petalogix-ml605: added SPI controller with n25q128
[qemu-kvm.git] / hw / mc146818rtc.c
blob332a77d4dc86238f3c80ee47059e4f93a5d0f0f6
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "mc146818rtc.h"
29 #ifdef TARGET_I386
30 #include "apic.h"
31 #endif
33 //#define DEBUG_CMOS
34 //#define DEBUG_COALESCED
36 #ifdef DEBUG_CMOS
37 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
38 #else
39 # define CMOS_DPRINTF(format, ...) do { } while (0)
40 #endif
42 #ifdef DEBUG_COALESCED
43 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
44 #else
45 # define DPRINTF_C(format, ...) do { } while (0)
46 #endif
48 #define NSEC_PER_SEC 1000000000LL
49 #define SEC_PER_MIN 60
50 #define MIN_PER_HOUR 60
51 #define SEC_PER_HOUR 3600
52 #define HOUR_PER_DAY 24
53 #define SEC_PER_DAY 86400
55 #define RTC_REINJECT_ON_ACK_COUNT 20
56 #define RTC_CLOCK_RATE 32768
57 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
59 typedef struct RTCState {
60 ISADevice dev;
61 MemoryRegion io;
62 uint8_t cmos_data[128];
63 uint8_t cmos_index;
64 int32_t base_year;
65 uint64_t base_rtc;
66 uint64_t last_update;
67 int64_t offset;
68 qemu_irq irq;
69 qemu_irq sqw_irq;
70 int it_shift;
71 /* periodic timer */
72 QEMUTimer *periodic_timer;
73 int64_t next_periodic_time;
74 /* update-ended timer */
75 QEMUTimer *update_timer;
76 uint64_t next_alarm_time;
77 uint16_t irq_reinject_on_ack_count;
78 uint32_t irq_coalesced;
79 uint32_t period;
80 QEMUTimer *coalesced_timer;
81 Notifier clock_reset_notifier;
82 LostTickPolicy lost_tick_policy;
83 Notifier suspend_notifier;
84 } RTCState;
86 static void rtc_set_time(RTCState *s);
87 static void rtc_update_time(RTCState *s);
88 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
89 static inline int rtc_from_bcd(RTCState *s, int a);
90 static uint64_t get_next_alarm(RTCState *s);
92 static inline bool rtc_running(RTCState *s)
94 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
95 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
98 static uint64_t get_guest_rtc_ns(RTCState *s)
100 uint64_t guest_rtc;
101 uint64_t guest_clock = qemu_get_clock_ns(rtc_clock);
103 guest_rtc = s->base_rtc * NSEC_PER_SEC
104 + guest_clock - s->last_update + s->offset;
105 return guest_rtc;
108 #ifdef TARGET_I386
109 static void rtc_coalesced_timer_update(RTCState *s)
111 if (s->irq_coalesced == 0) {
112 qemu_del_timer(s->coalesced_timer);
113 } else {
114 /* divide each RTC interval to 2 - 8 smaller intervals */
115 int c = MIN(s->irq_coalesced, 7) + 1;
116 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
117 muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
118 qemu_mod_timer(s->coalesced_timer, next_clock);
122 static void rtc_coalesced_timer(void *opaque)
124 RTCState *s = opaque;
126 if (s->irq_coalesced != 0) {
127 apic_reset_irq_delivered();
128 s->cmos_data[RTC_REG_C] |= 0xc0;
129 DPRINTF_C("cmos: injecting from timer\n");
130 qemu_irq_raise(s->irq);
131 if (apic_get_irq_delivered()) {
132 s->irq_coalesced--;
133 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
134 s->irq_coalesced);
138 rtc_coalesced_timer_update(s);
140 #endif
142 /* handle periodic timer */
143 static void periodic_timer_update(RTCState *s, int64_t current_time)
145 int period_code, period;
146 int64_t cur_clock, next_irq_clock;
148 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
149 if (period_code != 0
150 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
151 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
152 if (period_code <= 2)
153 period_code += 7;
154 /* period in 32 Khz cycles */
155 period = 1 << (period_code - 1);
156 #ifdef TARGET_I386
157 if (period != s->period) {
158 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
