4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 #include "exec-memory.h"
33 /* This check must be after config-host.h is included */
35 #include <sys/eventfd.h>
38 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
47 #define DPRINTF(fmt, ...) \
51 typedef struct KVMSlot
53 target_phys_addr_t start_addr
;
54 ram_addr_t memory_size
;
60 typedef struct kvm_dirty_log KVMDirtyLog
;
68 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
69 bool coalesced_flush_in_progress
;
70 int broken_set_mem_region
;
73 int robust_singlestep
;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
82 int irqchip_inject_ioctl
;
83 #ifdef KVM_CAP_IRQ_ROUTING
84 struct kvm_irq_routing
*irq_routes
;
85 int nr_allocated_irq_routes
;
86 uint32_t *used_gsi_bitmap
;
92 bool kvm_kernel_irqchip
;
94 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
95 KVM_CAP_INFO(USER_MEMORY
),
96 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
100 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
104 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
105 if (s
->slots
[i
].memory_size
== 0) {
110 fprintf(stderr
, "%s: no free slot available\n", __func__
);
114 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
115 target_phys_addr_t start_addr
,
116 target_phys_addr_t end_addr
)
120 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
121 KVMSlot
*mem
= &s
->slots
[i
];
123 if (start_addr
== mem
->start_addr
&&
124 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
133 * Find overlapping slot with lowest start address
135 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
136 target_phys_addr_t start_addr
,
137 target_phys_addr_t end_addr
)
139 KVMSlot
*found
= NULL
;
142 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
143 KVMSlot
*mem
= &s
->slots
[i
];
145 if (mem
->memory_size
== 0 ||
146 (found
&& found
->start_addr
< mem
->start_addr
)) {
150 if (end_addr
> mem
->start_addr
&&
151 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
159 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
160 target_phys_addr_t
*phys_addr
)
164 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
165 KVMSlot
*mem
= &s
->slots
[i
];
167 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
168 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
176 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
178 struct kvm_userspace_memory_region mem
;
180 mem
.slot
= slot
->slot
;
181 mem
.guest_phys_addr
= slot
->start_addr
;
182 mem
.memory_size
= slot
->memory_size
;
183 mem
.userspace_addr
= (unsigned long)slot
->ram
;
184 mem
.flags
= slot
->flags
;
185 if (s
->migration_log
) {
186 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
188 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
191 static void kvm_reset_vcpu(void *opaque
)
193 CPUState
*env
= opaque
;
195 kvm_arch_reset_vcpu(env
);
198 int kvm_pit_in_kernel(void)
200 return kvm_state
->pit_in_kernel
;
203 int kvm_init_vcpu(CPUState
*env
)
205 KVMState
*s
= kvm_state
;
209 DPRINTF("kvm_init_vcpu\n");
211 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
213 DPRINTF("kvm_create_vcpu failed\n");
219 env
->kvm_vcpu_dirty
= 1;
221 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
224 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
228 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
230 if (env
->kvm_run
== MAP_FAILED
) {
232 DPRINTF("mmap'ing vcpu state failed\n");
236 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
237 s
->coalesced_mmio_ring
=
238 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
241 ret
= kvm_arch_init_vcpu(env
);
243 qemu_register_reset(kvm_reset_vcpu
, env
);
244 kvm_arch_reset_vcpu(env
);
251 * dirty pages logging control
254 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
256 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
259 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
261 KVMState
*s
= kvm_state
;
262 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
265 old_flags
= mem
->flags
;
267 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s
->migration_log
) {
272 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
275 if (flags
== old_flags
) {
279 return kvm_set_user_memory_region(s
, mem
);
282 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
283 ram_addr_t size
, bool log_dirty
)
285 KVMState
*s
= kvm_state
;
286 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
289 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
290 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
291 (target_phys_addr_t
)(phys_addr
+ size
- 1));
294 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
297 static void kvm_log_start(MemoryListener
*listener
,
298 MemoryRegionSection
*section
)
302 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
303 section
->size
, true);
309 static void kvm_log_stop(MemoryListener
*listener
,
310 MemoryRegionSection
*section
)
314 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
315 section
->size
, false);
321 static int kvm_set_migration_log(int enable
)
323 KVMState
*s
= kvm_state
;
327 s
->migration_log
= enable
;
329 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
332 if (!mem
->memory_size
) {
335 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
338 err
= kvm_set_user_memory_region(s
, mem
);
346 /* get kvm's dirty pages bitmap and update qemu's */
347 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
348 unsigned long *bitmap
)
351 unsigned long page_number
, c
;
352 target_phys_addr_t addr
, addr1
;
353 unsigned int len
= ((section
->size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
356 * bitmap-traveling is faster than memory-traveling (for addr...)
