2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu-timer.h"
19 #include "migration.h"
21 static void qed_aio_cancel(BlockDriverAIOCB
*blockacb
)
23 QEDAIOCB
*acb
= (QEDAIOCB
*)blockacb
;
24 bool finished
= false;
26 /* Wait for the request to finish */
27 acb
->finished
= &finished
;
33 static AIOPool qed_aio_pool
= {
34 .aiocb_size
= sizeof(QEDAIOCB
),
35 .cancel
= qed_aio_cancel
,
38 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
41 const QEDHeader
*header
= (const QEDHeader
*)buf
;
43 if (buf_size
< sizeof(*header
)) {
46 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
53 * Check whether an image format is raw
55 * @fmt: Backing file format, may be NULL
57 static bool qed_fmt_is_raw(const char *fmt
)
59 return fmt
&& strcmp(fmt
, "raw") == 0;
62 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
64 cpu
->magic
= le32_to_cpu(le
->magic
);
65 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
66 cpu
->table_size
= le32_to_cpu(le
->table_size
);
67 cpu
->header_size
= le32_to_cpu(le
->header_size
);
68 cpu
->features
= le64_to_cpu(le
->features
);
69 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
70 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
71 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
72 cpu
->image_size
= le64_to_cpu(le
->image_size
);
73 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
74 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
77 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
79 le
->magic
= cpu_to_le32(cpu
->magic
);
80 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
81 le
->table_size
= cpu_to_le32(cpu
->table_size
);
82 le
->header_size
= cpu_to_le32(cpu
->header_size
);
83 le
->features
= cpu_to_le64(cpu
->features
);
84 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
85 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
86 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
87 le
->image_size
= cpu_to_le64(cpu
->image_size
);
88 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
89 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
92 int qed_write_header_sync(BDRVQEDState
*s
)
97 qed_header_cpu_to_le(&s
->header
, &le
);
98 ret
= bdrv_pwrite(s
->bs
->file
, 0, &le
, sizeof(le
));
99 if (ret
!= sizeof(le
)) {
114 static void qed_write_header_cb(void *opaque
, int ret
)
116 QEDWriteHeaderCB
*write_header_cb
= opaque
;
118 qemu_vfree(write_header_cb
->buf
);
119 gencb_complete(write_header_cb
, ret
);
122 static void qed_write_header_read_cb(void *opaque
, int ret
)
124 QEDWriteHeaderCB
*write_header_cb
= opaque
;
125 BDRVQEDState
*s
= write_header_cb
->s
;
128 qed_write_header_cb(write_header_cb
, ret
);
133 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*)write_header_cb
->buf
);
135 bdrv_aio_writev(s
->bs
->file
, 0, &write_header_cb
->qiov
,
136 write_header_cb
->nsectors
, qed_write_header_cb
,
141 * Update header in-place (does not rewrite backing filename or other strings)
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
146 static void qed_write_header(BDRVQEDState
*s
, BlockDriverCompletionFunc cb
,
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
155 int nsectors
= (sizeof(QEDHeader
) + BDRV_SECTOR_SIZE
- 1) /
157 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
158 QEDWriteHeaderCB
*write_header_cb
= gencb_alloc(sizeof(*write_header_cb
),
161 write_header_cb
->s
= s
;
162 write_header_cb
->nsectors
= nsectors
;
163 write_header_cb
->buf
= qemu_blockalign(s
->bs
, len
);
164 write_header_cb
->iov
.iov_base
= write_header_cb
->buf
;
165 write_header_cb
->iov
.iov_len
= len
;
166 qemu_iovec_init_external(&write_header_cb
->qiov
, &write_header_cb
->iov
, 1);
168 bdrv_aio_readv(s
->bs
->file
, 0, &write_header_cb
->qiov
, nsectors
,
169 qed_write_header_read_cb
, write_header_cb
);
172 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
174 uint64_t table_entries
;
177 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
178 l2_size
= table_entries
* cluster_size
;
180 return l2_size
* table_entries
;
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
185 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
186 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
189 if (cluster_size
& (cluster_size
- 1)) {
190 return false; /* not power of 2 */
195 static bool qed_is_table_size_valid(uint32_t table_size
)
197 if (table_size
< QED_MIN_TABLE_SIZE
||
198 table_size
> QED_MAX_TABLE_SIZE
) {
201 if (table_size
& (table_size
- 1)) {
202 return false; /* not power of 2 */
207 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
210 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
211 return false; /* not multiple of sector size */
213 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
214 return false; /* image is too large */
220 * Read a string of known length from the image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
229 * The string is NUL-terminated.
