Merge commit 'b4a3d965dee06d52281496bb5fd0a5cb5534b545' into upstream-merge
[qemu-kvm.git] / cpu-exec.c
blob27b6a7ce3dd5a835058f97db8d0fb58616f03161
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #if !defined(TARGET_IA64)
23 #include "tcg.h"
24 #endif
25 #include "kvm.h"
26 #include "qemu-barrier.h"
28 #if !defined(CONFIG_SOFTMMU)
29 #undef EAX
30 #undef ECX
31 #undef EDX
32 #undef EBX
33 #undef ESP
34 #undef EBP
35 #undef ESI
36 #undef EDI
37 #undef EIP
38 #include <signal.h>
39 #ifdef __linux__
40 #include <sys/ucontext.h>
41 #endif
42 #endif
44 #include "qemu-kvm.h"
46 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
47 // Work around ugly bugs in glibc that mangle global register contents
48 #undef env
49 #define env cpu_single_env
50 #endif
52 int tb_invalidated_flag;
54 //#define CONFIG_DEBUG_EXEC
55 //#define DEBUG_SIGNAL
57 int qemu_cpu_has_work(CPUState *env)
59 return cpu_has_work(env);
62 void cpu_loop_exit(void)
64 env->current_tb = NULL;
65 longjmp(env->jmp_env, 1);
68 /* exit the current TB from a signal handler. The host registers are
69 restored in a state compatible with the CPU emulator
71 void cpu_resume_from_signal(CPUState *env1, void *puc)
73 #if !defined(CONFIG_SOFTMMU)
74 #ifdef __linux__
75 struct ucontext *uc = puc;
76 #elif defined(__OpenBSD__)
77 struct sigcontext *uc = puc;
78 #endif
79 #endif
81 env = env1;
83 /* XXX: restore cpu registers saved in host registers */
85 #if !defined(CONFIG_SOFTMMU)
86 if (puc) {
87 /* XXX: use siglongjmp ? */
88 #ifdef __linux__
89 #ifdef __ia64
90 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
91 #else
92 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
93 #endif
94 #elif defined(__OpenBSD__)
95 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
96 #endif
98 #endif
99 env->exception_index = -1;
100 longjmp(env->jmp_env, 1);
103 /* Execute the code without caching the generated code. An interpreter
104 could be used if available. */
105 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
107 unsigned long next_tb;
108 TranslationBlock *tb;
110 /* Should never happen.
111 We only end up here when an existing TB is too long. */
112 if (max_cycles > CF_COUNT_MASK)
113 max_cycles = CF_COUNT_MASK;
115 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
116 max_cycles);
117 env->current_tb = tb;
118 /* execute the generated code */
119 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
120 env->current_tb = NULL;
122 if ((next_tb & 3) == 2) {
123 /* Restore PC. This may happen if async event occurs before
124 the TB starts executing. */
125 cpu_pc_from_tb(env, tb);
127 tb_phys_invalidate(tb, -1);
128 tb_free(tb);
131 static TranslationBlock *tb_find_slow(target_ulong pc,
132 target_ulong cs_base,
133 uint64_t flags)
135 TranslationBlock *tb, **ptb1;
136 unsigned int h;
137 tb_page_addr_t phys_pc, phys_page1, phys_page2;
138 target_ulong virt_page2;
140 tb_invalidated_flag = 0;
142 /* find translated block using physical mappings */
143 phys_pc = get_page_addr_code(env, pc);
144 phys_page1 = phys_pc & TARGET_PAGE_MASK;
145 phys_page2 = -1;
146 h = tb_phys_hash_func(phys_pc);
147 ptb1 = &tb_phys_hash[h];
148 for(;;) {
149 tb = *ptb1;
150 if (!tb)
151 goto not_found;
152 if (tb->pc == pc &&
153 tb->page_addr[0] == phys_page1 &&
154 tb->cs_base == cs_base &&
155 tb->flags == flags) {
156 /* check next page if needed */
157 if (tb->page_addr[1] != -1) {
158 virt_page2 = (pc & TARGET_PAGE_MASK) +
159 TARGET_PAGE_SIZE;
160 phys_page2 = get_page_addr_code(env, virt_page2);
161 if (tb->page_addr[1] == phys_page2)
162 goto found;
163 } else {
164 goto found;
167 ptb1 = &tb->phys_hash_next;
169 not_found:
170 /* if no translated code available, then translate it now */
171 tb = tb_gen_code(env, pc, cs_base, flags, 0);
173 found:
174 /* Move the last found TB to the head of the list */
175 if (likely(*ptb1)) {
176 *ptb1 = tb->phys_hash_next;
177 tb->phys_hash_next = tb_phys_hash[h];
178 tb_phys_hash[h] = tb;
180 /* we add the TB in the virtual pc hash table */
181 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
182 return tb;
185 static inline TranslationBlock *tb_find_fast(void)
187 TranslationBlock *tb;
188 target_ulong cs_base, pc;
189 int flags;
191 /* we record a subset of the CPU state. It will
192 always be the same before a given translated block
193 is executed. */
194 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
195 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
196 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
197 tb->flags != flags)) {
198 tb = tb_find_slow(pc, cs_base, flags);
200 return tb;
203 static CPUDebugExcpHandler *debug_excp_handler;