357 * especially when most of the memory is not dirty.
359 for (i
= 0; i
< len
; i
++) {
360 if (bitmap
[i
] != 0) {
361 c
= leul_to_cpu(bitmap
[i
]);
365 page_number
= i
* HOST_LONG_BITS
+ j
;
366 addr1
= page_number
* TARGET_PAGE_SIZE
;
367 addr
= section
->offset_within_region
+ addr1
;
368 memory_region_set_dirty(section
->mr
, addr
, TARGET_PAGE_SIZE
);
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using
380 * memory_region_set_dirty(). This means all bits are set
383 * @start_add: start of logged region.
384 * @end_addr: end of logged region.
386 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
388 KVMState
*s
= kvm_state
;
389 unsigned long size
, allocated_size
= 0;
393 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
394 target_phys_addr_t end_addr
= start_addr
+ section
->size
;
396 d
.dirty_bitmap
= NULL
;
397 while (start_addr
< end_addr
) {
398 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
403 /* XXX bad kernel interface alert
404 * For dirty bitmap, kernel allocates array of size aligned to
405 * bits-per-long. But for case when the kernel is 64bits and
406 * the userspace is 32bits, userspace can't align to the same
407 * bits-per-long, since sizeof(long) is different between kernel
408 * and user space. This way, userspace will provide buffer which
409 * may be 4 bytes less than the kernel will use, resulting in
410 * userspace memory corruption (which is not detectable by valgrind
411 * too, in most cases).
412 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
413 * a hope that sizeof(long) wont become >8 any time soon.
415 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
416 /*HOST_LONG_BITS*/ 64) / 8;
417 if (!d
.dirty_bitmap
) {
418 d
.dirty_bitmap
= g_malloc(size
);
419 } else if (size
> allocated_size
) {
420 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
422 allocated_size
= size
;
423 memset(d
.dirty_bitmap
, 0, allocated_size
);
427 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
428 DPRINTF("ioctl failed %d\n", errno
);
433 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
434 start_addr
= mem
->start_addr
+ mem
->memory_size
;
436 g_free(d
.dirty_bitmap
);
441 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
444 KVMState
*s
= kvm_state
;
446 if (s
->coalesced_mmio
) {
447 struct kvm_coalesced_mmio_zone zone
;
453 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
459 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
462 KVMState
*s
= kvm_state
;
464 if (s
->coalesced_mmio
) {
465 struct kvm_coalesced_mmio_zone zone
;
471 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
477 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
481 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
489 static int kvm_check_many_ioeventfds(void)
491 /* Userspace can use ioeventfd for io notification. This requires a host
492 * that supports eventfd(2) and an I/O thread; since eventfd does not
493 * support SIGIO it cannot interrupt the vcpu.
495 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
496 * can avoid creating too many ioeventfds.