231 static int qed_read_string(BlockDriverState
*file
, uint64_t offset
, size_t n
,
232 char *buf
, size_t buflen
)
238 ret
= bdrv_pread(file
, offset
, buf
, n
);
247 * Allocate new clusters
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
257 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
259 uint64_t offset
= s
->file_size
;
260 s
->file_size
+= n
* s
->header
.cluster_size
;
264 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s
->bs
,
268 s
->header
.cluster_size
* s
->header
.table_size
);
272 * Allocate a new zeroed L2 table
274 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
276 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
278 l2_table
->table
= qed_alloc_table(s
);
279 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
281 memset(l2_table
->table
->offsets
, 0,
282 s
->header
.cluster_size
* s
->header
.table_size
);
286 static void qed_aio_next_io(void *opaque
, int ret
);
288 static void qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
290 assert(!s
->allocating_write_reqs_plugged
);
292 s
->allocating_write_reqs_plugged
= true;
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
299 assert(s
->allocating_write_reqs_plugged
);
301 s
->allocating_write_reqs_plugged
= false;
303 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
305 qed_aio_next_io(acb
, 0);
309 static void qed_finish_clear_need_check(void *opaque
, int ret
)
314 static void qed_flush_after_clear_need_check(void *opaque
, int ret
)
316 BDRVQEDState
*s
= opaque
;
318 bdrv_aio_flush(s
->bs
, qed_finish_clear_need_check
, s
);
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s
);
324 static void qed_clear_need_check(void *opaque
, int ret
)
326 BDRVQEDState
*s
= opaque
;
329 qed_unplug_allocating_write_reqs(s
);
333 s
->header
.features
&= ~QED_F_NEED_CHECK
;
334 qed_write_header(s
, qed_flush_after_clear_need_check
, s
);
337 static void qed_need_check_timer_cb(void *opaque
)
339 BDRVQEDState
*s
= opaque
;
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s
->allocating_write_reqs
));
344 trace_qed_need_check_timer_cb(s
);
346 qed_plug_allocating_write_reqs(s
);
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s
->bs
, qed_clear_need_check
, s
);
352 static void qed_start_need_check_timer(BDRVQEDState
*s
)
354 trace_qed_start_need_check_timer(s
);
356 /* Use vm_clock so we don't alter the image file while suspended for
359 qemu_mod_timer(s
->need_check_timer
, qemu_get_clock_ns(vm_clock
) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT
);
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
366 trace_qed_cancel_need_check_timer(s
);
367 qemu_del_timer(s
->need_check_timer
);
370 static void bdrv_qed_rebind(BlockDriverState
*bs
)
372 BDRVQEDState
*s
= bs
->opaque
;
376 static int bdrv_qed_open(BlockDriverState
*bs
, int flags
)
378 BDRVQEDState
*s
= bs
->opaque
;
384 QSIMPLEQ_INIT(&s
->allocating_write_reqs
);
386 ret
= bdrv_pread(bs
->file
, 0, &le_header
, sizeof(le_header
));
390 qed_header_le_to_cpu(&le_header
, &s
->header
);
392 if (s
->header
.magic
!= QED_MAGIC
) {
395 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
396 /* image uses unsupported feature bits */
398 snprintf(buf
, sizeof(buf
), "%" PRIx64
,
399 s
->header
.features
& ~QED_FEATURE_MASK
);
400 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE
,
401 bs
->device_name
, "QED", buf
);
404 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
408 /* Round down file size to the last cluster */
409 file_size
= bdrv_getlength(bs
->file
);
413 s
->file_size
= qed_start_of_cluster(s
, file_size
);
415 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
418 if (!qed_is_image_size_valid(s
->header
.image_size
,
419 s
->header
.cluster_size
,
420 s
->header
.table_size
)) {
423 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
427 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
429 s
->l2_shift
= ffs(s
->header
.cluster_size
) - 1;
430 s
->l2_mask
= s
->table_nelems
- 1;
431 s
->l1_shift
= s
->l2_shift
+ ffs(s
->table_nelems
) - 1;
433 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
434 if ((uint64_t)s
->header
.backing_filename_offset
+
435 s
->header
.backing_filename_size
>
436 s
->header
.cluster_size
* s
->header
.header_size
) {
440 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
441 s
->header
.backing_filename_size
, bs
->backing_file
,
442 sizeof(bs
->backing_file
));
447 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
448 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
452 /* Reset unknown autoclear feature bits. This is a backwards
453 * compatibility mechanism that allows images to be opened by older
454 * programs, which "knock out" unknown feature bits. When an image is
455 * opened by a newer program again it can detect that the autoclear
456 * feature is no longer valid.
458 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
459 !bdrv_is_read_only(bs
->file
) && !(flags
& BDRV_O_INCOMING
)) {
460 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
462 ret
= qed_write_header_sync(s
);
467 /* From here on only known autoclear feature bits are valid */
468 bdrv_flush(bs
->file
);
471 s
->l1_table
= qed_alloc_table(s
);
472 qed_init_l2_cache(&s
->l2_cache
);
474 ret
= qed_read_l1_table_sync(s
);
479 /* If image was not closed cleanly, check consistency */
480 if (!(flags
& BDRV_O_CHECK
) && (s
->header
.features
& QED_F_NEED_CHECK
)) {
481 /* Read-only images cannot be fixed. There is no risk of corruption
482 * since write operations are not possible. Therefore, allow
483 * potentially inconsistent images to be opened read-only. This can
484 * aid data recovery from an otherwise inconsistent image.