205 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
207 CPUDebugExcpHandler *old_handler = debug_excp_handler;
209 debug_excp_handler = handler;
210 return old_handler;
213 static void cpu_handle_debug_exception(CPUState *env)
215 CPUWatchpoint *wp;
217 if (!env->watchpoint_hit)
218 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
219 wp->flags &= ~BP_WATCHPOINT_HIT;
221 if (debug_excp_handler)
222 debug_excp_handler(env);
225 /* main execution loop */
227 volatile sig_atomic_t exit_request;
229 int cpu_exec(CPUState *env1)
231 volatile host_reg_t saved_env_reg;
232 int ret, interrupt_request;
233 TranslationBlock *tb;
234 uint8_t *tc_ptr;
235 unsigned long next_tb;
237 if (cpu_halted(env1) == EXCP_HALTED)
238 return EXCP_HALTED;
240 cpu_single_env = env1;
242 /* the access to env below is actually saving the global register's
243 value, so that files not including target-xyz/exec.h are free to
244 use it. */
245 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
246 saved_env_reg = (host_reg_t) env;
247 barrier();
248 env = env1;
250 if (unlikely(exit_request)) {
251 env->exit_request = 1;
254 #if defined(TARGET_I386)
255 if (!kvm_enabled()) {
256 /* put eflags in CPU temporary format */
257 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
258 DF = 1 - (2 * ((env->eflags >> 10) & 1));
259 CC_OP = CC_OP_EFLAGS;
260 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
262 #elif defined(TARGET_SPARC)
263 #elif defined(TARGET_M68K)
264 env->cc_op = CC_OP_FLAGS;
265 env->cc_dest = env->sr & 0xf;
266 env->cc_x = (env->sr >> 4) & 1;
267 #elif defined(TARGET_ALPHA)
268 #elif defined(TARGET_ARM)
269 #elif defined(TARGET_PPC)
270 #elif defined(TARGET_MICROBLAZE)
271 #elif defined(TARGET_MIPS)
272 #elif defined(TARGET_SH4)
273 #elif defined(TARGET_CRIS)
274 #elif defined(TARGET_S390X)
275 #elif defined(TARGET_IA64)
276 /* XXXXX */
277 #else
278 #error unsupported target CPU
279 #endif
280 env->exception_index = -1;
282 /* prepare setjmp context for exception handling */
283 for(;;) {
284 if (setjmp(env->jmp_env) == 0) {
285 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
286 #undef env
287 env = cpu_single_env;
288 #define env cpu_single_env
289 #endif
290 /* if an exception is pending, we execute it here */
291 if (env->exception_index >= 0) {
292 if (env->exception_index >= EXCP_INTERRUPT) {
293 /* exit request from the cpu execution loop */
294 ret = env->exception_index;
295 if (ret == EXCP_DEBUG)
296 cpu_handle_debug_exception(env);
297 break;
298 } else {
299 #if defined(CONFIG_USER_ONLY)
300 /* if user mode only, we simulate a fake exception
301 which will be handled outside the cpu execution
302 loop */
303 #if defined(TARGET_I386)
304 do_interrupt_user(env->exception_index,
305 env->exception_is_int,
306 env->error_code,
307 env->exception_next_eip);
308 /* successfully delivered */
309 env->old_exception = -1;
310 #endif
311 ret = env->exception_index;
312 break;
313 #else
314 #if defined(TARGET_I386)
315 /* simulate a real cpu exception. On i386, it can
316 trigger new exceptions, but we do not handle
317 double or triple faults yet. */
318 do_interrupt(env->exception_index,
319 env->exception_is_int,
320 env->error_code,
321 env->exception_next_eip, 0);
322 /* successfully delivered */
323 env->old_exception = -1;
324 #elif defined(TARGET_PPC)
325 do_interrupt(env);
326 #elif defined(TARGET_MICROBLAZE)
327 do_interrupt(env);
328 #elif defined(TARGET_MIPS)
329 do_interrupt(env);
330 #elif defined(TARGET_SPARC)
331 do_interrupt(env);
332 #elif defined(TARGET_ARM)
333 do_interrupt(env);
334 #elif defined(TARGET_SH4)
335 do_interrupt(env);
336 #elif defined(TARGET_ALPHA)
337 do_interrupt(env);
338 #elif defined(TARGET_CRIS)
339 do_interrupt(env);
340 #elif defined(TARGET_M68K)
341 do_interrupt(0);
342 #elif defined(TARGET_IA64)
343 do_interrupt(env);
344 #endif
345 env->exception_index = -1;
346 #endif
350 if (kvm_enabled()) {
351 kvm_cpu_exec(env);
352 longjmp(env->jmp_env, 1);
355 next_tb = 0; /* force lookup of first TB */
356 for(;;) {
357 interrupt_request = env->interrupt_request;
358 if (unlikely(interrupt_request)) {
359 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
360 /* Mask out external interrupts for this step. */
361 interrupt_request &= ~(CPU_INTERRUPT_HARD |
362 CPU_INTERRUPT_FIQ |
363 CPU_INTERRUPT_SMI |
364 CPU_INTERRUPT_NMI);
366 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
367 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
368 env->exception_index = EXCP_DEBUG;
369 cpu_loop_exit();
371 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
