Merge branch 'upstream-merge'
[qemu-kvm.git] / kvm-all.c
blob3ba7314e26b0abe4204351095521fd918cb23ba9
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
27 #include "sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/msi.h"
30 #include "gdbstub.h"
31 #include "kvm.h"
32 #include "bswap.h"
33 #include "memory.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
42 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
43 #define PAGE_SIZE TARGET_PAGE_SIZE
45 //#define DEBUG_KVM
47 #ifdef DEBUG_KVM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50 #else
51 #define DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
55 #define KVM_MSI_HASHTAB_SIZE 256
57 typedef struct KVMSlot
59 target_phys_addr_t start_addr;
60 ram_addr_t memory_size;
61 void *ram;
62 int slot;
63 int flags;
64 } KVMSlot;
66 typedef struct kvm_dirty_log KVMDirtyLog;
68 struct KVMState
70 KVMSlot slots[32];
71 int fd;
72 int vmfd;
73 int coalesced_mmio;
74 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
75 bool coalesced_flush_in_progress;
76 int broken_set_mem_region;
77 int migration_log;
78 int vcpu_events;
79 int robust_singlestep;
80 int debugregs;
81 #ifdef KVM_CAP_SET_GUEST_DEBUG
82 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
83 #endif
84 int pit_state2;
85 int xsave, xcrs;
86 int many_ioeventfds;
87 int intx_set_mask;
88 /* The man page (and posix) say ioctl numbers are signed int, but
89 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
90 * unsigned, and treating them as signed here can break things */
91 unsigned irqchip_inject_ioctl;
92 #ifdef KVM_CAP_IRQ_ROUTING
93 struct kvm_irq_routing *irq_routes;
94 int nr_allocated_irq_routes;
95 uint32_t *used_gsi_bitmap;
96 unsigned int gsi_count;
97 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
98 bool direct_msi;
99 #endif
102 KVMState *kvm_state;
103 bool kvm_kernel_irqchip;
105 static const KVMCapabilityInfo kvm_required_capabilites[] = {
106 KVM_CAP_INFO(USER_MEMORY),
107 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
108 KVM_CAP_LAST_INFO
111 static KVMSlot *kvm_alloc_slot(KVMState *s)
113 int i;
115 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
116 if (s->slots[i].memory_size == 0) {
117 return &s->slots[i];
121 fprintf(stderr, "%s: no free slot available\n", __func__);
122 abort();
125 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
126 target_phys_addr_t start_addr,
127 target_phys_addr_t end_addr)
129 int i;
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
134 if (start_addr == mem->start_addr &&
135 end_addr == mem->start_addr + mem->memory_size) {
136 return mem;
140 return NULL;
144 * Find overlapping slot with lowest start address
146 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
147 target_phys_addr_t start_addr,
148 target_phys_addr_t end_addr)
150 KVMSlot *found = NULL;
151 int i;
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
156 if (mem->memory_size == 0 ||
157 (found && found->start_addr < mem->start_addr)) {
158 continue;
161 if (end_addr > mem->start_addr &&
162 start_addr < mem->start_addr + mem->memory_size) {
163 found = mem;
167 return found;
170 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
171 target_phys_addr_t *phys_addr)
173 int i;
175 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
176 KVMSlot *mem = &s->slots[i];
178 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
179 *phys_addr = mem->start_addr + (ram - mem->ram);
180 return 1;
184 return 0;
187 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
189 struct kvm_userspace_memory_region mem;
191 mem.slot = slot->slot;
192 mem.guest_phys_addr = slot->start_addr;
193 mem.memory_size = slot->memory_size;
194 mem.userspace_addr = (unsigned long)slot->ram;
195 mem.flags = slot->flags;
196 if (s->migration_log) {
197 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
199 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
202 static void kvm_reset_vcpu(void *opaque)
204 CPUArchState *env = opaque;
206 kvm_arch_reset_vcpu(env);
209 int kvm_init_vcpu(CPUArchState *env)
211 KVMState *s = kvm_state;
212 long mmap_size;
213 int ret;
215 DPRINTF("kvm_init_vcpu\n");
217 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
218 if (ret < 0) {
219 DPRINTF("kvm_create_vcpu failed\n");
220 goto err;
223 env->kvm_fd = ret;
224 env->kvm_state = s;
225 env->kvm_vcpu_dirty = 1;
227 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
228 if (mmap_size < 0) {
229 ret = mmap_size;
230 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
231 goto err;
234 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
235 env->kvm_fd, 0);
236 if (env->kvm_run == MAP_FAILED) {