486 if (!bdrv_is_read_only(bs
->file
) &&
487 !(flags
& BDRV_O_INCOMING
)) {
488 BdrvCheckResult result
= {0};
490 ret
= qed_check(s
, &result
, true);
497 s
->need_check_timer
= qemu_new_timer_ns(vm_clock
,
498 qed_need_check_timer_cb
, s
);
502 qed_free_l2_cache(&s
->l2_cache
);
503 qemu_vfree(s
->l1_table
);
508 static void bdrv_qed_close(BlockDriverState
*bs
)
510 BDRVQEDState
*s
= bs
->opaque
;
512 qed_cancel_need_check_timer(s
);
513 qemu_free_timer(s
->need_check_timer
);
515 /* Ensure writes reach stable storage */
516 bdrv_flush(bs
->file
);
518 /* Clean shutdown, no check required on next open */
519 if (s
->header
.features
& QED_F_NEED_CHECK
) {
520 s
->header
.features
&= ~QED_F_NEED_CHECK
;
521 qed_write_header_sync(s
);
524 qed_free_l2_cache(&s
->l2_cache
);
525 qemu_vfree(s
->l1_table
);
528 static int qed_create(const char *filename
, uint32_t cluster_size
,
529 uint64_t image_size
, uint32_t table_size
,
530 const char *backing_file
, const char *backing_fmt
)
534 .cluster_size
= cluster_size
,
535 .table_size
= table_size
,
538 .compat_features
= 0,
539 .l1_table_offset
= cluster_size
,
540 .image_size
= image_size
,
543 uint8_t *l1_table
= NULL
;
544 size_t l1_size
= header
.cluster_size
* header
.table_size
;
546 BlockDriverState
*bs
= NULL
;
548 ret
= bdrv_create_file(filename
, NULL
);
553 ret
= bdrv_file_open(&bs
, filename
, BDRV_O_RDWR
| BDRV_O_CACHE_WB
);
558 /* File must start empty and grow, check truncate is supported */
559 ret
= bdrv_truncate(bs
, 0);
565 header
.features
|= QED_F_BACKING_FILE
;
566 header
.backing_filename_offset
= sizeof(le_header
);
567 header
.backing_filename_size
= strlen(backing_file
);
569 if (qed_fmt_is_raw(backing_fmt
)) {
570 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
574 qed_header_cpu_to_le(&header
, &le_header
);
575 ret
= bdrv_pwrite(bs
, 0, &le_header
, sizeof(le_header
));
579 ret
= bdrv_pwrite(bs
, sizeof(le_header
), backing_file
,
580 header
.backing_filename_size
);
585 l1_table
= g_malloc0(l1_size
);
586 ret
= bdrv_pwrite(bs
, header
.l1_table_offset
, l1_table
, l1_size
);
591 ret
= 0; /* success */
598 static int bdrv_qed_create(const char *filename
, QEMUOptionParameter
*options
)
600 uint64_t image_size
= 0;
601 uint32_t cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
602 uint32_t table_size
= QED_DEFAULT_TABLE_SIZE
;
603 const char *backing_file
= NULL
;
604 const char *backing_fmt
= NULL
;
606 while (options
&& options
->name
) {
607 if (!strcmp(options
->name
, BLOCK_OPT_SIZE
)) {
608 image_size
= options
->value
.n
;
609 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FILE
)) {
610 backing_file
= options
->value
.s
;
611 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FMT
)) {
612 backing_fmt
= options
->value
.s
;
613 } else if (!strcmp(options
->name
, BLOCK_OPT_CLUSTER_SIZE
)) {
614 if (options
->value
.n
) {
615 cluster_size
= options
->value
.n
;
617 } else if (!strcmp(options
->name
, BLOCK_OPT_TABLE_SIZE
)) {
618 if (options
->value
.n
) {
619 table_size
= options
->value
.n
;
625 if (!qed_is_cluster_size_valid(cluster_size
)) {
626 fprintf(stderr
, "QED cluster size must be within range [%u, %u] and power of 2\n",
627 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
630 if (!qed_is_table_size_valid(table_size
)) {
631 fprintf(stderr
, "QED table size must be within range [%u, %u] and power of 2\n",
632 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
635 if (!qed_is_image_size_valid(image_size
, cluster_size
, table_size
)) {
636 fprintf(stderr
, "QED image size must be a non-zero multiple of "
637 "cluster size and less than %" PRIu64
" bytes\n",
638 qed_max_image_size(cluster_size
, table_size
));
642 return qed_create(filename
, cluster_size
, image_size
, table_size
,
643 backing_file
, backing_fmt
);
652 static void qed_is_allocated_cb(void *opaque
, int ret
, uint64_t offset
, size_t len
)
654 QEDIsAllocatedCB
*cb
= opaque
;
655 *cb
->pnum
= len
/ BDRV_SECTOR_SIZE
;
656 cb
->is_allocated
= (ret
== QED_CLUSTER_FOUND
|| ret
== QED_CLUSTER_ZERO
);
658 qemu_coroutine_enter(cb
->co
, NULL
);
662 static int coroutine_fn
bdrv_qed_co_is_allocated(BlockDriverState
*bs
,
664 int nb_sectors
, int *pnum
)
666 BDRVQEDState
*s
= bs
->opaque
;
667 uint64_t pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
668 size_t len
= (size_t)nb_sectors
* BDRV_SECTOR_SIZE
;
669 QEDIsAllocatedCB cb
= {
673 QEDRequest request
= { .l2_table
= NULL
};
675 qed_find_cluster(s
, &request
, pos
, len
, qed_is_allocated_cb
, &cb
);
677 /* Now sleep if the callback wasn't invoked immediately */
678 while (cb
.is_allocated
== -1) {
679 cb
.co
= qemu_coroutine_self();
680 qemu_coroutine_yield();
683 qed_unref_l2_cache_entry(request
.l2_table
);
685 return cb
.is_allocated
;
688 static int bdrv_qed_make_empty(BlockDriverState
*bs
)
693 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
695 return acb
->common
.bs
->opaque
;
699 * Read from the backing file or zero-fill if no backing file
702 * @pos: Byte position in device
703 * @qiov: Destination I/O vector
704 * @cb: Completion function
705 * @opaque: User data for completion function
707 * This function reads qiov->size bytes starting at pos from the backing file.