498 #if defined(CONFIG_EVENTFD)
501 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
502 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
503 if (ioeventfds
[i
] < 0) {
506 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
508 close(ioeventfds
[i
]);
513 /* Decide whether many devices are supported or not */
514 ret
= i
== ARRAY_SIZE(ioeventfds
);
517 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
518 close(ioeventfds
[i
]);
526 static const KVMCapabilityInfo
*
527 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
530 if (!kvm_check_extension(s
, list
->value
)) {
538 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
540 KVMState
*s
= kvm_state
;
543 MemoryRegion
*mr
= section
->mr
;
544 bool log_dirty
= memory_region_is_logging(mr
);
545 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
546 ram_addr_t size
= section
->size
;
550 /* kvm works in page size chunks, but the function may be called
551 with sub-page size and unaligned start address. */
552 delta
= TARGET_PAGE_ALIGN(size
) - size
;
558 size
&= TARGET_PAGE_MASK
;
559 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
563 if (!memory_region_is_ram(mr
)) {
567 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
570 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
575 if (add
&& start_addr
>= mem
->start_addr
&&
576 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
577 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
578 /* The new slot fits into the existing one and comes with
579 * identical parameters - update flags and done. */
580 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
586 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
587 kvm_physical_sync_dirty_bitmap(section
);
590 /* unregister the overlapping slot */
591 mem
->memory_size
= 0;
592 err
= kvm_set_user_memory_region(s
, mem
);
594 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
595 __func__
, strerror(-err
));
599 /* Workaround for older KVM versions: we can't join slots, even not by
600 * unregistering the previous ones and then registering the larger
601 * slot. We have to maintain the existing fragmentation. Sigh.
603 * This workaround assumes that the new slot starts at the same
604 * address as the first existing one. If not or if some overlapping
605 * slot comes around later, we will fail (not seen in practice so far)
606 * - and actually require a recent KVM version. */
607 if (s
->broken_set_mem_region
&&
608 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
609 mem
= kvm_alloc_slot(s
);
610 mem
->memory_size
= old
.memory_size
;
611 mem
->start_addr
= old
.start_addr
;
613 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
615 err
= kvm_set_user_memory_region(s
, mem
);
617 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
622 start_addr
+= old
.memory_size
;
623 ram
+= old
.memory_size
;
624 size
-= old
.memory_size
;
628 /* register prefix slot */
629 if (old
.start_addr
< start_addr
) {
630 mem
= kvm_alloc_slot(s
);
631 mem
->memory_size
= start_addr
- old
.start_addr
;
632 mem
->start_addr
= old
.start_addr
;
634 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
636 err
= kvm_set_user_memory_region(s
, mem
);
638 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
639 __func__
, strerror(-err
));
641 fprintf(stderr
, "%s: This is probably because your kernel's " \
642 "PAGE_SIZE is too big. Please try to use 4k " \
643 "PAGE_SIZE!\n", __func__
);
649 /* register suffix slot */
650 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
651 ram_addr_t size_delta
;
653 mem
= kvm_alloc_slot(s
);
654 mem
->start_addr
= start_addr
+ size
;
655 size_delta
= mem
->start_addr
- old
.start_addr
;
656 mem
->memory_size
= old
.memory_size
- size_delta
;
657 mem
->ram
= old
.ram
+ size_delta
;
658 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
660 err
= kvm_set_user_memory_region(s
, mem
);
662 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
663 __func__
, strerror(-err
));
669 /* in case the KVM bug workaround already "consumed" the new slot */
676 mem
= kvm_alloc_slot(s
);
677 mem
->memory_size
= size
;
678 mem
->start_addr
= start_addr
;
680 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
682 err
= kvm_set_user_memory_region(s
, mem
);
684 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
690 static void kvm_begin(MemoryListener
*listener
)
694 static void kvm_commit(MemoryListener
*listener
)