372 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
373 defined(TARGET_MICROBLAZE)
374 if (interrupt_request & CPU_INTERRUPT_HALT) {
375 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
376 env->halted = 1;
377 env->exception_index = EXCP_HLT;
378 cpu_loop_exit();
380 #endif
381 #if defined(TARGET_I386)
382 if (interrupt_request & CPU_INTERRUPT_INIT) {
383 svm_check_intercept(SVM_EXIT_INIT);
384 do_cpu_init(env);
385 env->exception_index = EXCP_HALTED;
386 cpu_loop_exit();
387 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
388 do_cpu_sipi(env);
389 } else if (env->hflags2 & HF2_GIF_MASK) {
390 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
391 !(env->hflags & HF_SMM_MASK)) {
392 svm_check_intercept(SVM_EXIT_SMI);
393 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
394 do_smm_enter();
395 next_tb = 0;
396 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
397 !(env->hflags2 & HF2_NMI_MASK)) {
398 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
399 env->hflags2 |= HF2_NMI_MASK;
400 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
401 next_tb = 0;
402 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
403 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
404 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
405 next_tb = 0;
406 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
407 (((env->hflags2 & HF2_VINTR_MASK) &&
408 (env->hflags2 & HF2_HIF_MASK)) ||
409 (!(env->hflags2 & HF2_VINTR_MASK) &&
410 (env->eflags & IF_MASK &&
411 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
412 int intno;
413 svm_check_intercept(SVM_EXIT_INTR);
414 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
415 intno = cpu_get_pic_interrupt(env);
416 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
417 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
418 #undef env
419 env = cpu_single_env;
420 #define env cpu_single_env
421 #endif
422 do_interrupt(intno, 0, 0, 0, 1);
423 /* ensure that no TB jump will be modified as
424 the program flow was changed */
425 next_tb = 0;
426 #if !defined(CONFIG_USER_ONLY)
427 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
428 (env->eflags & IF_MASK) &&
429 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
430 int intno;
431 /* FIXME: this should respect TPR */
432 svm_check_intercept(SVM_EXIT_VINTR);
433 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
434 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
435 do_interrupt(intno, 0, 0, 0, 1);
436 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
437 next_tb = 0;
438 #endif
441 #elif defined(TARGET_PPC)
442 #if 0
443 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
444 cpu_reset(env);
446 #endif
447 if (interrupt_request & CPU_INTERRUPT_HARD) {
448 ppc_hw_interrupt(env);
449 if (env->pending_interrupts == 0)
450 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
451 next_tb = 0;
453 #elif defined(TARGET_MICROBLAZE)
454 if ((interrupt_request & CPU_INTERRUPT_HARD)
455 && (env->sregs[SR_MSR] & MSR_IE)
456 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
457 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
458 env->exception_index = EXCP_IRQ;
459 do_interrupt(env);
460 next_tb = 0;
462 #elif defined(TARGET_MIPS)
463 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
464 cpu_mips_hw_interrupts_pending(env)) {
465 /* Raise it */
466 env->exception_index = EXCP_EXT_INTERRUPT;
467 env->error_code = 0;
468 do_interrupt(env);
469 next_tb = 0;
471 #elif defined(TARGET_SPARC)
472 if (interrupt_request & CPU_INTERRUPT_HARD) {
473 if (cpu_interrupts_enabled(env) &&
474 env->interrupt_index > 0) {
475 int pil = env->interrupt_index & 0xf;
476 int type = env->interrupt_index & 0xf0;
478 if (((type == TT_EXTINT) &&
479 cpu_pil_allowed(env, pil)) ||
480 type != TT_EXTINT) {
481 env->exception_index = env->interrupt_index;
482 do_interrupt(env);
483 next_tb = 0;
486 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
487 //do_interrupt(0, 0, 0, 0, 0);
488 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
490 #elif defined(TARGET_ARM)
491 if (interrupt_request & CPU_INTERRUPT_FIQ
492 && !(env->uncached_cpsr & CPSR_F)) {
493 env->exception_index = EXCP_FIQ;
494 do_interrupt(env);
495 next_tb = 0;
497 /* ARMv7-M interrupt return works by loading a magic value
498 into the PC. On real hardware the load causes the
499 return to occur. The qemu implementation performs the
500 jump normally, then does the exception return when the
501 CPU tries to execute code at the magic address.
502 This will cause the magic PC value to be pushed to
503 the stack if an interrupt occured at the wrong time.