708 * If there is no backing file then zeroes are read.
710 static void qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
712 BlockDriverCompletionFunc
*cb
, void *opaque
)
714 uint64_t backing_length
= 0;
717 /* If there is a backing file, get its length. Treat the absence of a
718 * backing file like a zero length backing file.
720 if (s
->bs
->backing_hd
) {
721 int64_t l
= bdrv_getlength(s
->bs
->backing_hd
);
729 /* Zero all sectors if reading beyond the end of the backing file */
730 if (pos
>= backing_length
||
731 pos
+ qiov
->size
> backing_length
) {
732 qemu_iovec_memset(qiov
, 0, 0, qiov
->size
);
735 /* Complete now if there are no backing file sectors to read */
736 if (pos
>= backing_length
) {
741 /* If the read straddles the end of the backing file, shorten it */
742 size
= MIN((uint64_t)backing_length
- pos
, qiov
->size
);
744 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING_AIO
);
745 bdrv_aio_readv(s
->bs
->backing_hd
, pos
/ BDRV_SECTOR_SIZE
,
746 qiov
, size
/ BDRV_SECTOR_SIZE
, cb
, opaque
);
755 } CopyFromBackingFileCB
;
757 static void qed_copy_from_backing_file_cb(void *opaque
, int ret
)
759 CopyFromBackingFileCB
*copy_cb
= opaque
;
760 qemu_vfree(copy_cb
->iov
.iov_base
);
761 gencb_complete(©_cb
->gencb
, ret
);
764 static void qed_copy_from_backing_file_write(void *opaque
, int ret
)
766 CopyFromBackingFileCB
*copy_cb
= opaque
;
767 BDRVQEDState
*s
= copy_cb
->s
;
770 qed_copy_from_backing_file_cb(copy_cb
, ret
);
774 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
775 bdrv_aio_writev(s
->bs
->file
, copy_cb
->offset
/ BDRV_SECTOR_SIZE
,
776 ©_cb
->qiov
, copy_cb
->qiov
.size
/ BDRV_SECTOR_SIZE
,
777 qed_copy_from_backing_file_cb
, copy_cb
);
781 * Copy data from backing file into the image
784 * @pos: Byte position in device
785 * @len: Number of bytes
786 * @offset: Byte offset in image file
787 * @cb: Completion function
788 * @opaque: User data for completion function
790 static void qed_copy_from_backing_file(BDRVQEDState
*s
, uint64_t pos
,
791 uint64_t len
, uint64_t offset
,
792 BlockDriverCompletionFunc
*cb
,
795 CopyFromBackingFileCB
*copy_cb
;
797 /* Skip copy entirely if there is no work to do */
803 copy_cb
= gencb_alloc(sizeof(*copy_cb
), cb
, opaque
);
805 copy_cb
->offset
= offset
;
806 copy_cb
->iov
.iov_base
= qemu_blockalign(s
->bs
, len
);
807 copy_cb
->iov
.iov_len
= len
;
808 qemu_iovec_init_external(©_cb
->qiov
, ©_cb
->iov
, 1);
810 qed_read_backing_file(s
, pos
, ©_cb
->qiov
,
811 qed_copy_from_backing_file_write
, copy_cb
);
815 * Link one or more contiguous clusters into a table
819 * @index: First cluster index
820 * @n: Number of contiguous clusters
821 * @cluster: First cluster offset
823 * The cluster offset may be an allocated byte offset in the image file, the
824 * zero cluster marker, or the unallocated cluster marker.