698 static void kvm_region_add(MemoryListener
*listener
,
699 MemoryRegionSection
*section
)
701 kvm_set_phys_mem(section
, true);
704 static void kvm_region_del(MemoryListener
*listener
,
705 MemoryRegionSection
*section
)
707 kvm_set_phys_mem(section
, false);
710 static void kvm_region_nop(MemoryListener
*listener
,
711 MemoryRegionSection
*section
)
715 static void kvm_log_sync(MemoryListener
*listener
,
716 MemoryRegionSection
*section
)
720 r
= kvm_physical_sync_dirty_bitmap(section
);
726 static void kvm_log_global_start(struct MemoryListener
*listener
)
730 r
= kvm_set_migration_log(1);
734 static void kvm_log_global_stop(struct MemoryListener
*listener
)
738 r
= kvm_set_migration_log(0);
742 static void kvm_mem_ioeventfd_add(MemoryRegionSection
*section
,
743 bool match_data
, uint64_t data
, int fd
)
747 assert(match_data
&& section
->size
== 4);
749 r
= kvm_set_ioeventfd_mmio_long(fd
, section
->offset_within_address_space
,
756 static void kvm_mem_ioeventfd_del(MemoryRegionSection
*section
,
757 bool match_data
, uint64_t data
, int fd
)
761 r
= kvm_set_ioeventfd_mmio_long(fd
, section
->offset_within_address_space
,
768 static void kvm_io_ioeventfd_add(MemoryRegionSection
*section
,
769 bool match_data
, uint64_t data
, int fd
)
773 assert(match_data
&& section
->size
== 2);
775 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
782 static void kvm_io_ioeventfd_del(MemoryRegionSection
*section
,
783 bool match_data
, uint64_t data
, int fd
)
788 r
= kvm_set_ioeventfd_pio_word(fd
, section
->offset_within_address_space
,
795 static void kvm_eventfd_add(MemoryListener
*listener
,
796 MemoryRegionSection
*section
,
797 bool match_data
, uint64_t data
, int fd
)
799 if (section
->address_space
== get_system_memory()) {
800 kvm_mem_ioeventfd_add(section
, match_data
, data
, fd
);
802 kvm_io_ioeventfd_add(section
, match_data
, data
, fd
);
806 static void kvm_eventfd_del(MemoryListener
*listener
,
807 MemoryRegionSection
*section
,
808 bool match_data
, uint64_t data
, int fd
)
810 if (section
->address_space
== get_system_memory()) {
811 kvm_mem_ioeventfd_del(section
, match_data
, data
, fd
);
813 kvm_io_ioeventfd_del(section
, match_data
, data
, fd
);
817 static MemoryListener kvm_memory_listener
= {
819 .commit
= kvm_commit
,
820 .region_add
= kvm_region_add
,
821 .region_del
= kvm_region_del
,
822 .region_nop
= kvm_region_nop
,
823 .log_start
= kvm_log_start
,
824 .log_stop
= kvm_log_stop
,
825 .log_sync
= kvm_log_sync
,
826 .log_global_start
= kvm_log_global_start
,
827 .log_global_stop
= kvm_log_global_stop
,
828 .eventfd_add
= kvm_eventfd_add
,
829 .eventfd_del
= kvm_eventfd_del
,
833 static void kvm_handle_interrupt(CPUState
*env
, int mask
)
835 env
->interrupt_request
|= mask
;
837 if (!qemu_cpu_is_self(env
)) {
842 int kvm_irqchip_set_irq(KVMState
*s
, int irq
, int level
)
844 struct kvm_irq_level event
;
847 assert(kvm_irqchip_in_kernel());
851 ret
= kvm_vm_ioctl(s
, s
->irqchip_inject_ioctl
, &event
);
853 perror("kvm_set_irqchip_line");
857 return (s
->irqchip_inject_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
860 #ifdef KVM_CAP_IRQ_ROUTING
861 static void set_gsi(KVMState
*s
, unsigned int gsi
)
863 assert(gsi
< s
->max_gsi
);
865 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
868 static void kvm_init_irq_routing(KVMState
*s
)
872 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
874 unsigned int gsi_bits
, i
;
876 /* Round up so we can search ints using ffs */
877 gsi_bits
= (gsi_count
+ 31) / 32;
878 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
879 s
->max_gsi
= gsi_bits
;
881 /* Mark any over-allocated bits as already in use */
882 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
887 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
888 s
->nr_allocated_irq_routes
= 0;
890 kvm_arch_init_irq_routing(s
);
893 static void kvm_add_routing_entry(KVMState
*s
,
894 struct kvm_irq_routing_entry
*entry
)
896 struct kvm_irq_routing_entry
*new;
899 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
900 n
= s
->nr_allocated_irq_routes
* 2;
904 size
= sizeof(struct kvm_irq_routing
);
905 size
+= n
* sizeof(*new);
906 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
907 s
->nr_allocated_irq_routes
= n
;
909 n
= s
->irq_routes
->nr
++;
910 new = &s
->irq_routes
->entries
[n
];
911 memset(new, 0, sizeof(*new));
912 new->gsi
= entry
->gsi
;
913 new->type
= entry
->type