159 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
161 s->period = period;
162 #endif
163 /* compute 32 khz clock */
164 cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
165 next_irq_clock = (cur_clock & ~(period - 1)) + period;
166 s->next_periodic_time =
167 muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
168 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
169 } else {
170 #ifdef TARGET_I386
171 s->irq_coalesced = 0;
172 #endif
173 qemu_del_timer(s->periodic_timer);
177 static void rtc_periodic_timer(void *opaque)
179 RTCState *s = opaque;
181 periodic_timer_update(s, s->next_periodic_time);
182 s->cmos_data[RTC_REG_C] |= REG_C_PF;
183 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
184 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
185 #ifdef TARGET_I386
186 if (s->lost_tick_policy == LOST_TICK_SLEW) {
187 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
188 s->irq_reinject_on_ack_count = 0;
189 apic_reset_irq_delivered();
190 qemu_irq_raise(s->irq);
191 if (!apic_get_irq_delivered()) {
192 s->irq_coalesced++;
193 rtc_coalesced_timer_update(s);
194 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
195 s->irq_coalesced);
197 } else
198 #endif
199 qemu_irq_raise(s->irq);
201 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
202 /* Not square wave at all but we don't want 2048Hz interrupts!
203 Must be seen as a pulse. */
204 qemu_irq_raise(s->sqw_irq);
208 /* handle update-ended timer */
209 static void check_update_timer(RTCState *s)
211 uint64_t next_update_time;
212 uint64_t guest_nsec;
213 int next_alarm_sec;
215 /* From the data sheet: "Holding the dividers in reset prevents
216 * interrupts from operating, while setting the SET bit allows"
217 * them to occur. However, it will prevent an alarm interrupt
218 * from occurring, because the time of day is not updated.
220 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
221 qemu_del_timer(s->update_timer);
222 return;
224 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
225 (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
226 qemu_del_timer(s->update_timer);
227 return;
229 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
230 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
231 qemu_del_timer(s->update_timer);
232 return;
235 guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
236 /* if UF is clear, reprogram to next second */
237 next_update_time = qemu_get_clock_ns(rtc_clock)
238 + NSEC_PER_SEC - guest_nsec;
240 /* Compute time of next alarm. One second is already accounted
241 * for in next_update_time.
243 next_alarm_sec = get_next_alarm(s);
244 s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
246 if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
247 /* UF is set, but AF is clear. Program the timer to target
248 * the alarm time. */
249 next_update_time = s->next_alarm_time;
251 if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
252 qemu_mod_timer(s->update_timer, next_update_time);
256 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
258 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
259 hour %= 12;
260 if (s->cmos_data[RTC_HOURS] & 0x80) {
261 hour += 12;
264 return hour;
267 static uint64_t get_next_alarm(RTCState *s)
269 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
270 int32_t hour, min, sec;
272 rtc_update_time(s);
274 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
275 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
276 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
277 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
279 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
280 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