826 static void qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
, int index
,
827 unsigned int n
, uint64_t cluster
)
830 for (i
= index
; i
< index
+ n
; i
++) {
831 table
->offsets
[i
] = cluster
;
832 if (!qed_offset_is_unalloc_cluster(cluster
) &&
833 !qed_offset_is_zero_cluster(cluster
)) {
834 cluster
+= s
->header
.cluster_size
;
839 static void qed_aio_complete_bh(void *opaque
)
841 QEDAIOCB
*acb
= opaque
;
842 BlockDriverCompletionFunc
*cb
= acb
->common
.cb
;
843 void *user_opaque
= acb
->common
.opaque
;
844 int ret
= acb
->bh_ret
;
845 bool *finished
= acb
->finished
;
847 qemu_bh_delete(acb
->bh
);
848 qemu_aio_release(acb
);
850 /* Invoke callback */
851 cb(user_opaque
, ret
);
853 /* Signal cancel completion */
859 static void qed_aio_complete(QEDAIOCB
*acb
, int ret
)
861 BDRVQEDState
*s
= acb_to_s(acb
);
863 trace_qed_aio_complete(s
, acb
, ret
);
866 qemu_iovec_destroy(&acb
->cur_qiov
);
867 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
869 /* Free the buffer we may have allocated for zero writes */
870 if (acb
->flags
& QED_AIOCB_ZERO
) {
871 qemu_vfree(acb
->qiov
->iov
[0].iov_base
);
872 acb
->qiov
->iov
[0].iov_base
= NULL
;
875 /* Arrange for a bh to invoke the completion function */
877 acb
->bh
= qemu_bh_new(qed_aio_complete_bh
, acb
);
878 qemu_bh_schedule(acb
->bh
);
880 /* Start next allocating write request waiting behind this one. Note that
881 * requests enqueue themselves when they first hit an unallocated cluster
882 * but they wait until the entire request is finished before waking up the
883 * next request in the queue. This ensures that we don't cycle through
884 * requests multiple times but rather finish one at a time completely.
886 if (acb
== QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
887 QSIMPLEQ_REMOVE_HEAD(&s
->allocating_write_reqs
, next
);
888 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
890 qed_aio_next_io(acb
, 0);
891 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
892 qed_start_need_check_timer(s
);
898 * Commit the current L2 table to the cache
900 static void qed_commit_l2_update(void *opaque
, int ret
)
902 QEDAIOCB
*acb
= opaque
;
903 BDRVQEDState
*s
= acb_to_s(acb
);
904 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
905 uint64_t l2_offset
= l2_table
->offset
;
907 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
909 /* This is guaranteed to succeed because we just committed the entry to the
912 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
, l2_offset
);
913 assert(acb
->request
.l2_table
!= NULL
);
915 qed_aio_next_io(opaque
, ret
);
919 * Update L1 table with new L2 table offset and write it out
921 static void qed_aio_write_l1_update(void *opaque
, int ret
)
923 QEDAIOCB
*acb
= opaque
;
924 BDRVQEDState
*s
= acb_to_s(acb
);
928 qed_aio_complete(acb
, ret
);
932 index
= qed_l1_index(s
, acb
->cur_pos
);
933 s
->l1_table
->offsets
[index
] = acb
->request
.l2_table
->offset
;
935 qed_write_l1_table(s
, index
, 1, qed_commit_l2_update
, acb
);
939 * Update L2 table with new cluster offsets and write them out
941 static void qed_aio_write_l2_update(QEDAIOCB
*acb
, int ret
, uint64_t offset
)
943 BDRVQEDState
*s
= acb_to_s(acb
);
944 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
952 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
953 acb
->request
.l2_table
= qed_new_l2_table(s
);
956 index
= qed_l2_index(s
, acb
->cur_pos
);
957 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
961 /* Write out the whole new L2 table */
962 qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true,
963 qed_aio_write_l1_update
, acb
);
965 /* Write out only the updated part of the L2 table */
966 qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
, false,
967 qed_aio_next_io
, acb
);
972 qed_aio_complete(acb
, ret
);
975 static void qed_aio_write_l2_update_cb(void *opaque
, int ret
)
977 QEDAIOCB
*acb
= opaque
;
978 qed_aio_write_l2_update(acb
, ret
, acb
->cur_cluster
);
982 * Flush new data clusters before updating the L2 table
984 * This flush is necessary when a backing file is in use. A crash during an
985 * allocating write could result in empty clusters in the image. If the write
986 * only touched a subregion of the cluster, then backing image sectors have
987 * been lost in the untouched region. The solution is to flush after writing a
988 * new data cluster and before updating the L2 table.
