointer
2828 (typically a TLB entry) back to a ram offset. */
2829 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
2831 ram_addr_t ram_addr
;
2833 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
2834 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2840 static uint64_t unassigned_mem_read(void *opaque
, target_phys_addr_t addr
,
2843 #ifdef DEBUG_UNASSIGNED
2844 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2846 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2847 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, size
);
2852 static void unassigned_mem_write(void *opaque
, target_phys_addr_t addr
,
2853 uint64_t val
, unsigned size
)
2855 #ifdef DEBUG_UNASSIGNED
2856 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
2858 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2859 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, size
);
2863 static const MemoryRegionOps unassigned_mem_ops
= {
2864 .read
= unassigned_mem_read
,
2865 .write
= unassigned_mem_write
,
2866 .endianness
= DEVICE_NATIVE_ENDIAN
,
2869 static uint64_t error_mem_read(void *opaque
, target_phys_addr_t addr
,
2875 static void error_mem_write(void *opaque
, target_phys_addr_t addr
,
2876 uint64_t value
, unsigned size
)
2881 static const MemoryRegionOps error_mem_ops
= {
2882 .read
= error_mem_read
,
2883 .write
= error_mem_write
,
2884 .endianness
= DEVICE_NATIVE_ENDIAN
,
2887 static const MemoryRegionOps rom_mem_ops
= {
2888 .read
= error_mem_read
,
2889 .write
= unassigned_mem_write
,
2890 .endianness
= DEVICE_NATIVE_ENDIAN
,
2893 static void notdirty_mem_write(void *opaque
, target_phys_addr_t ram_addr
,
2894 uint64_t val
, unsigned size
)
2897 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2898 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2899 #if !defined(CONFIG_USER_ONLY)
2900 tb_invalidate_phys_page_fast(ram_addr
, size
);
2901 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2906 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2909 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2912 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2917 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2918 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
2919 /* we remove the notdirty callback only if the code has been
2921 if (dirty_flags
== 0xff)
2922 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2925 static const MemoryRegionOps notdirty_mem_ops
= {
2926 .read
= error_mem_read
,
2927 .write
= notdirty_mem_write
,
2928 .endianness
= DEVICE_NATIVE_ENDIAN
,
2931 /* Generate a debug exception if a watchpoint has been hit. */
2932 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2934 CPUArchState
*env
= cpu_single_env
;
2935 target_ulong pc
, cs_base
;
2936 TranslationBlock
*tb
;
2941 if (env
->watchpoint_hit
) {
2942 /* We re-entered the check after replacing the TB. Now raise
2943 * the debug interrupt so that is will trigger after the
2944 * current instruction. */
2945 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2948 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2949 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2950 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2951 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2952 wp
->flags
|= BP_WATCHPOINT_HIT
;
2953 if (!env
->watchpoint_hit
) {
2954 env
->watchpoint_hit
= wp
;
2955 tb
= tb_find_pc(env
->mem_io_pc
);
2957 cpu_abort(env
, "check_watchpoint: could not find TB for "
2958 "pc=%p", (void *)env
->mem_io_pc
);
2960 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
2961 tb_phys_invalidate(tb
, -1);
2962 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2963 env
->exception_index
= EXCP_DEBUG
;
2966 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2967 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2968 cpu_resume_from_signal(env
, NULL
);
2972 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2977 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2978 so these check for a hit then pass through to the normal out-of-line
2980 static uint64_t watch_mem_read(void *opaque
, target_phys_addr_t addr
,
2983 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
2985 case 1: return ldub_phys(addr
);
2986 case 2: return lduw_phys(addr
);
2987 case 4: return ldl_phys(addr
);
2992 static void watch_mem_write(void *opaque