504 We avoid this by disabling interrupts when
505 pc contains a magic address. */
506 if (interrupt_request & CPU_INTERRUPT_HARD
507 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
508 || !(env->uncached_cpsr & CPSR_I))) {
509 env->exception_index = EXCP_IRQ;
510 do_interrupt(env);
511 next_tb = 0;
513 #elif defined(TARGET_SH4)
514 if (interrupt_request & CPU_INTERRUPT_HARD) {
515 do_interrupt(env);
516 next_tb = 0;
518 #elif defined(TARGET_ALPHA)
519 if (interrupt_request & CPU_INTERRUPT_HARD) {
520 do_interrupt(env);
521 next_tb = 0;
523 #elif defined(TARGET_CRIS)
524 if (interrupt_request & CPU_INTERRUPT_HARD
525 && (env->pregs[PR_CCS] & I_FLAG)
526 && !env->locked_irq) {
527 env->exception_index = EXCP_IRQ;
528 do_interrupt(env);
529 next_tb = 0;
531 if (interrupt_request & CPU_INTERRUPT_NMI
532 && (env->pregs[PR_CCS] & M_FLAG)) {
533 env->exception_index = EXCP_NMI;
534 do_interrupt(env);
535 next_tb = 0;
537 #elif defined(TARGET_M68K)
538 if (interrupt_request & CPU_INTERRUPT_HARD
539 && ((env->sr & SR_I) >> SR_I_SHIFT)
540 < env->pending_level) {
541 /* Real hardware gets the interrupt vector via an
542 IACK cycle at this point. Current emulated
543 hardware doesn't rely on this, so we
544 provide/save the vector when the interrupt is
545 first signalled. */
546 env->exception_index = env->pending_vector;
547 do_interrupt(1);
548 next_tb = 0;
550 #endif
551 /* Don't use the cached interupt_request value,
552 do_interrupt may have updated the EXITTB flag. */
553 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
554 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
555 /* ensure that no TB jump will be modified as
556 the program flow was changed */
557 next_tb = 0;
560 if (unlikely(env->exit_request)) {
561 env->exit_request = 0;
562 env->exception_index = EXCP_INTERRUPT;
563 cpu_loop_exit();
565 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
566 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
567 /* restore flags in standard format */
568 #if defined(TARGET_I386)
569 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
570 log_cpu_state(env, X86_DUMP_CCOP);
571 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
572 #elif defined(TARGET_M68K)
573 cpu_m68k_flush_flags(env, env->cc_op);
574 env->cc_op = CC_OP_FLAGS;
575 env->sr = (env->sr & 0xffe0)
576 | env->cc_dest | (env->cc_x << 4);
577 log_cpu_state(env, 0);
578 #else
579 log_cpu_state(env, 0);
580 #endif
582 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
583 spin_lock(&tb_lock);
584 tb = tb_find_fast();
585 /* Note: we do it here to avoid a gcc bug on Mac OS X when
586 doing it in tb_find_slow */
587 if (tb_invalidated_flag) {
588 /* as some TB could have been invalidated because
589 of memory exceptions while generating the code, we
590 must recompute the hash index here */
591 next_tb = 0;
592 tb_invalidated_flag = 0;
594 #ifdef CONFIG_DEBUG_EXEC
595 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
596 (long)tb->tc_ptr, tb->pc,
597 lookup_symbol(tb->pc));
598 #endif
599 /* see if we can patch the calling TB. When the TB
600 spans two pages, we cannot safely do a direct
601 jump. */
602 if (next_tb != 0 && tb->page_addr[1] == -1) {
603 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
605 spin_unlock(&tb_lock);
607 /* cpu_interrupt might be called while translating the
608 TB, but before it is linked into a potentially
609 infinite loop and becomes env->current_tb. Avoid
610 starting execution if there is a pending interrupt. */
611 env->current_tb = tb;
612 barrier();
613 if (likely(!env->exit_request)) {
614 tc_ptr = tb->tc_ptr;
615 /* execute the generated code */
616 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
617 #undef env
618 env = cpu_single_env;
619 #define env cpu_single_env
620 #endif
621 next_tb = tcg_qemu_tb_exec(tc_ptr);
622 if ((next_tb & 3) == 2) {
623 /* Instruction counter expired. */
624 int insns_left;
625 tb = (TranslationBlock *)(long)(next_tb & ~3);
626 /* Restore PC. */