990 static void qed_aio_write_flush_before_l2_update(void *opaque
, int ret
)
992 QEDAIOCB
*acb
= opaque
;
993 BDRVQEDState
*s
= acb_to_s(acb
);
995 if (!bdrv_aio_flush(s
->bs
->file
, qed_aio_write_l2_update_cb
, opaque
)) {
996 qed_aio_complete(acb
, -EIO
);
1001 * Write data to the image file
1003 static void qed_aio_write_main(void *opaque
, int ret
)
1005 QEDAIOCB
*acb
= opaque
;
1006 BDRVQEDState
*s
= acb_to_s(acb
);
1007 uint64_t offset
= acb
->cur_cluster
+
1008 qed_offset_into_cluster(s
, acb
->cur_pos
);
1009 BlockDriverCompletionFunc
*next_fn
;
1011 trace_qed_aio_write_main(s
, acb
, ret
, offset
, acb
->cur_qiov
.size
);
1014 qed_aio_complete(acb
, ret
);
1018 if (acb
->find_cluster_ret
== QED_CLUSTER_FOUND
) {
1019 next_fn
= qed_aio_next_io
;
1021 if (s
->bs
->backing_hd
) {
1022 next_fn
= qed_aio_write_flush_before_l2_update
;
1024 next_fn
= qed_aio_write_l2_update_cb
;
1028 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1029 bdrv_aio_writev(s
->bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1030 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1035 * Populate back untouched region of new data cluster
1037 static void qed_aio_write_postfill(void *opaque
, int ret
)
1039 QEDAIOCB
*acb
= opaque
;
1040 BDRVQEDState
*s
= acb_to_s(acb
);
1041 uint64_t start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1043 qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1044 uint64_t offset
= acb
->cur_cluster
+
1045 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1049 qed_aio_complete(acb
, ret
);
1053 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1054 qed_copy_from_backing_file(s
, start
, len
, offset
,
1055 qed_aio_write_main
, acb
);
1059 * Populate front untouched region of new data cluster
1061 static void qed_aio_write_prefill(void *opaque
, int ret
)
1063 QEDAIOCB
*acb
= opaque
;
1064 BDRVQEDState
*s
= acb_to_s(acb
);
1065 uint64_t start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1066 uint64_t len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1068 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1069 qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
,
1070 qed_aio_write_postfill
, acb
);
1074 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1076 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1078 /* The flush before L2 update path ensures consistency */
1079 if (s
->bs
->backing_hd
) {
1083 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1086 static void qed_aio_write_zero_cluster(void *opaque
, int ret
)
1088 QEDAIOCB
*acb
= opaque
;
1091 qed_aio_complete(acb
, ret
);
1095 qed_aio_write_l2_update(acb
, 0, 1);
1099 * Write new data cluster
1101 * @acb: Write request
1102 * @len: Length in bytes
1104 * This path is taken when writing to previously unallocated clusters.
1106 static void qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1108 BDRVQEDState
*s
= acb_to_s(acb
);
1109 BlockDriverCompletionFunc
*cb
;
1111 /* Cancel timer when the first allocating request comes in */
1112 if (QSIMPLEQ_EMPTY(&s
->allocating_write_reqs
)) {
1113 qed_cancel_need_check_timer(s
);
1116 /* Freeze this request if another allocating write is in progress */
1117 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
1118 QSIMPLEQ_INSERT_TAIL(&s
->allocating_write_reqs
, acb
, next
);
1120 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
) ||
1121 s
->allocating_write_reqs_plugged
) {
1122 return; /* wait for existing request to finish */
1125 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1126 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1127 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1129 if (acb
->flags
& QED_AIOCB_ZERO
) {
1130 /* Skip ahead if the clusters are already zero */
1131 if (acb
->find_cluster_ret
== QED_CLUSTER_ZERO
) {
1132 qed_aio_next_io(acb
, 0);
1136 cb
= qed_aio_write_zero_cluster
;
1138 cb
= qed_aio_write_prefill
;
1139 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1142 if (qed_should_set_need_check(s
)) {
1143 s
->header
.features
|= QED_F_NEED_CHECK
;
1144 qed_write_header(s
, cb
, acb
);
1151 * Write data cluster in place
1153 * @acb: Write request
1154 * @offset: Cluster offset in bytes
1155 * @len: Length in bytes
1157 * This path is taken when writing to already allocated clusters.
1159 static void qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
, size_t len
)
1161 /* Allocate buffer for zero writes */
1162 if (acb
->flags
& QED_AIOCB_ZERO
) {
1163 struct iovec
*iov
= acb
->qiov
->iov
;
1165 if (!iov
->iov_base
) {
1166 iov
->iov_base
= qemu_blockalign(acb
->common
.bs
, iov
->iov_len
);
1167 memset(iov
->iov_base
, 0, iov
->iov_len
);
1171 /* Calculate the I/O vector */
1172 acb
->cur_cluster
= offset
;
1173 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1175 /* Do the actual write */
1176 qed_aio_write_main(acb
, 0);
1180 * Write data cluster
1182 * @opaque: Write request
1183 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1185 * @offset: Cluster offset in bytes
1186 * @len: Length in bytes
1188 * Callback from qed_find_cluster().
1190 static void qed_aio_write_data(void *opaque
, int ret
,
1191 uint64_t offset
, size_t len
)
1193 QEDAIOCB
*acb
= opaque
;
1195 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1197 acb
->find_cluster_ret
= ret
;
1200 case QED_CLUSTER_FOUND
:
1201 qed_aio_write_inplace(acb
, offset
, len
);
1204 case QED_CLUSTER_L2
:
1205 case QED_CLUSTER_L1
:
1206 case QED_CLUSTER_ZERO
:
1207 qed_aio_write_alloc(acb
, len
);
1211 qed_aio_complete(acb
, ret
);
1219 * @opaque: Read request
1220 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1222 * @offset: Cluster offset in bytes
1223 * @len: Length in bytes
1225 * Callback from qed_find_cluster().