, target_phys_addr_t addr
,
2993 uint64_t val
, unsigned size
)
2995 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
2998 stb_phys(addr
, val
);
3001 stw_phys(addr
, val
);
3004 stl_phys(addr
, val
);
3010 static const MemoryRegionOps watch_mem_ops
= {
3011 .read
= watch_mem_read
,
3012 .write
= watch_mem_write
,
3013 .endianness
= DEVICE_NATIVE_ENDIAN
,
3016 static uint64_t subpage_read(void *opaque
, target_phys_addr_t addr
,
3019 subpage_t
*mmio
= opaque
;
3020 unsigned int idx
= SUBPAGE_IDX(addr
);
3021 MemoryRegionSection
*section
;
3022 #if defined(DEBUG_SUBPAGE)
3023 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3024 mmio
, len
, addr
, idx
);
3027 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3029 addr
-= section
->offset_within_address_space
;
3030 addr
+= section
->offset_within_region
;
3031 return io_mem_read(section
->mr
, addr
, len
);
3034 static void subpage_write(void *opaque
, target_phys_addr_t addr
,
3035 uint64_t value
, unsigned len
)
3037 subpage_t
*mmio
= opaque
;
3038 unsigned int idx
= SUBPAGE_IDX(addr
);
3039 MemoryRegionSection
*section
;
3040 #if defined(DEBUG_SUBPAGE)
3041 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3042 " idx %d value %"PRIx64
"\n",
3043 __func__
, mmio
, len
, addr
, idx
, value
);
3046 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3048 addr
-= section
->offset_within_address_space
;
3049 addr
+= section
->offset_within_region
;
3050 io_mem_write(section
->mr
, addr
, value
, len
);
3053 static const MemoryRegionOps subpage_ops
= {
3054 .read
= subpage_read
,
3055 .write
= subpage_write
,
3056 .endianness
= DEVICE_NATIVE_ENDIAN
,
3059 static uint64_t subpage_ram_read(void *opaque
, target_phys_addr_t addr
,
3062 ram_addr_t raddr
= addr
;
3063 void *ptr
= qemu_get_ram_ptr(raddr
);
3065 case 1: return ldub_p(ptr
);
3066 case 2: return lduw_p(ptr
);
3067 case 4: return ldl_p(ptr
);
3072 static void subpage_ram_write(void *opaque
, target_phys_addr_t addr
,
3073 uint64_t value
, unsigned size
)
3075 ram_addr_t raddr
= addr
;
3076 void *ptr
= qemu_get_ram_ptr(raddr
);
3078 case 1: return stb_p(ptr
, value
);
3079 case 2: return stw_p(ptr
, value
);
3080 case 4: return stl_p(ptr
, value
);
3085 static const MemoryRegionOps subpage_ram_ops
= {
3086 .read
= subpage_ram_read
,
3087 .write
= subpage_ram_write
,
3088 .endianness
= DEVICE_NATIVE_ENDIAN
,
3091 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3096 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3098 idx
= SUBPAGE_IDX(start
);
3099 eidx
= SUBPAGE_IDX(end
);
3100 #if defined(DEBUG_SUBPAGE)
3101 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3102 mmio
, start
, end
, idx
, eidx
, memory
);
3104 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
3105 MemoryRegionSection new_section
= phys_sections
[section
];
3106 new_section
.mr
= &io_mem_subpage_ram
;
3107 section
= phys_section_add(&new_section
);
3109 for (; idx
<= eidx
; idx
++) {
3110 mmio
->sub_section
[idx
] = section
;
3116 static subpage_t
*subpage_init(target_phys_addr_t base
)
3120 mmio
= g_malloc0(sizeof(subpage_t
));
3123 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
3124 "subpage", TARGET_PAGE_SIZE
);
3125 mmio
->iomem
.subpage
= true;
3126 #if defined(DEBUG_SUBPAGE)
3127 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3128 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3130 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
3135 static uint16_t dummy_section(MemoryRegion
*mr
)
3137 MemoryRegionSection section
= {
3139 .offset_within_address_space
= 0,
3140 .offset_within_region
= 0,
3144 return phys_section_add(§ion
);
3147 MemoryRegion
*iotlb_to_region(target_phys_addr_t index
)
3149 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
3152 static void io_mem_init(void)
3154 memory_region_init_io(&io_mem_ram
, &error_mem_ops
, NULL
, "ram", UINT64_MAX
);
3155 memory_region_init_io(&io_mem_rom
, &rom_mem_ops
, NULL
, "rom", UINT64_MAX
);
3156 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
3157 "unassigned", UINT64_MAX
);
3158 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
3159 "notdirty", UINT64_MAX
);
3160 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
3161 "subpage-ram", UINT64_MAX
);
3162 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
3163 "watch", UINT64_MAX
);