627 cpu_pc_from_tb(env, tb);
628 insns_left = env->icount_decr.u32;
629 if (env->icount_extra && insns_left >= 0) {
630 /* Refill decrementer and continue execution. */
631 env->icount_extra += insns_left;
632 if (env->icount_extra > 0xffff) {
633 insns_left = 0xffff;
634 } else {
635 insns_left = env->icount_extra;
637 env->icount_extra -= insns_left;
638 env->icount_decr.u16.low = insns_left;
639 } else {
640 if (insns_left > 0) {
641 /* Execute remaining instructions. */
642 cpu_exec_nocache(insns_left, tb);
644 env->exception_index = EXCP_INTERRUPT;
645 next_tb = 0;
646 cpu_loop_exit();
650 env->current_tb = NULL;
651 /* reset soft MMU for next block (it can currently
652 only be set by a memory fault) */
653 } /* for(;;) */
655 } /* for(;;) */
658 #if defined(TARGET_I386)
659 /* restore flags in standard format */
660 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
661 #elif defined(TARGET_ARM)
662 /* XXX: Save/restore host fpu exception state?. */
663 #elif defined(TARGET_SPARC)
664 #elif defined(TARGET_PPC)
665 #elif defined(TARGET_M68K)
666 cpu_m68k_flush_flags(env, env->cc_op);
667 env->cc_op = CC_OP_FLAGS;
668 env->sr = (env->sr & 0xffe0)
669 | env->cc_dest | (env->cc_x << 4);
670 #elif defined(TARGET_MICROBLAZE)
671 #elif defined(TARGET_MIPS)
672 #elif defined(TARGET_SH4)
673 #elif defined(TARGET_IA64)
674 #elif defined(TARGET_ALPHA)
675 #elif defined(TARGET_CRIS)
676 #elif defined(TARGET_S390X)
677 /* XXXXX */
678 #else
679 #error unsupported target CPU
680 #endif
682 /* restore global registers */
683 barrier();
684 env = (void *) saved_env_reg;
686 /* fail safe : never use cpu_single_env outside cpu_exec() */
687 cpu_single_env = NULL;
688 return ret;
691 /* must only be called from the generated code as an exception can be
692 generated */
693 void tb_invalidate_page_range(target_ulong start, target_ulong end)
695 /* XXX: cannot enable it yet because it yields to MMU exception
696 where NIP != read address on PowerPC */
697 #if 0
698 target_ulong phys_addr;
699 phys_addr = get_phys_addr_code(env, start);
700 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
701 #endif
704 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
706 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
708 CPUX86State *saved_env;
710 saved_env = env;
711 env = s;
712 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
713 selector &= 0xffff;
714 cpu_x86_load_seg_cache(env, seg_reg, selector,
715 (selector << 4), 0xffff, 0);
716 } else {
717 helper_load_seg(seg_reg, selector);
719 env = saved_env;
722 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
724 CPUX86State *saved_env;
726 saved_env = env;
727 env = s;
729 helper_fsave(ptr, data32);
731 env = saved_env;
734 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
736 CPUX86State *saved_env;
738 saved_env = env;
739 env = s;
741 helper_frstor(ptr, data32);
743 env = saved_env;
746 #endif /* TARGET_I386 */
748 #if !defined(CONFIG_SOFTMMU)
750 #if defined(TARGET_I386)
751 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
752 #else
753 #define EXCEPTION_ACTION cpu_loop_exit()
754 #endif
756 /* 'pc' is the host PC at which the exception was raised. 'address' is
757 the effective address of the memory exception. 'is_write' is 1 if a
758 write caused the exception and otherwise 0'. 'old_set' is the
759 signal set which should be restored */
760 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
761 int is_write, sigset_t *old_set,
762 void *puc)
764 TranslationBlock *tb;
765 int ret;
767 if (cpu_single_env)
768 env = cpu_single_env; /* XXX: find a correct solution for multithread */
769 #if defined(DEBUG_SIGNAL)
770 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
771 pc, address, is_write, *(unsigned long *)old_set);
772 #endif
773 /* XXX: locking issue */
774 if (is_write && page_unprotect(h2g(address), pc, puc)) {
775 return 1;
778 /* see if it is an MMU fault */
779 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
780 if (ret < 0)
781 return 0; /* not an MMU fault */