;
914 new->flags
= entry
->flags
;
917 set_gsi(s
, entry
->gsi
);
920 void kvm_irqchip_add_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
922 struct kvm_irq_routing_entry e
;
925 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
927 e
.u
.irqchip
.irqchip
= irqchip
;
928 e
.u
.irqchip
.pin
= pin
;
929 kvm_add_routing_entry(s
, &e
);
932 int kvm_irqchip_commit_routes(KVMState
*s
)
934 s
->irq_routes
->flags
= 0;
935 return kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
938 #else /* !KVM_CAP_IRQ_ROUTING */
940 static void kvm_init_irq_routing(KVMState
*s
)
943 #endif /* !KVM_CAP_IRQ_ROUTING */
945 static int kvm_irqchip_create(KVMState
*s
)
947 QemuOptsList
*list
= qemu_find_opts("machine");
950 if (QTAILQ_EMPTY(&list
->head
) ||
951 !qemu_opt_get_bool(QTAILQ_FIRST(&list
->head
),
952 "kernel_irqchip", false) ||
953 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
957 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
959 fprintf(stderr
, "Create kernel irqchip failed\n");
963 s
->irqchip_inject_ioctl
= KVM_IRQ_LINE
;
964 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
965 s
->irqchip_inject_ioctl
= KVM_IRQ_LINE_STATUS
;
967 kvm_kernel_irqchip
= true;
969 kvm_init_irq_routing(s
);
976 static const char upgrade_note
[] =
977 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
978 "(see http://sourceforge.net/projects/kvm).\n";
980 const KVMCapabilityInfo
*missing_cap
;
984 s
= g_malloc0(sizeof(KVMState
));
986 #ifdef KVM_CAP_SET_GUEST_DEBUG
987 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
989 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
990 s
->slots
[i
].slot
= i
;
993 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
995 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1000 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1001 if (ret
< KVM_API_VERSION
) {
1005 fprintf(stderr
, "kvm version too old\n");
1009 if (ret
> KVM_API_VERSION
) {
1011 fprintf(stderr
, "kvm version not supported\n");
1015 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1018 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1019 "your host kernel command line\n");
1025 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1028 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1032 fprintf(stderr
, "kvm does not support %s\n%s",
1033 missing_cap
->name
, upgrade_note
);
1037 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1039 s
->broken_set_mem_region
= 1;
1040 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1042 s
->broken_set_mem_region
= 0;
1045 #ifdef KVM_CAP_VCPU_EVENTS
1046 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1049 s
->robust_singlestep
=
1050 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1052 #ifdef KVM_CAP_DEBUGREGS
1053 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1056 #ifdef KVM_CAP_XSAVE
1057 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1061 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1064 #ifdef KVM_CAP_PIT_STATE2
1065 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1068 ret
= kvm_arch_init(s
);
1073 ret
= kvm_irqchip_create(s
);
1079 memory_listener_register(&kvm_memory_listener
, NULL
);
1081 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1083 cpu_interrupt_handler
= kvm_handle_interrupt
;
1101 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1105 uint8_t *ptr
= data
;
1107 for (i
= 0; i
< count
; i
++) {
1108 if (direction
== KVM_EXIT_IO_IN
) {
1111 stb_p(ptr
, cpu_inb(port
));
1114 stw_p(ptr
, cpu_inw(port
));
1117 stl_p(ptr
, cpu_inl(port
));
1123 cpu_outb(port
, ldub_p(ptr
));
1126 cpu_outw(port
, lduw_p(ptr
));
1129 cpu_outl(port
, ldl_p(ptr
));
1138 static int kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
1140 fprintf(stderr
, "KVM internal error.");
1141 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1144 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1145 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1146 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1147 i
, (uint64_t)run
->internal
.data
[i
]);
1150 fprintf(stderr
, "\n");
1152 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1153 fprintf(stderr
, "emulation failure\n");
1154 if (!kvm_arch_stop_on_emulation_error(env
)) {
1155 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1156 return EXCP_INTERRUPT
;
1159 /* FIXME: Should trigger a qmp message to let management know
1160 * something went wrong.