237 ret = -errno;
238 DPRINTF("mmap'ing vcpu state failed\n");
239 goto err;
242 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
243 s->coalesced_mmio_ring =
244 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
247 ret = kvm_arch_init_vcpu(env);
248 if (ret == 0) {
249 qemu_register_reset(kvm_reset_vcpu, env);
250 kvm_arch_reset_vcpu(env);
252 err:
253 return ret;
257 * dirty pages logging control
260 static int kvm_mem_flags(KVMState *s, bool log_dirty)
262 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
265 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
267 KVMState *s = kvm_state;
268 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
269 int old_flags;
271 old_flags = mem->flags;
273 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
274 mem->flags = flags;
276 /* If nothing changed effectively, no need to issue ioctl */
277 if (s->migration_log) {
278 flags |= KVM_MEM_LOG_DIRTY_PAGES;
281 if (flags == old_flags) {
282 return 0;
285 return kvm_set_user_memory_region(s, mem);
288 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
289 ram_addr_t size, bool log_dirty)
291 KVMState *s = kvm_state;
292 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
294 if (mem == NULL) {
295 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
296 TARGET_FMT_plx "\n", __func__, phys_addr,
297 (target_phys_addr_t)(phys_addr + size - 1));
298 return -EINVAL;
300 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
303 static void kvm_log_start(MemoryListener *listener,
304 MemoryRegionSection *section)
306 int r;
308 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
309 section->size, true);
310 if (r < 0) {
311 abort();
315 static void kvm_log_stop(MemoryListener *listener,
316 MemoryRegionSection *section)
318 int r;
320 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
321 section->size, false);
322 if (r < 0) {
323 abort();
327 static int kvm_set_migration_log(int enable)
329 KVMState *s = kvm_state;
330 KVMSlot *mem;
331 int i, err;
333 s->migration_log = enable;
335 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
336 mem = &s->slots[i];
338 if (!mem->memory_size) {
339 continue;
341 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
342 continue;
344 err = kvm_set_user_memory_region(s, mem);
345 if (err) {
346 return err;
349 return 0;
352 /* get kvm's dirty pages bitmap and update qemu's */
353 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
354 unsigned long *bitmap)
356 unsigned int i, j;
357 unsigned long page_number, c;
358 target_phys_addr_t addr, addr1;
359 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
360 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
363 * bitmap-traveling is faster than memory-traveling (for addr...)
364 * especially when most of the memory is not dirty.
366 for (i = 0; i < len; i++) {
367 if (bitmap[i] != 0) {
368 c = leul_to_cpu(bitmap[i]);
369 do {
370 j = ffsl(c) - 1;
371 c &= ~(1ul << j);
372 page_number = (i * HOST_LONG_BITS + j) * hpratio;
373 addr1 = page_number * TARGET_PAGE_SIZE;
374 addr = section->offset_within_region + addr1;
375 memory_region_set_dirty(section->mr, addr,
376 TARGET_PAGE_SIZE * hpratio);
377 } while (c != 0);
380 return 0;
383 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
386 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
387 * This function updates qemu's dirty bitmap using
388 * memory_region_set_dirty(). This means all bits are set
389 * to dirty.
391 * @start_add: start of logged region.
392 * @end_addr: end of logged region.
394 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
396 KVMState *s = kvm_state;
397 unsigned long size, allocated_size = 0;
398 KVMDirtyLog d;
399 KVMSlot *mem;
400 int ret = 0;
401 target_phys_addr_t start_addr = section->offset_within_address_space;
402 target_phys_addr_t end_addr = start_addr + section->size;
404 d.dirty_bitmap = NULL;
405 while (start_addr < end_addr) {
406 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
407 if (mem == NULL) {
408 break;
411 /* XXX bad kernel interface alert
412 * For dirty bitmap, kernel allocates array of size aligned to
413 * bits-per-long. But for case when the kernel is 64bits and
414 * the userspace is 32bits, userspace can't align to the same
415 * bits-per-long, since sizeof(long) is different between kernel
416 * and user space. This way, userspace will provide buffer which
417 * may be 4 bytes less than the kernel will use, resulting in
418 * userspace memory corruption (which is not detectable by valgrind
419 * too, in most cases).
420 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
421 * a hope that sizeof(long) wont become >8 any time soon.