782 if (ret == 0)
783 return 1; /* the MMU fault was handled without causing real CPU fault */
784 /* now we have a real cpu fault */
785 tb = tb_find_pc(pc);
786 if (tb) {
787 /* the PC is inside the translated code. It means that we have
788 a virtual CPU fault */
789 cpu_restore_state(tb, env, pc, puc);
792 /* we restore the process signal mask as the sigreturn should
793 do it (XXX: use sigsetjmp) */
794 sigprocmask(SIG_SETMASK, old_set, NULL);
795 EXCEPTION_ACTION;
797 /* never comes here */
798 return 1;
801 #if defined(__i386__)
803 #if defined(__APPLE__)
804 # include <sys/ucontext.h>
806 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
807 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
808 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
809 # define MASK_sig(context) ((context)->uc_sigmask)
810 #elif defined (__NetBSD__)
811 # include <ucontext.h>
813 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
814 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
815 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
816 # define MASK_sig(context) ((context)->uc_sigmask)
817 #elif defined (__FreeBSD__) || defined(__DragonFly__)
818 # include <ucontext.h>
820 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
821 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
822 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
823 # define MASK_sig(context) ((context)->uc_sigmask)
824 #elif defined(__OpenBSD__)
825 # define EIP_sig(context) ((context)->sc_eip)
826 # define TRAP_sig(context) ((context)->sc_trapno)
827 # define ERROR_sig(context) ((context)->sc_err)
828 # define MASK_sig(context) ((context)->sc_mask)
829 #else
830 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
831 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
832 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
833 # define MASK_sig(context) ((context)->uc_sigmask)
834 #endif
836 int cpu_signal_handler(int host_signum, void *pinfo,
837 void *puc)
839 siginfo_t *info = pinfo;
840 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
841 ucontext_t *uc = puc;
842 #elif defined(__OpenBSD__)
843 struct sigcontext *uc = puc;
844 #else
845 struct ucontext *uc = puc;
846 #endif
847 unsigned long pc;
848 int trapno;
850 #ifndef REG_EIP
851 /* for glibc 2.1 */
852 #define REG_EIP EIP
853 #define REG_ERR ERR
854 #define REG_TRAPNO TRAPNO
855 #endif
856 pc = EIP_sig(uc);
857 trapno = TRAP_sig(uc);
858 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
859 trapno == 0xe ?
860 (ERROR_sig(uc) >> 1) & 1 : 0,
861 &MASK_sig(uc), puc);
864 #elif defined(__x86_64__)
866 #ifdef __NetBSD__
867 #define PC_sig(context) _UC_MACHINE_PC(context)
868 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
869 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
870 #define MASK_sig(context) ((context)->uc_sigmask)
871 #elif defined(__OpenBSD__)
872 #define PC_sig(context) ((context)->sc_rip)
873 #define TRAP_sig(context) ((context)->sc_trapno)
874 #define ERROR_sig(context) ((context)->sc_err)
875 #define MASK_sig(context) ((context)->sc_mask)
876 #elif defined (__FreeBSD__) || defined(__DragonFly__)
877 #include <ucontext.h>
879 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
880 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
881 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
882 #define MASK_sig(context) ((context)->uc_sigmask)
883 #else
884 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
885 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
886 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
887 #define MASK_sig(context) ((context)->uc_sigmask)
888 #endif
890 int cpu_signal_handler(int host_signum, void *pinfo,
891 void *puc)
893 siginfo_t *info = pinfo;
894 unsigned long pc;
895 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
896 ucontext_t *uc = puc;
897 #elif defined(__OpenBSD__)
898 struct sigcontext *uc = puc;
899 #else
900 struct ucontext *uc = puc;
901 #endif
903 pc = PC_sig(uc);