281 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
282 cur_hour = convert_hour(s, cur_hour);
284 if (alarm_hour == -1) {
285 alarm_hour = cur_hour;
286 if (alarm_min == -1) {
287 alarm_min = cur_min;
288 if (alarm_sec == -1) {
289 alarm_sec = cur_sec + 1;
290 } else if (cur_sec > alarm_sec) {
291 alarm_min++;
293 } else if (cur_min == alarm_min) {
294 if (alarm_sec == -1) {
295 alarm_sec = cur_sec + 1;
296 } else {
297 if (cur_sec > alarm_sec) {
298 alarm_hour++;
301 if (alarm_sec == SEC_PER_MIN) {
302 /* wrap to next hour, minutes is not in don't care mode */
303 alarm_sec = 0;
304 alarm_hour++;
306 } else if (cur_min > alarm_min) {
307 alarm_hour++;
309 } else if (cur_hour == alarm_hour) {
310 if (alarm_min == -1) {
311 alarm_min = cur_min;
312 if (alarm_sec == -1) {
313 alarm_sec = cur_sec + 1;
314 } else if (cur_sec > alarm_sec) {
315 alarm_min++;
318 if (alarm_sec == SEC_PER_MIN) {
319 alarm_sec = 0;
320 alarm_min++;
322 /* wrap to next day, hour is not in don't care mode */
323 alarm_min %= MIN_PER_HOUR;
324 } else if (cur_min == alarm_min) {
325 if (alarm_sec == -1) {
326 alarm_sec = cur_sec + 1;
328 /* wrap to next day, hours+minutes not in don't care mode */
329 alarm_sec %= SEC_PER_MIN;
333 /* values that are still don't care fire at the next min/sec */
334 if (alarm_min == -1) {
335 alarm_min = 0;
337 if (alarm_sec == -1) {
338 alarm_sec = 0;
341 /* keep values in range */
342 if (alarm_sec == SEC_PER_MIN) {
343 alarm_sec = 0;
344 alarm_min++;
346 if (alarm_min == MIN_PER_HOUR) {
347 alarm_min = 0;
348 alarm_hour++;
350 alarm_hour %= HOUR_PER_DAY;
352 hour = alarm_hour - cur_hour;
353 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
354 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
355 return sec <= 0 ? sec + SEC_PER_DAY : sec;
358 static void rtc_update_timer(void *opaque)
360 RTCState *s = opaque;
361 int32_t irqs = REG_C_UF;
362 int32_t new_irqs;
364 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
366 /* UIP might have been latched, update time and clear it. */
367 rtc_update_time(s);
368 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
370 if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
371 irqs |= REG_C_AF;
372 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
373 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
377 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
378 s->cmos_data[RTC_REG_C] |= irqs;
379 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
380 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
381 qemu_irq_raise(s->irq);
383 check_update_timer(s);
386 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
388 RTCState *s = opaque;
390 if ((addr & 1) == 0) {
391 s->cmos_index = data & 0x7f;
392 } else {
393 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
394 s->cmos_index, data);
395 switch(s->cmos_index) {
396 case RTC_SECONDS_ALARM:
397 case RTC_MINUTES_ALARM:
398 case RTC_HOURS_ALARM:
399 s->cmos_data[s->cmos_index] = data;
400 check_update_timer(s);
401 break;
402 case RTC_IBM_PS2_CENTURY_BYTE:
403 s->cmos_index = RTC_CENTURY;
404 /* fall through */
405 case RTC_CENTURY:
406 case RTC_SECONDS:
407 case RTC_MINUTES:
408 case RTC_HOURS:
409 case RTC_DAY_OF_WEEK:
410 case RTC_DAY_OF_MONTH:
411 case RTC_MONTH:
412 case RTC_YEAR:
413 s->cmos_data[s->cmos_index] = data;
414 /* if in set mode, do not update the time */
415 if (rtc_running(s)) {
416 rtc_set_time(s);
417 check_update_timer(s);
419 break;
420 case RTC_REG_A:
421 if ((data & 0x60) == 0x60) {
422 if (rtc_running(s)) {
423 rtc_update_time(s);
425 /* What happens to UIP when divider reset is enabled is
426 * unclear from the datasheet. Shouldn't matter much
427 * though.