1165 void kvm_flush_coalesced_mmio_buffer(void)
1167 KVMState
*s
= kvm_state
;
1169 if (s
->coalesced_flush_in_progress
) {
1173 s
->coalesced_flush_in_progress
= true;
1175 if (s
->coalesced_mmio_ring
) {
1176 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1177 while (ring
->first
!= ring
->last
) {
1178 struct kvm_coalesced_mmio
*ent
;
1180 ent
= &ring
->coalesced_mmio
[ring
->first
];
1182 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1184 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1188 s
->coalesced_flush_in_progress
= false;
1191 static void do_kvm_cpu_synchronize_state(void *_env
)
1193 CPUState
*env
= _env
;
1195 if (!env
->kvm_vcpu_dirty
) {
1196 kvm_arch_get_registers(env
);
1197 env
->kvm_vcpu_dirty
= 1;
1201 void kvm_cpu_synchronize_state(CPUState
*env
)
1203 if (!env
->kvm_vcpu_dirty
) {
1204 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
1208 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
1210 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
1211 env
->kvm_vcpu_dirty
= 0;
1214 void kvm_cpu_synchronize_post_init(CPUState
*env
)
1216 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
1217 env
->kvm_vcpu_dirty
= 0;
1220 int kvm_cpu_exec(CPUState
*env
)
1222 struct kvm_run
*run
= env
->kvm_run
;
1225 DPRINTF("kvm_cpu_exec()\n");
1227 if (kvm_arch_process_async_events(env
)) {
1228 env
->exit_request
= 0;
1233 if (env
->kvm_vcpu_dirty
) {
1234 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
1235 env
->kvm_vcpu_dirty
= 0;
1238 kvm_arch_pre_run(env
, run
);
1239 if (env
->exit_request
) {
1240 DPRINTF("interrupt exit requested\n");
1242 * KVM requires us to reenter the kernel after IO exits to complete
1243 * instruction emulation. This self-signal will ensure that we
1246 qemu_cpu_kick_self();
1248 qemu_mutex_unlock_iothread();
1250 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
1252 qemu_mutex_lock_iothread();
1253 kvm_arch_post_run(env
, run
);
1255 kvm_flush_coalesced_mmio_buffer();
1258 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1259 DPRINTF("io window exit\n");
1260 ret
= EXCP_INTERRUPT
;
1263 fprintf(stderr
, "error: kvm run failed %s\n",
1264 strerror(-run_ret
));
1268 switch (run
->exit_reason
) {
1270 DPRINTF("handle_io\n");
1271 kvm_handle_io(run
->io
.port
,
1272 (uint8_t *)run
+ run
->io
.data_offset
,
1279 DPRINTF("handle_mmio\n");
1280 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1283 run
->mmio
.is_write
);
1286 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1287 DPRINTF("irq_window_open\n");
1288 ret
= EXCP_INTERRUPT
;
1290 case KVM_EXIT_SHUTDOWN
:
1291 DPRINTF("shutdown\n");
1292 qemu_system_reset_request();
1293 ret
= EXCP_INTERRUPT
;
1295 case KVM_EXIT_UNKNOWN
:
1296 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1297 (uint64_t)run
->hw
.hardware_exit_reason
);
1300 case KVM_EXIT_INTERNAL_ERROR
:
1301 ret
= kvm_handle_internal_error(env
, run
);
1304 DPRINTF("kvm_arch_handle_exit\n");
1305 ret
= kvm_arch_handle_exit(env
, run
);
1311 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1312 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1315 env
->exit_request
= 0;
1319 int kvm_ioctl(KVMState
*s
, int type
, ...)