3166 static void core_begin(MemoryListener
*listener
)
3168 destroy_all_mappings();
3169 phys_sections_clear();
3170 phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
3171 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
3172 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
3173 phys_section_rom
= dummy_section(&io_mem_rom
);
3174 phys_section_watch
= dummy_section(&io_mem_watch
);
3177 static void core_commit(MemoryListener
*listener
)
3181 /* since each CPU stores ram addresses in its TLB cache, we must
3182 reset the modified entries */
3184 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
3189 static void core_region_add(MemoryListener
*listener
,
3190 MemoryRegionSection
*section
)
3192 cpu_register_physical_memory_log(section
, section
->readonly
);
3195 static void core_region_del(MemoryListener
*listener
,
3196 MemoryRegionSection
*section
)
3200 static void core_region_nop(MemoryListener
*listener
,
3201 MemoryRegionSection
*section
)
3203 cpu_register_physical_memory_log(section
, section
->readonly
);
3206 static void core_log_start(MemoryListener
*listener
,
3207 MemoryRegionSection
*section
)
3211 static void core_log_stop(MemoryListener
*listener
,
3212 MemoryRegionSection
*section
)
3216 static void core_log_sync(MemoryListener
*listener
,
3217 MemoryRegionSection
*section
)
3221 static void core_log_global_start(MemoryListener
*listener
)
3223 cpu_physical_memory_set_dirty_tracking(1);
3226 static void core_log_global_stop(MemoryListener
*listener
)
3228 cpu_physical_memory_set_dirty_tracking(0);
3231 static void core_eventfd_add(MemoryListener
*listener
,
3232 MemoryRegionSection
*section
,
3233 bool match_data
, uint64_t data
, EventNotifier
*e
)
3237 static void core_eventfd_del(MemoryListener
*listener
,
3238 MemoryRegionSection
*section
,
3239 bool match_data
, uint64_t data
, EventNotifier
*e
)
3243 static void io_begin(MemoryListener
*listener
)
3247 static void io_commit(MemoryListener
*listener
)
3251 static void io_region_add(MemoryListener
*listener
,
3252 MemoryRegionSection
*section
)
3254 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
3256 mrio
->mr
= section
->mr
;
3257 mrio
->offset
= section
->offset_within_region
;
3258 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
3259 section
->offset_within_address_space
, section
->size
);
3260 ioport_register(&mrio
->iorange
);
3263 static void io_region_del(MemoryListener
*listener
,
3264 MemoryRegionSection
*section
)
3266 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
3269 static void io_region_nop(MemoryListener
*listener
,
3270 MemoryRegionSection
*section
)
3274 static void io_log_start(MemoryListener
*listener
,
3275 MemoryRegionSection
*section
)
3279 static void io_log_stop(MemoryListener
*listener
,
3280 MemoryRegionSection
*section
)
3284 static void io_log_sync(MemoryListener
*listener
,
3285 MemoryRegionSection
*section
)
3289 static void io_log_global_start(MemoryListener
*listener
)
3293 static void io_log_global_stop(MemoryListener
*listener
)
3297 static void io_eventfd_add(MemoryListener
*listener
,
3298 MemoryRegionSection
*section
,
3299 bool match_data
, uint64_t data
, EventNotifier
*e
)
3303 static void io_eventfd_del(MemoryListener
*listener
,
3304 MemoryRegionSection
*section
,
3305 bool match_data
, uint64_t data
, EventNotifier
*e
)
3309 static MemoryListener core_memory_listener
= {
3310 .begin
= core_begin
,
3311 .commit
= core_commit
,
3312 .region_add
= core_region_add
,
3313 .region_del
= core_region_del
,
3314 .region_nop
= core_region_nop
,
3315 .log_start
= core_log_start
,
3316 .log_stop
= core_log_stop
,
3317 .log_sync
= core_log_sync
,
3318 .log_global_start
= core_log_global_start
,
3319 .log_global_stop
= core_log_global_stop
,
3320 .eventfd_add
= core_eventfd_add
,
3321 .eventfd_del
= core_eventfd_del
,
3325 static MemoryListener io_memory_listener
= {
3327 .commit
= io_commit
,
3328 .region_add
= io_region_add
,
3329 .region_del
= io_region_del
,
3330 .region_nop
= io_region_nop
,
3331 .log_start
= io_log_start
,
3332 .log_stop
= io_log_stop
,
3333 .log_sync
= io_log_sync
,
3334 .log_global_start
= io_log_global_start
,
3335 .log_global_stop
= io_log_global_stop
,
3336 .eventfd_add
= io_eventfd_add
,
3337 .eventfd_del
= io_eventfd_del
,
3341 static void memory_map_init(void)
3343 system_memory