423 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
424 /*HOST_LONG_BITS*/ 64) / 8;
425 if (!d.dirty_bitmap) {
426 d.dirty_bitmap = g_malloc(size);
427 } else if (size > allocated_size) {
428 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
430 allocated_size = size;
431 memset(d.dirty_bitmap, 0, allocated_size);
433 d.slot = mem->slot;
435 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
436 DPRINTF("ioctl failed %d\n", errno);
437 ret = -1;
438 break;
441 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
442 start_addr = mem->start_addr + mem->memory_size;
444 g_free(d.dirty_bitmap);
446 return ret;
449 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
451 int ret = -ENOSYS;
452 KVMState *s = kvm_state;
454 if (s->coalesced_mmio) {
455 struct kvm_coalesced_mmio_zone zone;
457 zone.addr = start;
458 zone.size = size;
459 zone.pad = 0;
461 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
464 return ret;
467 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
469 int ret = -ENOSYS;
470 KVMState *s = kvm_state;
472 if (s->coalesced_mmio) {
473 struct kvm_coalesced_mmio_zone zone;
475 zone.addr = start;
476 zone.size = size;
477 zone.pad = 0;
479 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
482 return ret;
485 int kvm_check_extension(KVMState *s, unsigned int extension)
487 int ret;
489 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
490 if (ret < 0) {
491 ret = 0;
494 return ret;
497 static int kvm_check_many_ioeventfds(void)
499 /* Userspace can use ioeventfd for io notification. This requires a host
500 * that supports eventfd(2) and an I/O thread; since eventfd does not
501 * support SIGIO it cannot interrupt the vcpu.
503 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
504 * can avoid creating too many ioeventfds.
506 #if defined(CONFIG_EVENTFD)
507 int ioeventfds[7];
508 int i, ret = 0;
509 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
510 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
511 if (ioeventfds[i] < 0) {
512 break;
514 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
515 if (ret < 0) {
516 close(ioeventfds[i]);
517 break;
521 /* Decide whether many devices are supported or not */
522 ret = i == ARRAY_SIZE(ioeventfds);
524 while (i-- > 0) {
525 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
526 close(ioeventfds[i]);
528 return ret;
529 #else
530 return 0;
531 #endif
534 static const KVMCapabilityInfo *
535 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
537 while (list->name) {
538 if (!kvm_check_extension(s, list->value)) {
539 return list;
541 list++;
543 return NULL;
546 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
548 KVMState *s = kvm_state;
549 KVMSlot *mem, old;
550 int err;
551 MemoryRegion *mr = section->mr;
552 bool log_dirty = memory_region_is_logging(mr);
553 target_phys_addr_t start_addr = section->offset_within_address_space;
554 ram_addr_t size = section->size;
555 void *ram = NULL;
556 unsigned delta;
558 /* kvm works in page size chunks, but the function may be called
559 with sub-page size and unaligned start address. */
560 delta = TARGET_PAGE_ALIGN(size) - size;
561 if (delta > size) {
562 return;
564 start_addr += delta;
565 size -= delta;
566 size &= TARGET_PAGE_MASK;
567 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
568 return;
571 if (!memory_region_is_ram(mr)) {
572 return;
575 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
577 while (1) {
578 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
579 if (!mem) {
580 break;
583 if (add && start_addr >= mem->start_addr &&
584 (start_addr + size <= mem->start_addr + mem->memory_size) &&
585 (ram - start_addr == mem->ram - mem->start_addr)) {
586 /* The new slot fits into the existing one and comes with
587 * identical parameters - update flags and done. */
588 kvm_slot_dirty_pages_log_change(mem, log_dirty);
589 return;
592 old = *mem;
594 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
595 kvm_physical_sync_dirty_bitmap(section);
598 /* unregister the overlapping slot */
599 mem->memory_size = 0;
600 err = kvm_set_user_memory_region(s, mem);
601 if (err) {
602 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
603 __func__, strerror(-err));
604 abort();
607 /* Workaround for older KVM versions: we can't join slots, even not by
608 * unregistering the previous ones and then registering the larger
609 * slot. We have to maintain the existing fragmentation. Sigh.