429 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
430 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
431 (data & 0x70) <= 0x20) {
432 /* when the divider reset is removed, the first update cycle
433 * begins one-half second later*/
434 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
435 s->offset = 500000000;
436 rtc_set_time(s);
438 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
440 /* UIP bit is read only */
441 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
442 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
443 periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
444 check_update_timer(s);
445 break;
446 case RTC_REG_B:
447 if (data & REG_B_SET) {
448 /* update cmos to when the rtc was stopping */
449 if (rtc_running(s)) {
450 rtc_update_time(s);
452 /* set mode: reset UIP mode */
453 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
454 data &= ~REG_B_UIE;
455 } else {
456 /* if disabling set mode, update the time */
457 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
458 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
459 s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
460 rtc_set_time(s);
463 /* if an interrupt flag is already set when the interrupt
464 * becomes enabled, raise an interrupt immediately. */
465 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
466 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
467 qemu_irq_raise(s->irq);
468 } else {
469 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
470 qemu_irq_lower(s->irq);
472 s->cmos_data[RTC_REG_B] = data;
473 periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
474 check_update_timer(s);
475 break;
476 case RTC_REG_C:
477 case RTC_REG_D:
478 /* cannot write to them */
479 break;
480 default:
481 s->cmos_data[s->cmos_index] = data;
482 break;
487 static inline int rtc_to_bcd(RTCState *s, int a)
489 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
490 return a;
491 } else {
492 return ((a / 10) << 4) | (a % 10);
496 static inline int rtc_from_bcd(RTCState *s, int a)
498 if ((a & 0xc0) == 0xc0) {
499 return -1;
501 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
502 return a;
503 } else {
504 return ((a >> 4) * 10) + (a & 0x0f);
508 static void rtc_get_time(RTCState *s, struct tm *tm)
510 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
511 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
512 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
513 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
514 tm->tm_hour %= 12;
515 if (s->cmos_data[RTC_HOURS] & 0x80) {
516 tm->tm_hour += 12;
519 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
520 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
521 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
522 tm->tm_year =
523 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
524 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
527 static void rtc_set_time(RTCState *s)
529 struct tm tm;
531 rtc_get_time(s, &tm);
532 s->base_rtc = mktimegm(&tm);
533 s->last_update = qemu_get_clock_ns(rtc_clock);
535 rtc_change_mon_event(&tm);
538 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
540 int year;
542 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
543 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
544 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
545 /* 24 hour format */
546 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
547 } else {
548 /* 12 hour format */
549 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
550 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
551 if (tm->tm_hour >= 12)
552 s->cmos_data[RTC_HOURS] |= 0x80;
554 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
555 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
556 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
557 year = tm->tm_year + 1900 - s->base_year;
558 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
559 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
562 static void rtc_update_time(RTCState *s)
564 struct tm ret;
565 time_t guest_sec;
566 int64_t guest_nsec;
568 guest_nsec = get_guest_rtc_ns(s);
569 guest_sec = guest_nsec / NSEC_PER_SEC;
570 gmtime_r(&guest_sec, &ret);
571 rtc_set_cmos(s, &ret);
574 static int update_in_progress(RTCState *s)
576 int64_t guest_nsec;
578 if (!rtc_running(s)) {