= g_malloc(sizeof(*system_memory
));
3344 memory_region_init(system_memory
, "system", INT64_MAX
);
3345 set_system_memory_map(system_memory
);
3347 system_io
= g_malloc(sizeof(*system_io
));
3348 memory_region_init(system_io
, "io", 65536);
3349 set_system_io_map(system_io
);
3351 memory_listener_register(&core_memory_listener
, system_memory
);
3352 memory_listener_register(&io_memory_listener
, system_io
);
3355 MemoryRegion
*get_system_memory(void)
3357 return system_memory
;
3360 MemoryRegion
*get_system_io(void)
3365 #endif /* !defined(CONFIG_USER_ONLY) */
3367 /* physical memory access (slow version, mainly for debug) */
3368 #if defined(CONFIG_USER_ONLY)
3369 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
3370 uint8_t *buf
, int len
, int is_write
)
3377 page
= addr
& TARGET_PAGE_MASK
;
3378 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3381 flags
= page_get_flags(page
);
3382 if (!(flags
& PAGE_VALID
))
3385 if (!(flags
& PAGE_WRITE
))
3387 /* XXX: this code should not depend on lock_user */
3388 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3391 unlock_user(p
, addr
, l
);
3393 if (!(flags
& PAGE_READ
))
3395 /* XXX: this code should not depend on lock_user */
3396 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3399 unlock_user(p
, addr
, 0);
3409 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3410 int len
, int is_write
)
3415 target_phys_addr_t page
;
3416 MemoryRegionSection
*section
;
3419 page
= addr
& TARGET_PAGE_MASK
;
3420 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3423 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3426 if (!memory_region_is_ram(section
->mr
)) {
3427 target_phys_addr_t addr1
;
3428 addr1
= memory_region_section_addr(section
, addr
);
3429 /* XXX: could force cpu_single_env to NULL to avoid
3431 if (l
>= 4 && ((addr1
& 3) == 0)) {
3432 /* 32 bit write access */
3434 io_mem_write(section
->mr
, addr1
, val
, 4);
3436 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3437 /* 16 bit write access */
3439 io_mem_write(section
->mr
, addr1
, val
, 2);
3442 /* 8 bit write access */
3444 io_mem_write(section
->mr
, addr1
, val
, 1);
3447 } else if (!section
->readonly
) {
3449 addr1
= memory_region_get_ram_addr(section
->mr
)
3450 + memory_region_section_addr(section
, addr
);
3452 ptr
= qemu_get_ram_ptr(addr1
);
3453 memcpy(ptr
, buf
, l
);
3454 if (!cpu_physical_memory_is_dirty(addr1
)) {
3455 /* invalidate code */
3456 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3458 cpu_physical_memory_set_dirty_flags(
3459 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3461 qemu_put_ram_ptr(ptr
);
3464 if (!(memory_region_is_ram(section
->mr
) ||
3465 memory_region_is_romd(section
->mr
))) {
3466 target_phys_addr_t addr1
;
3468 addr1
= memory_region_section_addr(section
, addr
);
3469 if (l
>= 4 && ((addr1
& 3) == 0)) {
3470 /* 32 bit read access */
3471 val
= io_mem_read(section
->mr
, addr1
, 4);
3474 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3475 /* 16 bit read access */
3476 val
= io_mem_read(section
->mr
, addr1
, 2);
3480 /* 8 bit read access */
3481 val
= io_mem_read(section
->mr
, addr1
, 1);
3487 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
3488 + memory_region_section_addr(section
,
3490 memcpy(buf
, ptr
, l
);
3491 qemu_put_ram_ptr(ptr
);
3500 /* used for ROM loading : can write in RAM and ROM */
3501 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3502 const uint8_t *buf
, int len
)
3506 target_phys_addr_t page
;
3507 MemoryRegionSection
*section
;
3510 page
= addr
& TARGET_PAGE_MASK
;
3511 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3514 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3516 if (!(memory_region_is_ram(section
->mr
) ||
3517 memory_region_is_romd(section
->mr
))) {
3520 unsigned long addr1
;
3521 addr1
= memory_region_get_ram_addr(section
->mr
)
3522 + memory_region_section_addr(section
, addr
);
3524 ptr
= qemu_get_ram_ptr(addr1
);
3525 memcpy(ptr
, buf
, l
);
3526 qemu_put_ram_ptr(ptr
);
3536 target_phys_addr_t addr
;
3537 target_phys_addr_t len
;
3540 static BounceBuffer bounce
;
3542 typedef struct MapClient
{
3544 void (*callback
)(void *opaque
);
3545 QLIST_ENTRY(MapClient
) link
;
3548 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3549 = QLIST_HEAD_INITIALIZER(map_client_list
);