611 * This workaround assumes that the new slot starts at the same
612 * address as the first existing one. If not or if some overlapping
613 * slot comes around later, we will fail (not seen in practice so far)
614 * - and actually require a recent KVM version. */
615 if (s->broken_set_mem_region &&
616 old.start_addr == start_addr && old.memory_size < size && add) {
617 mem = kvm_alloc_slot(s);
618 mem->memory_size = old.memory_size;
619 mem->start_addr = old.start_addr;
620 mem->ram = old.ram;
621 mem->flags = kvm_mem_flags(s, log_dirty);
623 err = kvm_set_user_memory_region(s, mem);
624 if (err) {
625 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
626 strerror(-err));
627 abort();
630 start_addr += old.memory_size;
631 ram += old.memory_size;
632 size -= old.memory_size;
633 continue;
636 /* register prefix slot */
637 if (old.start_addr < start_addr) {
638 mem = kvm_alloc_slot(s);
639 mem->memory_size = start_addr - old.start_addr;
640 mem->start_addr = old.start_addr;
641 mem->ram = old.ram;
642 mem->flags = kvm_mem_flags(s, log_dirty);
644 err = kvm_set_user_memory_region(s, mem);
645 if (err) {
646 fprintf(stderr, "%s: error registering prefix slot: %s\n",
647 __func__, strerror(-err));
648 #ifdef TARGET_PPC
649 fprintf(stderr, "%s: This is probably because your kernel's " \
650 "PAGE_SIZE is too big. Please try to use 4k " \
651 "PAGE_SIZE!\n", __func__);
652 #endif
653 abort();
657 /* register suffix slot */
658 if (old.start_addr + old.memory_size > start_addr + size) {
659 ram_addr_t size_delta;
661 mem = kvm_alloc_slot(s);
662 mem->start_addr = start_addr + size;
663 size_delta = mem->start_addr - old.start_addr;
664 mem->memory_size = old.memory_size - size_delta;
665 mem->ram = old.ram + size_delta;
666 mem->flags = kvm_mem_flags(s, log_dirty);
668 err = kvm_set_user_memory_region(s, mem);
669 if (err) {
670 fprintf(stderr, "%s: error registering suffix slot: %s\n",
671 __func__, strerror(-err));
672 abort();
677 /* in case the KVM bug workaround already "consumed" the new slot */
678 if (!size) {
679 return;
681 if (!add) {
682 return;
684 mem = kvm_alloc_slot(s);
685 mem->memory_size = size;
686 mem->start_addr = start_addr;
687 mem->ram = ram;
688 mem->flags = kvm_mem_flags(s, log_dirty);
690 err = kvm_set_user_memory_region(s, mem);
691 if (err) {
692 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
693 strerror(-err));
694 abort();
698 static void kvm_begin(MemoryListener *listener)
702 static void kvm_commit(MemoryListener *listener)
706 static void kvm_region_add(MemoryListener *listener,
707 MemoryRegionSection *section)
709 kvm_set_phys_mem(section, true);
712 static void kvm_region_del(MemoryListener *listener,
713 MemoryRegionSection *section)
715 kvm_set_phys_mem(section, false);
718 static void kvm_region_nop(MemoryListener *listener,
719 MemoryRegionSection *section)
723 static void kvm_log_sync(MemoryListener *listener,
724 MemoryRegionSection *section)
726 int r;
728 r = kvm_physical_sync_dirty_bitmap(section);
729 if (r < 0) {
730 abort();
734 static void kvm_log_global_start(struct MemoryListener *listener)
736 int r;
738 r = kvm_set_migration_log(1);
739 assert(r >= 0);
742 static void kvm_log_global_stop(struct MemoryListener *listener)
744 int r;
746 r = kvm_set_migration_log(0);
747 assert(r >= 0);
750 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
751 bool match_data, uint64_t data, int fd)
753 int r;
755 assert(match_data && section->size <= 8);
757 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
758 data, true, section->size);
759 if (r < 0) {
760 abort();
764 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
765 bool match_data, uint64_t data, int fd)
767 int r;
769 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
770 data, false, section->size);
771 if (r < 0) {
772 abort();
776 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
777 bool match_data, uint64_t data, int fd)
779 int r;
781 assert(match_data && section->size == 2);
783 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
784 data, true);
785 if (r < 0) {
786 abort();
790 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
791 bool match_data, uint64_t data, int fd)
794 int r;
796 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
797 data, false);
798 if (r < 0) {
799 abort();
803 static void kvm_eventfd_add(MemoryListener *listener,
804 MemoryRegionSection *section,
805 bool match_data, uint64_t data,
806 EventNotifier *e)
808 if (section->address_space == get_system_memory()) {
809 kvm_mem_ioeventfd_add(section, match_data, data,
810 event_notifier_get_fd(e));
811 } else {
812 kvm_io_ioeventfd_add(section, match_data, data,
813 event_notifier_get_fd(e));
817 static void kvm_eventfd_del(MemoryListener *listener,
818 MemoryRegionSection *section,