579 return 0;
581 if (qemu_timer_pending(s->update_timer)) {
582 int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer);
583 /* Latch UIP until the timer expires. */
584 if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) {
585 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
586 return 1;
590 guest_nsec = get_guest_rtc_ns(s);
591 /* UIP bit will be set at last 244us of every second. */
592 if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
593 return 1;
595 return 0;
598 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
600 RTCState *s = opaque;
601 int ret;
602 if ((addr & 1) == 0) {
603 return 0xff;
604 } else {
605 switch(s->cmos_index) {
606 case RTC_IBM_PS2_CENTURY_BYTE:
607 s->cmos_index = RTC_CENTURY;
608 /* fall through */
609 case RTC_CENTURY:
610 case RTC_SECONDS:
611 case RTC_MINUTES:
612 case RTC_HOURS:
613 case RTC_DAY_OF_WEEK:
614 case RTC_DAY_OF_MONTH:
615 case RTC_MONTH:
616 case RTC_YEAR:
617 /* if not in set mode, calibrate cmos before
618 * reading*/
619 if (rtc_running(s)) {
620 rtc_update_time(s);
622 ret = s->cmos_data[s->cmos_index];
623 break;
624 case RTC_REG_A:
625 if (update_in_progress(s)) {
626 s->cmos_data[s->cmos_index] |= REG_A_UIP;
627 } else {
628 s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
630 ret = s->cmos_data[s->cmos_index];
631 break;
632 case RTC_REG_C:
633 ret = s->cmos_data[s->cmos_index];
634 qemu_irq_lower(s->irq);
635 s->cmos_data[RTC_REG_C] = 0x00;
636 if (ret & (REG_C_UF | REG_C_AF)) {
637 check_update_timer(s);
639 #ifdef TARGET_I386
640 if(s->irq_coalesced &&
641 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
642 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
643 s->irq_reinject_on_ack_count++;
644 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
645 apic_reset_irq_delivered();
646 DPRINTF_C("cmos: injecting on ack\n");
647 qemu_irq_raise(s->irq);
648 if (apic_get_irq_delivered()) {
649 s->irq_coalesced--;
650 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
651 s->irq_coalesced);
654 #endif
655 break;
656 default:
657 ret = s->cmos_data[s->cmos_index];
658 break;
660 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
661 s->cmos_index, ret);
662 return ret;
666 void rtc_set_memory(ISADevice *dev, int addr, int val)
668 RTCState *s = DO_UPCAST(RTCState, dev, dev);
669 if (addr >= 0 && addr <= 127)
670 s->cmos_data[addr] = val;
673 static void rtc_set_date_from_host(ISADevice *dev)
675 RTCState *s = DO_UPCAST(RTCState, dev, dev);
676 struct tm tm;
678 qemu_get_timedate(&tm, 0);
680 s->base_rtc = mktimegm(&tm);
681 s->last_update = qemu_get_clock_ns(rtc_clock);
682 s->offset = 0;
684 /* set the CMOS date */
685 rtc_set_cmos(s, &tm);
688 static int rtc_post_load(void *opaque, int version_id)
690 RTCState *s = opaque;
692 if (version_id <= 2) {
693 rtc_set_time(s);
694 s->offset = 0;
695 check_update_timer(s);
698 #ifdef TARGET_I386
699 if (version_id >= 2) {
700 if (s->lost_tick_policy == LOST_TICK_SLEW) {
701 rtc_coalesced_timer_update(s);
704 #endif
705 return 0;
708 static const VMStateDescription vmstate_rtc = {
709 .name = "mc146818rtc",
710 .version_id = 3,
711 .minimum_version_id = 1,
712 .minimum_version_id_old = 1,
713 .post_load = rtc_post_load,
714 .fields = (VMStateField []) {
715 VMSTATE_BUFFER(cmos_data, RTCState),
716 VMSTATE_UINT8(cmos_index, RTCState),
717 VMSTATE_UNUSED(7*4),
718 VMSTATE_TIMER(periodic_timer, RTCState),
719 VMSTATE_INT64(next_periodic_time, RTCState),
720 VMSTATE_UNUSED(3*8),
721 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
722 VMSTATE_UINT32_V(period, RTCState, 2),
723 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
724 VMSTATE_UINT64_V(last_update, RTCState, 3),
725 VMSTATE_INT64_V(offset, RTCState, 3),
726 VMSTATE_TIMER_V(update_timer, RTCState, 3),
727 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
728 VMSTATE_END_OF_LIST()
732 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
734 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
735 int64_t now = *(int64_t *)data;
737 rtc_set_date_from_host(&s->dev);
738 periodic_timer_update(s, now);
739 check_update_timer(s);
740 #ifdef TARGET_I386
741 if (s->lost_tick_policy == LOST_TICK_SLEW) {
742 rtc_coalesced_timer_update(s);
744 #endif
747 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
748 BIOS will read it and start S3 resume at POST Entry */