3551 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3553 MapClient
*client
= g_malloc(sizeof(*client
));
3555 client
->opaque
= opaque
;
3556 client
->callback
= callback
;
3557 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3561 void cpu_unregister_map_client(void *_client
)
3563 MapClient
*client
= (MapClient
*)_client
;
3565 QLIST_REMOVE(client
, link
);
3569 static void cpu_notify_map_clients(void)
3573 while (!QLIST_EMPTY(&map_client_list
)) {
3574 client
= QLIST_FIRST(&map_client_list
);
3575 client
->callback(client
->opaque
);
3576 cpu_unregister_map_client(client
);
3580 /* Map a physical memory region into a host virtual address.
3581 * May map a subset of the requested range, given by and returned in *plen.
3582 * May return NULL if resources needed to perform the mapping are exhausted.
3583 * Use only for reads OR writes - not for read-modify-write operations.
3584 * Use cpu_register_map_client() to know when retrying the map operation is
3585 * likely to succeed.
3587 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3588 target_phys_addr_t
*plen
,
3591 target_phys_addr_t len
= *plen
;
3592 target_phys_addr_t todo
= 0;
3594 target_phys_addr_t page
;
3595 MemoryRegionSection
*section
;
3596 ram_addr_t raddr
= RAM_ADDR_MAX
;
3601 page
= addr
& TARGET_PAGE_MASK
;
3602 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3605 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3607 if (!(memory_region_is_ram(section
->mr
) && !section
->readonly
)) {
3608 if (todo
|| bounce
.buffer
) {
3611 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3615 cpu_physical_memory_read(addr
, bounce
.buffer
, l
);
3619 return bounce
.buffer
;
3622 raddr
= memory_region_get_ram_addr(section
->mr
)
3623 + memory_region_section_addr(section
, addr
);
3631 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
3636 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3637 * Will also mark the memory as dirty if is_write == 1. access_len gives
3638 * the amount of memory that was actually read or written by the caller.
3640 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3641 int is_write
, target_phys_addr_t access_len
)
3643 if (buffer
!= bounce
.buffer
) {
3645 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
3646 while (access_len
) {
3648 l
= TARGET_PAGE_SIZE
;
3651 if (!cpu_physical_memory_is_dirty(addr1
)) {
3652 /* invalidate code */
3653 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3655 cpu_physical_memory_set_dirty_flags(
3656 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3662 if (xen_enabled()) {
3663 xen_invalidate_map_cache_entry(buffer
);
3668 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3670 qemu_vfree(bounce
.buffer
);
3671 bounce
.buffer
= NULL
;
3672 cpu_notify_map_clients();
3675 /* warning: addr must be aligned */
3676 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr
,
3677 enum device_endian endian
)
3681 MemoryRegionSection
*section
;
3683 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3685 if (!(memory_region_is_ram(section
->mr
) ||
3686 memory_region_is_romd(section
->mr
))) {
3688 addr
= memory_region_section_addr(section
, addr
);
3689 val
= io_mem_read(section
->mr
, addr
, 4);
3690 #if defined(TARGET_WORDS_BIGENDIAN)
3691 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3695 if (endian
== DEVICE_BIG_ENDIAN
) {
3701 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3703 + memory_region_section_addr(section
, addr
));
3705 case DEVICE_LITTLE_ENDIAN
:
3706 val
= ldl_le_p(ptr
);
3708 case DEVICE_BIG_ENDIAN
:
3709 val
= ldl_be_p(ptr
);
3719 uint32_t ldl_phys(target_phys_addr_t addr
)
3721 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3724 uint32_t ldl_le_phys(target_phys_addr_t addr
)
3726 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3729 uint32_t ldl_be_phys(target_phys_addr_t addr
)
3731 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3734 /* warning: addr must be aligned */
3735 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr
,
3736 enum device_endian endian
)
3740 MemoryRegionSection
*section
;
3742 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3744 if (!(memory_region_is_ram(section
->mr
) ||
3745 memory_region_is_romd(section
->mr
))) {
3747 addr
= memory_region_section_addr(section
, addr
);
3749 /* XXX This is broken when device endian != cpu endian.