819 bool match_data, uint64_t data,
820 EventNotifier *e)
822 if (section->address_space == get_system_memory()) {
823 kvm_mem_ioeventfd_del(section, match_data, data,
824 event_notifier_get_fd(e));
825 } else {
826 kvm_io_ioeventfd_del(section, match_data, data,
827 event_notifier_get_fd(e));
831 static MemoryListener kvm_memory_listener = {
832 .begin = kvm_begin,
833 .commit = kvm_commit,
834 .region_add = kvm_region_add,
835 .region_del = kvm_region_del,
836 .region_nop = kvm_region_nop,
837 .log_start = kvm_log_start,
838 .log_stop = kvm_log_stop,
839 .log_sync = kvm_log_sync,
840 .log_global_start = kvm_log_global_start,
841 .log_global_stop = kvm_log_global_stop,
842 .eventfd_add = kvm_eventfd_add,
843 .eventfd_del = kvm_eventfd_del,
844 .priority = 10,
847 static void kvm_handle_interrupt(CPUArchState *env, int mask)
849 env->interrupt_request |= mask;
851 if (!qemu_cpu_is_self(env)) {
852 qemu_cpu_kick(env);
856 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
858 struct kvm_irq_level event;
859 int ret;
861 assert(kvm_irqchip_in_kernel());
863 event.level = level;
864 event.irq = irq;
865 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
866 if (ret < 0) {
867 perror("kvm_set_irqchip_line");
868 abort();
871 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
874 #ifdef KVM_CAP_IRQ_ROUTING
875 typedef struct KVMMSIRoute {
876 struct kvm_irq_routing_entry kroute;
877 QTAILQ_ENTRY(KVMMSIRoute) entry;
878 } KVMMSIRoute;
880 static void set_gsi(KVMState *s, unsigned int gsi)
882 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
885 static void clear_gsi(KVMState *s, unsigned int gsi)
887 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
890 static void kvm_init_irq_routing(KVMState *s)
892 int gsi_count, i;
894 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
895 if (gsi_count > 0) {
896 unsigned int gsi_bits, i;
898 /* Round up so we can search ints using ffs */
899 gsi_bits = ALIGN(gsi_count, 32);
900 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
901 s->gsi_count = gsi_count;
903 /* Mark any over-allocated bits as already in use */
904 for (i = gsi_count; i < gsi_bits; i++) {
905 set_gsi(s, i);
909 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
910 s->nr_allocated_irq_routes = 0;
912 if (!s->direct_msi) {
913 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
914 QTAILQ_INIT(&s->msi_hashtab[i]);
918 kvm_arch_init_irq_routing(s);
921 void kvm_irqchip_commit_routes(KVMState *s)
923 int ret;
925 s->irq_routes->flags = 0;
926 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
927 assert(ret == 0);
930 void kvm_add_routing_entry(KVMState *s,
931 struct kvm_irq_routing_entry *entry)
933 struct kvm_irq_routing_entry *new;
934 int n, size;
936 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
937 n = s->nr_allocated_irq_routes * 2;
938 if (n < 64) {
939 n = 64;
941 size = sizeof(struct kvm_irq_routing);
942 size += n * sizeof(*new);
943 s->irq_routes = g_realloc(s->irq_routes, size);
944 s->nr_allocated_irq_routes = n;
946 n = s->irq_routes->nr++;
947 new = &s->irq_routes->entries[n];
948 memset(new, 0, sizeof(*new));
949 new->gsi = entry->gsi;
950 new->type = entry->type;
951 new->flags = entry->flags;
952 new->u = entry->u;
954 set_gsi(s, entry->gsi);
956 kvm_irqchip_commit_routes(s);
959 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
961 struct kvm_irq_routing_entry e;
963 assert(pin < s->gsi_count);
965 e.gsi = irq;
966 e.type = KVM_IRQ_ROUTING_IRQCHIP;
967 e.flags = 0;
968 e.u.irqchip.irqchip = irqchip;
969 e.u.irqchip.pin = pin;
970 kvm_add_routing_entry(s, &e);
973 void kvm_irqchip_release_virq(KVMState *s, int virq)
975 struct kvm_irq_routing_entry *e;
976 int i;
978 for (i = 0; i < s->irq_routes->nr; i++) {
979 e = &s->irq_routes->entries[i];
980 if (e->gsi == virq) {
981 s->irq_routes->nr--;
982 *e = s->irq_routes->entries[s->irq_routes->nr];
985 clear_gsi(s, virq);
987 kvm_irqchip_commit_routes(s);
990 static unsigned int kvm_hash_msi(uint32_t data)
992 /* This is optimized for IA32 MSI layout. However, no other arch shall
993 * repeat the mistake of not providing a direct MSI injection API. */
994 return data & 0xff;
997 static void kvm_flush_dynamic_msi_routes(KVMState *s)
999 KVMMSIRoute *route, *next;
1000 unsigned int hash;
1002 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1003 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1004 kvm_irqchip_release_virq(s, route->kroute.gsi);
1005 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1006 g_free(route);
1011 static int kvm_irqchip_get_virq(KVMState *s)
1013 uint32_t *word = s->used_gsi_bitmap;
1014 int max_words = ALIGN(s->gsi_count, 32) / 32;
1015 int i, bit;
1016 bool retry = true;
1018 again:
1019 /* Return the lowest unused GSI in the bitmap */