749 static void rtc_notify_suspend(Notifier *notifier, void *data)
751 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
752 rtc_set_memory(&s->dev, 0xF, 0xFE);
755 static void rtc_reset(void *opaque)
757 RTCState *s = opaque;
759 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
760 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
761 check_update_timer(s);
763 qemu_irq_lower(s->irq);
765 #ifdef TARGET_I386
766 if (s->lost_tick_policy == LOST_TICK_SLEW) {
767 s->irq_coalesced = 0;
769 #endif
772 static const MemoryRegionPortio cmos_portio[] = {
773 {0, 2, 1, .read = cmos_ioport_read, .write = cmos_ioport_write },
774 PORTIO_END_OF_LIST(),
777 static const MemoryRegionOps cmos_ops = {
778 .old_portio = cmos_portio
781 static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
782 const char *name, Error **errp)
784 ISADevice *isa = ISA_DEVICE(obj);
785 RTCState *s = DO_UPCAST(RTCState, dev, isa);
786 struct tm current_tm;
788 rtc_update_time(s);
789 rtc_get_time(s, &current_tm);
790 visit_start_struct(v, NULL, "struct tm", name, 0, errp);
791 visit_type_int32(v, &current_tm.tm_year, "tm_year", errp);
792 visit_type_int32(v, &current_tm.tm_mon, "tm_mon", errp);
793 visit_type_int32(v, &current_tm.tm_mday, "tm_mday", errp);
794 visit_type_int32(v, &current_tm.tm_hour, "tm_hour", errp);
795 visit_type_int32(v, &current_tm.tm_min, "tm_min", errp);
796 visit_type_int32(v, &current_tm.tm_sec, "tm_sec", errp);
797 visit_end_struct(v, errp);
800 static int rtc_initfn(ISADevice *dev)
802 RTCState *s = DO_UPCAST(RTCState, dev, dev);
803 int base = 0x70;
805 s->cmos_data[RTC_REG_A] = 0x26;
806 s->cmos_data[RTC_REG_B] = 0x02;
807 s->cmos_data[RTC_REG_C] = 0x00;
808 s->cmos_data[RTC_REG_D] = 0x80;
810 /* This is for historical reasons. The default base year qdev property
811 * was set to 2000 for most machine types before the century byte was
812 * implemented.
814 * This if statement means that the century byte will be always 0
815 * (at least until 2079...) for base_year = 1980, but will be set
816 * correctly for base_year = 2000.
818 if (s->base_year == 2000) {
819 s->base_year = 0;
822 rtc_set_date_from_host(dev);
824 #ifdef TARGET_I386
825 switch (s->lost_tick_policy) {
826 case LOST_TICK_SLEW:
827 s->coalesced_timer =
828 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
829 break;
830 case LOST_TICK_DISCARD:
831 break;
832 default:
833 return -EINVAL;
835 #endif
837 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
838 s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s);
839 check_update_timer(s);
841 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
842 qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
844 s->suspend_notifier.notify = rtc_notify_suspend;
845 qemu_register_suspend_notifier(&s->suspend_notifier);
847 memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
848 isa_register_ioport(dev, &s->io, base);
850 qdev_set_legacy_instance_id(&dev->qdev, base, 3);
851 qemu_register_reset(rtc_reset, s);
853 object_property_add(OBJECT(s), "date", "struct tm",
854 rtc_get_date, NULL, NULL, s, NULL);
856 return 0;
859 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
861 ISADevice *dev;
862 RTCState *s;
864 dev = isa_create(bus, "mc146818rtc");
865 s = DO_UPCAST(RTCState, dev, dev);
866 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
867 qdev_init_nofail(&dev->qdev);
868 if (intercept_irq) {
869 s->irq = intercept_irq;
870 } else {
871 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
873 return dev;
876 static Property mc146818rtc_properties[] = {
877 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
878 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
879 lost_tick_policy, LOST_TICK_DISCARD),
880 DEFINE_PROP_END_OF_LIST(),
883 static void rtc_class_initfn(ObjectClass *klass, void *data)
885 DeviceClass *dc = DEVICE_CLASS(klass);
886 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
887 ic->init = rtc_initfn;
888 dc->no_user = 1;
889 dc->vmsd = &vmstate_rtc;
890 dc->props = mc146818rtc_properties;
893 static TypeInfo mc146818rtc_info = {
894 .name = "mc146818rtc",
895 .parent = TYPE_ISA_DEVICE,
896 .instance_size = sizeof(RTCState),
897 .class_init = rtc_class_initfn,
900 static void mc146818rtc_register_types(void)
902 type_register_static(&mc146818rtc_info);
905 type_init(mc146818rtc_register_types)