3750 Fix and add "endian" variable check */
3751 #ifdef TARGET_WORDS_BIGENDIAN
3752 val
= io_mem_read(section
->mr
, addr
, 4) << 32;
3753 val
|= io_mem_read(section
->mr
, addr
+ 4, 4);
3755 val
= io_mem_read(section
->mr
, addr
, 4);
3756 val
|= io_mem_read(section
->mr
, addr
+ 4, 4) << 32;
3760 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3762 + memory_region_section_addr(section
, addr
));
3764 case DEVICE_LITTLE_ENDIAN
:
3765 val
= ldq_le_p(ptr
);
3767 case DEVICE_BIG_ENDIAN
:
3768 val
= ldq_be_p(ptr
);
3778 uint64_t ldq_phys(target_phys_addr_t addr
)
3780 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3783 uint64_t ldq_le_phys(target_phys_addr_t addr
)
3785 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3788 uint64_t ldq_be_phys(target_phys_addr_t addr
)
3790 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3794 uint32_t ldub_phys(target_phys_addr_t addr
)
3797 cpu_physical_memory_read(addr
, &val
, 1);
3801 /* warning: addr must be aligned */
3802 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr
,
3803 enum device_endian endian
)
3807 MemoryRegionSection
*section
;
3809 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3811 if (!(memory_region_is_ram(section
->mr
) ||
3812 memory_region_is_romd(section
->mr
))) {
3814 addr
= memory_region_section_addr(section
, addr
);
3815 val
= io_mem_read(section
->mr
, addr
, 2);
3816 #if defined(TARGET_WORDS_BIGENDIAN)
3817 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3821 if (endian
== DEVICE_BIG_ENDIAN
) {
3827 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3829 + memory_region_section_addr(section
, addr
));
3831 case DEVICE_LITTLE_ENDIAN
:
3832 val
= lduw_le_p(ptr
);
3834 case DEVICE_BIG_ENDIAN
:
3835 val
= lduw_be_p(ptr
);
3845 uint32_t lduw_phys(target_phys_addr_t addr
)
3847 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3850 uint32_t lduw_le_phys(target_phys_addr_t addr
)
3852 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3855 uint32_t lduw_be_phys(target_phys_addr_t addr
)
3857 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3860 /* warning: addr must be aligned. The ram page is not masked as dirty
3861 and the code inside is not invalidated. It is useful if the dirty
3862 bits are used to track modified PTEs */
3863 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3866 MemoryRegionSection
*section
;
3868 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3870 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3871 addr
= memory_region_section_addr(section
, addr
);
3872 if (memory_region_is_ram(section
->mr
)) {
3873 section
= &phys_sections
[phys_section_rom
];
3875 io_mem_write(section
->mr
, addr
, val
, 4);
3877 unsigned long addr1
= (memory_region_get_ram_addr(section
->mr
)
3879 + memory_region_section_addr(section
, addr
);
3880 ptr
= qemu_get_ram_ptr(addr1
);
3883 if (unlikely(in_migration
)) {
3884 if (!cpu_physical_memory_is_dirty(addr1
)) {
3885 /* invalidate code */
3886 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3888 cpu_physical_memory_set_dirty_flags(
3889 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3895 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3898 MemoryRegionSection
*section
;
3900 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3902 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3903 addr
= memory_region_section_addr(section
, addr
);
3904 if (memory_region_is_ram(section
->mr
)) {
3905 section
= &phys_sections
[phys_section_rom
];
3907 #ifdef TARGET_WORDS_BIGENDIAN
3908 io_mem_write(section
->mr
, addr
, val
>> 32, 4);
3909 io_mem_write(section
->mr
, addr
+ 4, (uint32_t)val
, 4);
3911 io_mem_write(section
->mr
, addr
, (uint32_t)val
, 4);
3912 io_mem_write(section
->mr
, addr
+ 4, val
>> 32, 4);
3915 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3917 + memory_region_section_addr(section
, addr
));
3922 /* warning: addr must be aligned */
3923 static inline void stl_phys_internal(target_phys_addr_t addr
, uint32_t val
,
3924 enum device_endian endian
)
3927 MemoryRegionSection
*section
;