1020 for (i = 0; i < max_words; i++) {
1021 bit = ffs(~word[i]);
1022 if (!bit) {
1023 continue;
1026 return bit - 1 + i * 32;
1028 if (!s->direct_msi && retry) {
1029 retry = false;
1030 kvm_flush_dynamic_msi_routes(s);
1031 goto again;
1033 return -ENOSPC;
1037 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1039 unsigned int hash = kvm_hash_msi(msg.data);
1040 KVMMSIRoute *route;
1042 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1043 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1044 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1045 route->kroute.u.msi.data == msg.data) {
1046 return route;
1049 return NULL;
1052 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1054 struct kvm_msi msi;
1055 KVMMSIRoute *route;
1057 if (s->direct_msi) {
1058 msi.address_lo = (uint32_t)msg.address;
1059 msi.address_hi = msg.address >> 32;
1060 msi.data = msg.data;
1061 msi.flags = 0;
1062 memset(msi.pad, 0, sizeof(msi.pad));
1064 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1067 route = kvm_lookup_msi_route(s, msg);
1068 if (!route) {
1069 int virq;
1071 virq = kvm_irqchip_get_virq(s);
1072 if (virq < 0) {
1073 return virq;
1076 route = g_malloc(sizeof(KVMMSIRoute));
1077 route->kroute.gsi = virq;
1078 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1079 route->kroute.flags = 0;
1080 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1081 route->kroute.u.msi.address_hi = msg.address >> 32;
1082 route->kroute.u.msi.data = msg.data;
1084 kvm_add_routing_entry(s, &route->kroute);
1086 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1087 entry);
1090 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1092 return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
1095 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1097 struct kvm_irq_routing_entry kroute;
1098 int virq;
1100 if (!kvm_irqchip_in_kernel()) {
1101 return -ENOSYS;
1104 virq = kvm_irqchip_get_virq(s);
1105 if (virq < 0) {
1106 return virq;
1109 kroute.gsi = virq;
1110 kroute.type = KVM_IRQ_ROUTING_MSI;
1111 kroute.flags = 0;
1112 kroute.u.msi.address_lo = (uint32_t)msg.address;
1113 kroute.u.msi.address_hi = msg.address >> 32;
1114 kroute.u.msi.data = msg.data;
1116 kvm_add_routing_entry(s, &kroute);
1118 return virq;
1121 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1123 struct kvm_irqfd irqfd = {
1124 .fd = fd,
1125 .gsi = virq,
1126 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1129 if (!kvm_irqchip_in_kernel()) {
1130 return -ENOSYS;
1133 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1136 #else /* !KVM_CAP_IRQ_ROUTING */
1138 static void kvm_init_irq_routing(KVMState *s)
1142 int kvm_irqchip_commit_routes(KVMState *s)
1144 return -ENOSYS;
1147 void kvm_irqchip_release_virq(KVMState *s, int virq)
1151 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1153 abort();
1156 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1158 return -ENOSYS;
1161 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1163 abort();
1165 #endif /* !KVM_CAP_IRQ_ROUTING */
1167 int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1169 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1172 int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1174 return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
1177 int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1179 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1182 int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1184 return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
1187 static int kvm_irqchip_create(KVMState *s)
1189 QemuOptsList *list = qemu_find_opts("machine");
1190 int ret;
1192 if (QTAILQ_EMPTY(&list->head) ||
1193 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1194 "kernel_irqchip", true) ||
1195 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1196 return 0;
1199 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1200 if (ret < 0) {
1201 fprintf(stderr, "Create kernel irqchip failed\n");
1202 return ret;
1205 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1206 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1207 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1209 kvm_kernel_irqchip = true;
1211 kvm_init_irq_routing(s);
1213 return 0;
1216 int kvm_init(void)
1218 static const char upgrade_note[] =
1219 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1220 "(see http://sourceforge.net/projects/kvm).\n";
1221 KVMState *s;
1222 const KVMCapabilityInfo *missing_cap;
1223 int ret;
1224 int i;
1226 s = g_malloc0(sizeof(KVMState));
1229 * On systems where the kernel can support different base page
1230 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1231 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1232 * page size for the system though.