904 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
905 TRAP_sig(uc) == 0xe ?
906 (ERROR_sig(uc) >> 1) & 1 : 0,
907 &MASK_sig(uc), puc);
910 #elif defined(_ARCH_PPC)
912 /***********************************************************************
913 * signal context platform-specific definitions
914 * From Wine
916 #ifdef linux
917 /* All Registers access - only for local access */
918 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
919 /* Gpr Registers access */
920 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
921 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
922 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
923 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
924 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
925 # define LR_sig(context) REG_sig(link, context) /* Link register */
926 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
927 /* Float Registers access */
928 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
929 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
930 /* Exception Registers access */
931 # define DAR_sig(context) REG_sig(dar, context)
932 # define DSISR_sig(context) REG_sig(dsisr, context)
933 # define TRAP_sig(context) REG_sig(trap, context)
934 #endif /* linux */
936 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
937 #include <ucontext.h>
938 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
939 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
940 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
941 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
942 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
943 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
944 /* Exception Registers access */
945 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
946 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
947 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
948 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
950 #ifdef __APPLE__
951 # include <sys/ucontext.h>
952 typedef struct ucontext SIGCONTEXT;
953 /* All Registers access - only for local access */
954 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
955 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
956 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
957 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
958 /* Gpr Registers access */
959 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
960 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
961 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
962 # define CTR_sig(context) REG_sig(ctr, context)
963 # define XER_sig(context) REG_sig(xer, context) /* Link register */
964 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
965 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
966 /* Float Registers access */
967 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
968 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
969 /* Exception Registers access */
970 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
971 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
972 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
973 #endif /* __APPLE__ */
975 int cpu_signal_handler(int host_signum, void *pinfo,
976 void *puc)
978 siginfo_t *info = pinfo;
979 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
980 ucontext_t *uc = puc;
981 #else
982 struct ucontext *uc = puc;
983 #endif
984 unsigned long pc;
985 int is_write;
987 pc = IAR_sig(uc);
988 is_write = 0;
989 #if 0
990 /* ppc 4xx case */
991 if (DSISR_sig(uc) & 0x00800000)
992 is_write = 1;
993 #else
994 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
995 is_write = 1;
996 #endif
997 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
998 is_write, &uc->uc_sigmask, puc);
1001 #elif defined(__alpha__)
1003 int cpu_signal_handler(int host_signum, void *pinfo,
1004 void *puc)
1006 siginfo_t *info = pinfo;
1007 struct ucontext *uc = puc;
1008 uint32_t *pc = uc->uc_mcontext.sc_pc;
1009 uint32_t insn = *pc;
1010 int is_write = 0;
1012 /* XXX: need kernel patch to get write flag faster */
1013 switch (insn >> 26) {
1014 case 0x0d: // stw
1015 case 0x0e: // stb
1016 case 0x0f: // stq_u
1017 case 0x24: // stf
1018 case 0x25: // stg
1019 case 0x26: // sts
1020 case 0x27: // stt
1021 case 0x2c: // stl
1022 case 0x2d: // stq
1023 case 0x2e: // stl_c
1024 case 0x2f: // stq_c
1025 is_write = 1;
1028 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1029 is_write, &uc->uc_sigmask, puc);
1031 #elif defined(__sparc__)
1033 int cpu_signal_handler(int host_signum, void *pinfo,
1034 void *puc)
1036 siginfo_t *info = pinfo;
1037 int is_write;
1038 uint32_t insn;
1039 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1040 uint32_t *regs = (uint32_t *)(info + 1);
1041 void *sigmask = (regs + 20);
1042 /* XXX: is there a standard glibc define ? */
1043 unsigned long pc = regs[1];
1044 #else
1045 #ifdef __linux__
1046 struct sigcontext *sc = puc;
1047 unsigned long pc = sc->sigc_regs.tpc;
1048 void *sigmask = (void *)sc->sigc_mask;
1049 #elif defined(__OpenBSD__)
1050 struct sigcontext *uc = puc;
1051 unsigned long pc = uc->sc_pc;
1052 void *sigmask = (void *)(long)uc->sc_mask;
1053 #endif
1054 #endif
1056 /* XXX: need kernel patch to get write flag faster */
1057 is_write = 0;
1058 insn = *(uint32_t *)pc;