1326 arg
= va_arg(ap
, void *);
1329 ret
= ioctl(s
->fd
, type
, arg
);
1336 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1343 arg
= va_arg(ap
, void *);
1346 ret
= ioctl(s
->vmfd
, type
, arg
);
1353 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1360 arg
= va_arg(ap
, void *);
1363 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1370 int kvm_has_sync_mmu(void)
1372 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1375 int kvm_has_vcpu_events(void)
1377 return kvm_state
->vcpu_events
;
1380 int kvm_has_robust_singlestep(void)
1382 return kvm_state
->robust_singlestep
;
1385 int kvm_has_debugregs(void)
1387 return kvm_state
->debugregs
;
1390 int kvm_has_xsave(void)
1392 return kvm_state
->xsave
;
1395 int kvm_has_xcrs(void)
1397 return kvm_state
->xcrs
;
1400 int kvm_has_pit_state2(void)
1402 return kvm_state
->pit_state2
;
1405 int kvm_has_many_ioeventfds(void)
1407 if (!kvm_enabled()) {
1410 return kvm_state
->many_ioeventfds
;
1413 int kvm_has_gsi_routing(void)
1415 #ifdef KVM_CAP_IRQ_ROUTING
1416 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1422 int kvm_allows_irq0_override(void)
1424 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1427 void kvm_setup_guest_memory(void *start
, size_t size
)
1429 if (!kvm_has_sync_mmu()) {
1430 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1433 perror("qemu_madvise");
1435 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1441 #ifdef KVM_CAP_SET_GUEST_DEBUG
1442 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1445 struct kvm_sw_breakpoint
*bp
;
1447 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1455 int kvm_sw_breakpoints_active(CPUState
*env
)
1457 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1460 struct kvm_set_guest_debug_data
{
1461 struct kvm_guest_debug dbg
;
1466 static void kvm_invoke_set_guest_debug(void *data
)
1468 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1469 CPUState
*env
= dbg_data
->env
;
1471 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1474 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1476 struct kvm_set_guest_debug_data data
;
1478 data
.dbg
.control
= reinject_trap
;
1480 if (env
->singlestep_enabled
) {
1481 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1483 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1486 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1490 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1491 target_ulong len
, int type
)
1493 struct kvm_sw_breakpoint
*bp
;
1497 if (type
== GDB_BREAKPOINT_SW
) {
1498 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1504 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1511 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1517 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1520 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1526 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1527 err
= kvm_update_guest_debug(env
, 0);
1535 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1536 target_ulong len
, int type
)
1538 struct kvm_sw_breakpoint
*bp
;
1542 if (type
== GDB_BREAKPOINT_SW
) {
1543 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1548 if (bp
->use_count
> 1) {
1553 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1558 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1561 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1567 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1568 err
= kvm_update_guest_debug(env
, 0);
1576 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1578 struct kvm_sw_breakpoint
*bp
, *next
;
1579 KVMState
*s
= current_env
->kvm_state
;
1582 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1583 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1584 /* Try harder to find a CPU that currently sees the breakpoint. */
1585 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1586 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1592 kvm_arch_remove_all_hw_breakpoints();
1594 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1595 kvm_update_guest_debug(env
, 0);
1599 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1601 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1606 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1607 target_ulong len
, int type
)
1612 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1613 target_ulong len
, int type
)
1618 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1621 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1623 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1625 struct kvm_signal_mask
*sigmask
;
1629 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1632 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1635 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1636 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1642 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1645 struct kvm_ioeventfd iofd
;
1647 iofd
.datamatch
= val
;
1650 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1653 if (!kvm_enabled()) {
1658 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1661 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1670 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1672 struct kvm_ioeventfd kick
= {
1676 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1680 if (!kvm_enabled()) {
1684 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1686 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1693 int kvm_on_sigbus_vcpu(CPUState
*env
, int code
, void *addr
)
1695 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
1698 int kvm_on_sigbus(int code
, void *addr
)
1700 return kvm_arch_on_sigbus(code
, addr
);