1234 assert(TARGET_PAGE_SIZE <= getpagesize());
1236 #ifdef KVM_CAP_SET_GUEST_DEBUG
1237 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1238 #endif
1239 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1240 s->slots[i].slot = i;
1242 s->vmfd = -1;
1243 s->fd = qemu_open("/dev/kvm", O_RDWR);
1244 if (s->fd == -1) {
1245 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1246 ret = -errno;
1247 goto err;
1250 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1251 if (ret < KVM_API_VERSION) {
1252 if (ret > 0) {
1253 ret = -EINVAL;
1255 fprintf(stderr, "kvm version too old\n");
1256 goto err;
1259 if (ret > KVM_API_VERSION) {
1260 ret = -EINVAL;
1261 fprintf(stderr, "kvm version not supported\n");
1262 goto err;
1265 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1266 if (s->vmfd < 0) {
1267 #ifdef TARGET_S390X
1268 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1269 "your host kernel command line\n");
1270 #endif
1271 ret = s->vmfd;
1272 goto err;
1275 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1276 if (!missing_cap) {
1277 missing_cap =
1278 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1280 if (missing_cap) {
1281 ret = -EINVAL;
1282 fprintf(stderr, "kvm does not support %s\n%s",
1283 missing_cap->name, upgrade_note);
1284 goto err;
1287 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1289 s->broken_set_mem_region = 1;
1290 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1291 if (ret > 0) {
1292 s->broken_set_mem_region = 0;
1295 #ifdef KVM_CAP_VCPU_EVENTS
1296 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1297 #endif
1299 s->robust_singlestep =
1300 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1302 #ifdef KVM_CAP_DEBUGREGS
1303 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1304 #endif
1306 #ifdef KVM_CAP_XSAVE
1307 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1308 #endif
1310 #ifdef KVM_CAP_XCRS
1311 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1312 #endif
1314 #ifdef KVM_CAP_PIT_STATE2
1315 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1316 #endif
1318 #ifdef KVM_CAP_IRQ_ROUTING
1319 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1320 #endif
1322 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1324 ret = kvm_arch_init(s);
1325 if (ret < 0) {
1326 goto err;
1329 ret = kvm_irqchip_create(s);
1330 if (ret < 0) {
1331 goto err;
1334 kvm_state = s;
1335 memory_listener_register(&kvm_memory_listener, NULL);
1337 s->many_ioeventfds = kvm_check_many_ioeventfds();
1339 cpu_interrupt_handler = kvm_handle_interrupt;
1341 return 0;
1343 err:
1344 if (s) {
1345 if (s->vmfd >= 0) {
1346 close(s->vmfd);
1348 if (s->fd != -1) {
1349 close(s->fd);
1352 g_free(s);
1354 return ret;
1357 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1358 uint32_t count)
1360 int i;
1361 uint8_t *ptr = data;
1363 for (i = 0; i < count; i++) {
1364 if (direction == KVM_EXIT_IO_IN) {
1365 switch (size) {
1366 case 1:
1367 stb_p(ptr, cpu_inb(port));
1368 break;
1369 case 2:
1370 stw_p(ptr, cpu_inw(port));
1371 break;
1372 case 4:
1373 stl_p(ptr, cpu_inl(port));
1374 break;
1376 } else {
1377 switch (size) {
1378 case 1:
1379 cpu_outb(port, ldub_p(ptr));
1380 break;
1381 case 2:
1382 cpu_outw(port, lduw_p(ptr));
1383 break;
1384 case 4:
1385 cpu_outl(port, ldl_p(ptr));
1386 break;
1390 ptr += size;
1394 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1396 fprintf(stderr, "KVM internal error.");
1397 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1398 int i;
1400 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1401 for (i = 0; i < run->internal.ndata; ++i) {
1402 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1403 i, (uint64_t)run->internal.data[i]);
1405 } else {
1406 fprintf(stderr, "\n");
1408 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1409 fprintf(stderr, "emulation failure\n");
1410 if (!kvm_arch_stop_on_emulation_error(env)) {
1411 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1412 return EXCP_INTERRUPT;
1415 /* FIXME: Should trigger a qmp message to let management know
1416 * something went wrong.
1418 return -1;
1421 void kvm_flush_coalesced_mmio_buffer(void)
1423 KVMState *s = kvm_state;
1425 if (s->coalesced_flush_in_progress) {
1426 return;
1429 s->coalesced_flush_in_progress = true;
1431 if (s->coalesced_mmio_ring) {
1432 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1433 while (ring->first != ring->last) {
1434 struct kvm_coalesced_mmio *ent;
1436 ent = &ring->coalesced_mmio[ring->first];
1438 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1439 smp_wmb();
1440 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1444 s->coalesced_flush_in_progress = false;
1447 static void do_kvm_cpu_synchronize_state(void *_env)
1449 CPUArchState *env = _env;
1451 if (!env->kvm_vcpu_dirty) {
1452 kvm_arch_get_registers(env);
1453 env->kvm_vcpu_dirty = 1;
1457 void kvm_cpu_synchronize_state(CPUArchState *env)
1459 if (!env->kvm_vcpu_dirty) {
1460 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1464 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1466 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1467 env->kvm_vcpu_dirty = 0;
1470 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1472 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1473 env->kvm_vcpu_dirty = 0;
1476 int kvm_cpu_exec(CPUArchState *env)
1478 struct kvm_run *run = env->kvm_run;
1479 int ret, run_ret;
1481 DPRINTF("kvm_cpu_exec()\n");
1483 if (kvm_arch_process_async_events(env)) {
1484 env->exit_request = 0;
1485 return EXCP_HLT;
1488 do {
1489 if (env->kvm_vcpu_dirty) {
1490 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1491 env->kvm_vcpu_dirty = 0;
1494 kvm_arch_pre_run(env, run);
1495 if (env->exit_request) {
1496 DPRINTF("interrupt exit requested\n");
1498 * KVM requires us to reenter the kernel after IO exits to complete
1499 * instruction emulation. This self-signal will ensure that we
1500 * leave ASAP again.