3929 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3931 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3932 addr
= memory_region_section_addr(section
, addr
);
3933 if (memory_region_is_ram(section
->mr
)) {
3934 section
= &phys_sections
[phys_section_rom
];
3936 #if defined(TARGET_WORDS_BIGENDIAN)
3937 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3941 if (endian
== DEVICE_BIG_ENDIAN
) {
3945 io_mem_write(section
->mr
, addr
, val
, 4);
3947 unsigned long addr1
;
3948 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
3949 + memory_region_section_addr(section
, addr
);
3951 ptr
= qemu_get_ram_ptr(addr1
);
3953 case DEVICE_LITTLE_ENDIAN
:
3956 case DEVICE_BIG_ENDIAN
:
3963 if (!cpu_physical_memory_is_dirty(addr1
)) {
3964 /* invalidate code */
3965 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3967 cpu_physical_memory_set_dirty_flags(addr1
,
3968 (0xff & ~CODE_DIRTY_FLAG
));
3973 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3975 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
3978 void stl_le_phys(target_phys_addr_t addr
, uint32_t val
)
3980 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
3983 void stl_be_phys(target_phys_addr_t addr
, uint32_t val
)
3985 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
3989 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3992 cpu_physical_memory_write(addr
, &v
, 1);
3995 /* warning: addr must be aligned */
3996 static inline void stw_phys_internal(target_phys_addr_t addr
, uint32_t val
,
3997 enum device_endian endian
)
4000 MemoryRegionSection
*section
;
4002 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4004 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
4005 addr
= memory_region_section_addr(section
, addr
);
4006 if (memory_region_is_ram(section
->mr
)) {
4007 section
= &phys_sections
[phys_section_rom
];
4009 #if defined(TARGET_WORDS_BIGENDIAN)
4010 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4014 if (endian
== DEVICE_BIG_ENDIAN
) {
4018 io_mem_write(section
->mr
, addr
, val
, 2);
4020 unsigned long addr1
;
4021 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
4022 + memory_region_section_addr(section
, addr
);
4024 ptr
= qemu_get_ram_ptr(addr1
);
4026 case DEVICE_LITTLE_ENDIAN
:
4029 case DEVICE_BIG_ENDIAN
:
4036 if (!cpu_physical_memory_is_dirty(addr1
)) {
4037 /* invalidate code */
4038 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4040 cpu_physical_memory_set_dirty_flags(addr1
,
4041 (0xff & ~CODE_DIRTY_FLAG
));
4046 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4048 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
4051 void stw_le_phys(target_phys_addr_t addr
, uint32_t val
)
4053 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
4056 void stw_be_phys(target_phys_addr_t addr
, uint32_t val
)
4058 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
4062 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4065 cpu_physical_memory_write(addr
, &val
, 8);
4068 void stq_le_phys(target_phys_addr_t addr
, uint64_t val
)
4070 val
= cpu_to_le64(val
);
4071 cpu_physical_memory_write(addr
, &val
, 8);
4074 void stq_be_phys(target_phys_addr_t addr
, uint64_t val
)
4076 val
= cpu_to_be64(val
);
4077 cpu_physical_memory_write(addr
, &val
, 8);
4080 /* virtual memory access for debug (includes writing to ROM) */
4081 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
4082 uint8_t *buf
, int len
, int is_write
)
4085 target_phys_addr_t phys_addr
;
4089 page
= addr
& TARGET_PAGE_MASK
;
4090 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4091 /* if no physical page mapped, return an error */
4092 if (phys_addr
== -1)
4094 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4097 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4099 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4101 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4110 /* in deterministic execution mode, instructions doing device I/Os
4111 must be at the end of the TB */
4112 void cpu_io_recompile(CPUArchState
*env
, uintptr_t retaddr
)
4114 TranslationBlock
*tb
;