1059 if ((insn >> 30) == 3) {
1060 switch((insn >> 19) & 0x3f) {
1061 case 0x05: // stb
1062 case 0x15: // stba
1063 case 0x06: // sth
1064 case 0x16: // stha
1065 case 0x04: // st
1066 case 0x14: // sta
1067 case 0x07: // std
1068 case 0x17: // stda
1069 case 0x0e: // stx
1070 case 0x1e: // stxa
1071 case 0x24: // stf
1072 case 0x34: // stfa
1073 case 0x27: // stdf
1074 case 0x37: // stdfa
1075 case 0x26: // stqf
1076 case 0x36: // stqfa
1077 case 0x25: // stfsr
1078 case 0x3c: // casa
1079 case 0x3e: // casxa
1080 is_write = 1;
1081 break;
1084 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1085 is_write, sigmask, NULL);
1088 #elif defined(__arm__)
1090 int cpu_signal_handler(int host_signum, void *pinfo,
1091 void *puc)
1093 siginfo_t *info = pinfo;
1094 struct ucontext *uc = puc;
1095 unsigned long pc;
1096 int is_write;
1098 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1099 pc = uc->uc_mcontext.gregs[R15];
1100 #else
1101 pc = uc->uc_mcontext.arm_pc;
1102 #endif
1103 /* XXX: compute is_write */
1104 is_write = 0;
1105 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1106 is_write,
1107 &uc->uc_sigmask, puc);
1110 #elif defined(__mc68000)
1112 int cpu_signal_handler(int host_signum, void *pinfo,
1113 void *puc)
1115 siginfo_t *info = pinfo;
1116 struct ucontext *uc = puc;
1117 unsigned long pc;
1118 int is_write;
1120 pc = uc->uc_mcontext.gregs[16];
1121 /* XXX: compute is_write */
1122 is_write = 0;
1123 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1124 is_write,
1125 &uc->uc_sigmask, puc);
1128 #elif defined(__ia64)
1130 #ifndef __ISR_VALID
1131 /* This ought to be in <bits/siginfo.h>... */
1132 # define __ISR_VALID 1
1133 #endif
1135 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1137 siginfo_t *info = pinfo;
1138 struct ucontext *uc = puc;
1139 unsigned long ip;
1140 int is_write = 0;
1142 ip = uc->uc_mcontext.sc_ip;
1143 switch (host_signum) {
1144 case SIGILL:
1145 case SIGFPE:
1146 case SIGSEGV:
1147 case SIGBUS:
1148 case SIGTRAP:
1149 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1150 /* ISR.W (write-access) is bit 33: */
1151 is_write = (info->si_isr >> 33) & 1;
1152 break;
1154 default:
1155 break;
1157 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1158 is_write,
1159 (sigset_t *)&uc->uc_sigmask, puc);
1162 #elif defined(__s390__)
1164 int cpu_signal_handler(int host_signum, void *pinfo,
1165 void *puc)
1167 siginfo_t *info = pinfo;
1168 struct ucontext *uc = puc;
1169 unsigned long pc;
1170 uint16_t *pinsn;
1171 int is_write = 0;
1173 pc = uc->uc_mcontext.psw.addr;
1175 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1176 of the normal 2 arguments. The 3rd argument contains the "int_code"
1177 from the hardware which does in fact contain the is_write value.
1178 The rt signal handler, as far as I can tell, does not give this value
1179 at all. Not that we could get to it from here even if it were. */
1180 /* ??? This is not even close to complete, since it ignores all
1181 of the read-modify-write instructions. */
1182 pinsn = (uint16_t *)pc;
1183 switch (pinsn[0] >> 8) {
1184 case 0x50: /* ST */
1185 case 0x42: /* STC */
1186 case 0x40: /* STH */
1187 is_write = 1;
1188 break;
1189 case 0xc4: /* RIL format insns */
1190 switch (pinsn[0] & 0xf) {
1191 case 0xf: /* STRL */
1192 case 0xb: /* STGRL */
1193 case 0x7: /* STHRL */
1194 is_write = 1;
1196 break;
1197 case 0xe3: /* RXY format insns */
1198 switch (pinsn[2] & 0xff) {
1199 case 0x50: /* STY */
1200 case 0x24: /* STG */
1201 case 0x72: /* STCY */
1202 case 0x70: /* STHY */
1203 case 0x8e: /* STPQ */
1204 case 0x3f: /* STRVH */
1205 case 0x3e: /* STRV */
1206 case 0x2f: /* STRVG */
1207 is_write = 1;
1209 break;
1211 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1212 is_write, &uc->uc_sigmask, puc);
1215 #elif defined(__mips__)
1217 int cpu_signal_handler(int host_signum, void *pinfo,
1218 void *puc)
1220 siginfo_t *info = pinfo;
1221 struct ucontext *uc = puc;
1222 greg_t pc = uc->uc_mcontext.pc;
1223 int is_write;
1225 /* XXX: compute is_write */
1226 is_write = 0;
1227 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1228 is_write, &uc->uc_sigmask, puc);
1231 #elif defined(__hppa__)
1233 int cpu_signal_handler(int host_signum, void *pinfo,
1234 void *puc)
1236 struct siginfo *info = pinfo;
1237 struct ucontext *uc = puc;
1238 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1239 uint32_t insn = *(uint32_t *)pc;
1240 int is_write = 0;
1242 /* XXX: need kernel patch to get write flag faster. */
1243 switch (insn >> 26) {
1244 case 0x1a: /* STW */
1245 case 0x19: /* STH */
1246 case 0x18: /* STB */
1247 case 0x1b: /* STWM */
1248 is_write = 1;
1249 break;
1251 case 0x09: /* CSTWX, FSTWX, FSTWS */
1252 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1253 /* Distinguish from coprocessor load ... */
1254 is_write = (insn >> 9) & 1;
1255 break;
1257 case 0x03:
1258 switch ((insn >> 6) & 15) {
1259 case 0xa: /* STWS */
1260 case 0x9: /* STHS */
1261 case 0x8: /* STBS */
1262 case 0xe: /* STWAS */
1263 case 0xc: /* STBYS */
1264 is_write = 1;
1266 break;
1269 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1270 is_write, &uc->uc_sigmask, puc);
1273 #else
1275 #error host CPU specific signal handler needed
1277 #endif
1279 #endif /* !defined(CONFIG_SOFTMMU) */