1227 static void qed_aio_read_data(void *opaque
, int ret
,
1228 uint64_t offset
, size_t len
)
1230 QEDAIOCB
*acb
= opaque
;
1231 BDRVQEDState
*s
= acb_to_s(acb
);
1232 BlockDriverState
*bs
= acb
->common
.bs
;
1234 /* Adjust offset into cluster */
1235 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1237 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1243 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1245 /* Handle zero cluster and backing file reads */
1246 if (ret
== QED_CLUSTER_ZERO
) {
1247 qemu_iovec_memset(&acb
->cur_qiov
, 0, 0, acb
->cur_qiov
.size
);
1248 qed_aio_next_io(acb
, 0);
1250 } else if (ret
!= QED_CLUSTER_FOUND
) {
1251 qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
,
1252 qed_aio_next_io
, acb
);
1256 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1257 bdrv_aio_readv(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1258 &acb
->cur_qiov
, acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1259 qed_aio_next_io
, acb
);
1263 qed_aio_complete(acb
, ret
);
1267 * Begin next I/O or complete the request
1269 static void qed_aio_next_io(void *opaque
, int ret
)
1271 QEDAIOCB
*acb
= opaque
;
1272 BDRVQEDState
*s
= acb_to_s(acb
);
1273 QEDFindClusterFunc
*io_fn
= (acb
->flags
& QED_AIOCB_WRITE
) ?
1274 qed_aio_write_data
: qed_aio_read_data
;
1276 trace_qed_aio_next_io(s
, acb
, ret
, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1278 /* Handle I/O error */
1280 qed_aio_complete(acb
, ret
);
1284 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1285 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1286 qemu_iovec_reset(&acb
->cur_qiov
);
1288 /* Complete request */
1289 if (acb
->cur_pos
>= acb
->end_pos
) {
1290 qed_aio_complete(acb
, 0);
1294 /* Find next cluster and start I/O */
1295 qed_find_cluster(s
, &acb
->request
,
1296 acb
->cur_pos
, acb
->end_pos
- acb
->cur_pos
,
1300 static BlockDriverAIOCB
*qed_aio_setup(BlockDriverState
*bs
,
1302 QEMUIOVector
*qiov
, int nb_sectors
,
1303 BlockDriverCompletionFunc
*cb
,
1304 void *opaque
, int flags
)
1306 QEDAIOCB
*acb
= qemu_aio_get(&qed_aio_pool
, bs
, cb
, opaque
);
1308 trace_qed_aio_setup(bs
->opaque
, acb
, sector_num
, nb_sectors
,
1312 acb
->finished
= NULL
;
1314 acb
->qiov_offset
= 0;
1315 acb
->cur_pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
1316 acb
->end_pos
= acb
->cur_pos
+ nb_sectors
* BDRV_SECTOR_SIZE
;
1317 acb
->request
.l2_table
= NULL
;
1318 qemu_iovec_init(&acb
->cur_qiov
, qiov
->niov
);
1321 qed_aio_next_io(acb
, 0);
1322 return &acb
->common
;
1325 static BlockDriverAIOCB
*bdrv_qed_aio_readv(BlockDriverState
*bs
,
1327 QEMUIOVector
*qiov
, int nb_sectors
,
1328 BlockDriverCompletionFunc
*cb
,
1331 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, 0);
1334 static BlockDriverAIOCB
*bdrv_qed_aio_writev(BlockDriverState
*bs
,
1336 QEMUIOVector
*qiov
, int nb_sectors
,
1337 BlockDriverCompletionFunc
*cb
,
1340 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
,
1341 opaque
, QED_AIOCB_WRITE
);
1350 static void coroutine_fn
qed_co_write_zeroes_cb(void *opaque
, int ret
)
1352 QEDWriteZeroesCB
*cb
= opaque
;
1357 qemu_coroutine_enter(cb
->co
, NULL
);
1361 static int coroutine_fn
bdrv_qed_co_write_zeroes(BlockDriverState
*bs
,
1365 BlockDriverAIOCB
*blockacb
;
1366 QEDWriteZeroesCB cb
= { .done
= false };
1370 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1371 * then it will be allocated during request processing.