4116 target_ulong pc
, cs_base
;
4119 tb
= tb_find_pc(retaddr
);
4121 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4124 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4125 cpu_restore_state(tb
, env
, retaddr
);
4126 /* Calculate how many instructions had been executed before the fault
4128 n
= n
- env
->icount_decr
.u16
.low
;
4129 /* Generate a new TB ending on the I/O insn. */
4131 /* On MIPS and SH, delay slot instructions can only be restarted if
4132 they were already the first instruction in the TB. If this is not
4133 the first instruction in a TB then re-execute the preceding
4135 #if defined(TARGET_MIPS)
4136 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4137 env
->active_tc
.PC
-= 4;
4138 env
->icount_decr
.u16
.low
++;
4139 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4141 #elif defined(TARGET_SH4)
4142 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4145 env
->icount_decr
.u16
.low
++;
4146 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4149 /* This should never happen. */
4150 if (n
> CF_COUNT_MASK
)
4151 cpu_abort(env
, "TB too big during recompile");
4153 cflags
= n
| CF_LAST_IO
;
4155 cs_base
= tb
->cs_base
;
4157 tb_phys_invalidate(tb
, -1);
4158 /* FIXME: In theory this could raise an exception. In practice
4159 we have already translated the block once so it's probably ok. */
4160 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4161 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4162 the first in the TB) then we end up generating a whole new TB and
4163 repeating the fault, which is horribly inefficient.
4164 Better would be to execute just this insn uncached, or generate a
4166 cpu_resume_from_signal(env
, NULL
);
4169 #if !defined(CONFIG_USER_ONLY)
4171 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4173 int i
, target_code_size
, max_target_code_size
;
4174 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4175 TranslationBlock
*tb
;
4177 target_code_size
= 0;
4178 max_target_code_size
= 0;
4180 direct_jmp_count
= 0;
4181 direct_jmp2_count
= 0;
4182 for(i
= 0; i
< nb_tbs
; i
++) {
4184 target_code_size
+= tb
->size
;
4185 if (tb
->size
> max_target_code_size
)
4186 max_target_code_size
= tb
->size
;
4187 if (tb
->page_addr
[1] != -1)
4189 if (tb
->tb_next_offset
[0] != 0xffff) {
4191 if (tb
->tb_next_offset
[1] != 0xffff) {
4192 direct_jmp2_count
++;
4196 /* XXX: avoid using doubles ? */
4197 cpu_fprintf(f
, "Translation buffer state:\n");
4198 cpu_fprintf(f
, "gen code size %td/%ld\n",
4199 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4200 cpu_fprintf(f
, "TB count %d/%d\n",
4201 nb_tbs
, code_gen_max_blocks
);
4202 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4203 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4204 max_target_code_size
);
4205 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4206 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4207 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4208 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4210 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4211 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4213 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4215 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4216 cpu_fprintf(f
, "\nStatistics:\n");
4217 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4218 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4219 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4220 tcg_dump_info(f
, cpu_fprintf
);
4224 * A helper function for the _utterly broken_ virtio device model to find out if
4225 * it's running on a big endian machine. Don't do this at home kids!
4227 bool virtio_is_big_endian(void);
4228 bool virtio_is_big_endian(void)
4230 #if defined(TARGET_WORDS_BIGENDIAN)
4239 #ifndef CONFIG_USER_ONLY
4240 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr
)
4242 MemoryRegionSection
*section
;
4244 section
= phys_page_find(phys_addr
>> TARGET_PAGE_BITS
);
4246 return !(memory_region_is_ram(section
->mr
) ||
4247 memory_region_is_romd(section
->mr
));