1373 iov
.iov_base
= NULL
,
1374 iov
.iov_len
= nb_sectors
* BDRV_SECTOR_SIZE
,
1376 qemu_iovec_init_external(&qiov
, &iov
, 1);
1377 blockacb
= qed_aio_setup(bs
, sector_num
, &qiov
, nb_sectors
,
1378 qed_co_write_zeroes_cb
, &cb
,
1379 QED_AIOCB_WRITE
| QED_AIOCB_ZERO
);
1384 cb
.co
= qemu_coroutine_self();
1385 qemu_coroutine_yield();
1391 static int bdrv_qed_truncate(BlockDriverState
*bs
, int64_t offset
)
1393 BDRVQEDState
*s
= bs
->opaque
;
1394 uint64_t old_image_size
;
1397 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1398 s
->header
.table_size
)) {
1402 /* Shrinking is currently not supported */
1403 if ((uint64_t)offset
< s
->header
.image_size
) {
1407 old_image_size
= s
->header
.image_size
;
1408 s
->header
.image_size
= offset
;
1409 ret
= qed_write_header_sync(s
);
1411 s
->header
.image_size
= old_image_size
;
1416 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1418 BDRVQEDState
*s
= bs
->opaque
;
1419 return s
->header
.image_size
;
1422 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1424 BDRVQEDState
*s
= bs
->opaque
;
1426 memset(bdi
, 0, sizeof(*bdi
));
1427 bdi
->cluster_size
= s
->header
.cluster_size
;
1428 bdi
->is_dirty
= s
->header
.features
& QED_F_NEED_CHECK
;
1432 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1433 const char *backing_file
,
1434 const char *backing_fmt
)
1436 BDRVQEDState
*s
= bs
->opaque
;
1437 QEDHeader new_header
, le_header
;
1439 size_t buffer_len
, backing_file_len
;
1442 /* Refuse to set backing filename if unknown compat feature bits are
1443 * active. If the image uses an unknown compat feature then we may not
1444 * know the layout of data following the header structure and cannot safely
1447 if (backing_file
&& (s
->header
.compat_features
&
1448 ~QED_COMPAT_FEATURE_MASK
)) {
1452 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1454 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1455 QED_F_BACKING_FORMAT_NO_PROBE
);
1457 /* Adjust feature flags */
1459 new_header
.features
|= QED_F_BACKING_FILE
;
1461 if (qed_fmt_is_raw(backing_fmt
)) {
1462 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1466 /* Calculate new header size */
1467 backing_file_len
= 0;
1470 backing_file_len
= strlen(backing_file
);
1473 buffer_len
= sizeof(new_header
);
1474 new_header
.backing_filename_offset
= buffer_len
;
1475 new_header
.backing_filename_size
= backing_file_len
;
1476 buffer_len
+= backing_file_len
;
1478 /* Make sure we can rewrite header without failing */
1479 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1483 /* Prepare new header */
1484 buffer
= g_malloc(buffer_len
);
1486 qed_header_cpu_to_le(&new_header
, &le_header
);
1487 memcpy(buffer
, &le_header
, sizeof(le_header
));
1488 buffer_len
= sizeof(le_header
);
1491 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1492 buffer_len
+= backing_file_len
;
1495 /* Write new header */
1496 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer
, buffer_len
);
1499 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1504 static void bdrv_qed_invalidate_cache(BlockDriverState
*bs
)
1506 BDRVQEDState
*s
= bs
->opaque
;
1509 memset(s
, 0, sizeof(BDRVQEDState
));
1510 bdrv_qed_open(bs
, bs
->open_flags
);
1513 static int bdrv_qed_check(BlockDriverState
*bs
, BdrvCheckResult
*result
,
1516 BDRVQEDState
*s
= bs
->opaque
;
1518 return qed_check(s
, result
, !!fix
);
1521 static QEMUOptionParameter qed_create_options
[] = {
1523 .name
= BLOCK_OPT_SIZE
,
1525 .help
= "Virtual disk size (in bytes)"
1527 .name
= BLOCK_OPT_BACKING_FILE
,
1529 .help
= "File name of a base image"
1531 .name
= BLOCK_OPT_BACKING_FMT
,
1533 .help
= "Image format of the base image"
1535 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1537 .help
= "Cluster size (in bytes)",
1538 .value
= { .n
= QED_DEFAULT_CLUSTER_SIZE
},
1540 .name
= BLOCK_OPT_TABLE_SIZE
,
1542 .help
= "L1/L2 table size (in clusters)"
1544 { /* end of list */ }
1547 static BlockDriver bdrv_qed
= {
1548 .format_name
= "qed",
1549 .instance_size
= sizeof(BDRVQEDState
),
1550 .create_options
= qed_create_options
,
1552 .bdrv_probe
= bdrv_qed_probe
,
1553 .bdrv_rebind
= bdrv_qed_rebind
,
1554 .bdrv_open
= bdrv_qed_open
,
1555 .bdrv_close
= bdrv_qed_close
,
1556 .bdrv_create
= bdrv_qed_create
,
1557 .bdrv_co_is_allocated
= bdrv_qed_co_is_allocated
,
1558 .bdrv_make_empty
= bdrv_qed_make_empty
,
1559 .bdrv_aio_readv
= bdrv_qed_aio_readv
,
1560 .bdrv_aio_writev
= bdrv_qed_aio_writev
,
1561 .bdrv_co_write_zeroes
= bdrv_qed_co_write_zeroes
,
1562 .bdrv_truncate
= bdrv_qed_truncate
,
1563 .bdrv_getlength
= bdrv_qed_getlength
,
1564 .bdrv_get_info
= bdrv_qed_get_info
,
1565 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1566 .bdrv_invalidate_cache
= bdrv_qed_invalidate_cache
,
1567 .bdrv_check
= bdrv_qed_check
,
1570 static void bdrv_qed_init(void)
1572 bdrv_register(&bdrv_qed
);
1575 block_init(bdrv_qed_init
);