1502 qemu_cpu_kick_self();
1504 qemu_mutex_unlock_iothread();
1506 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1508 qemu_mutex_lock_iothread();
1509 kvm_arch_post_run(env, run);
1511 kvm_flush_coalesced_mmio_buffer();
1513 if (run_ret < 0) {
1514 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1515 DPRINTF("io window exit\n");
1516 ret = EXCP_INTERRUPT;
1517 break;
1519 fprintf(stderr, "error: kvm run failed %s\n",
1520 strerror(-run_ret));
1521 abort();
1524 switch (run->exit_reason) {
1525 case KVM_EXIT_IO:
1526 DPRINTF("handle_io\n");
1527 kvm_handle_io(run->io.port,
1528 (uint8_t *)run + run->io.data_offset,
1529 run->io.direction,
1530 run->io.size,
1531 run->io.count);
1532 ret = 0;
1533 break;
1534 case KVM_EXIT_MMIO:
1535 DPRINTF("handle_mmio\n");
1536 cpu_physical_memory_rw(run->mmio.phys_addr,
1537 run->mmio.data,
1538 run->mmio.len,
1539 run->mmio.is_write);
1540 ret = 0;
1541 break;
1542 case KVM_EXIT_IRQ_WINDOW_OPEN:
1543 DPRINTF("irq_window_open\n");
1544 ret = EXCP_INTERRUPT;
1545 break;
1546 case KVM_EXIT_SHUTDOWN:
1547 DPRINTF("shutdown\n");
1548 qemu_system_reset_request();
1549 ret = EXCP_INTERRUPT;
1550 break;
1551 case KVM_EXIT_UNKNOWN:
1552 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1553 (uint64_t)run->hw.hardware_exit_reason);
1554 ret = -1;
1555 break;
1556 case KVM_EXIT_INTERNAL_ERROR:
1557 ret = kvm_handle_internal_error(env, run);
1558 break;
1559 default:
1560 DPRINTF("kvm_arch_handle_exit\n");
1561 ret = kvm_arch_handle_exit(env, run);
1562 break;
1564 } while (ret == 0);
1566 if (ret < 0) {
1567 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1568 vm_stop(RUN_STATE_INTERNAL_ERROR);
1571 env->exit_request = 0;
1572 return ret;
1575 int kvm_ioctl(KVMState *s, int type, ...)
1577 int ret;
1578 void *arg;
1579 va_list ap;
1581 va_start(ap, type);
1582 arg = va_arg(ap, void *);
1583 va_end(ap);
1585 ret = ioctl(s->fd, type, arg);
1586 if (ret == -1) {
1587 ret = -errno;
1589 return ret;
1592 int kvm_vm_ioctl(KVMState *s, int type, ...)
1594 int ret;
1595 void *arg;
1596 va_list ap;
1598 va_start(ap, type);
1599 arg = va_arg(ap, void *);
1600 va_end(ap);
1602 ret = ioctl(s->vmfd, type, arg);
1603 if (ret == -1) {
1604 ret = -errno;
1606 return ret;
1609 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1611 int ret;
1612 void *arg;
1613 va_list ap;
1615 va_start(ap, type);
1616 arg = va_arg(ap, void *);
1617 va_end(ap);
1619 ret = ioctl(env->kvm_fd, type, arg);
1620 if (ret == -1) {
1621 ret = -errno;
1623 return ret;
1626 int kvm_has_sync_mmu(void)
1628 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1631 int kvm_has_vcpu_events(void)
1633 return kvm_state->vcpu_events;
1636 int kvm_has_robust_singlestep(void)
1638 return kvm_state->robust_singlestep;
1641 int kvm_has_debugregs(void)
1643 return kvm_state->debugregs;
1646 int kvm_has_xsave(void)
1648 return kvm_state->xsave;
1651 int kvm_has_xcrs(void)
1653 return kvm_state->xcrs;
1656 int kvm_has_pit_state2(void)
1658 return kvm_state->pit_state2;
1661 int kvm_has_many_ioeventfds(void)
1663 if (!kvm_enabled()) {
1664 return 0;
1666 return kvm_state->many_ioeventfds;
1669 int kvm_has_gsi_routing(void)
1671 #ifdef KVM_CAP_IRQ_ROUTING
1672 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1673 #else
1674 return false;
1675 #endif
1678 int kvm_has_intx_set_mask(void)
1680 return kvm_state->intx_set_mask;
1683 int kvm_allows_irq0_override(void)
1685 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1688 void *kvm_vmalloc(ram_addr_t size)
1690 #ifdef TARGET_S390X
1691 void *mem;
1693 mem = kvm_arch_vmalloc(size);
1694 if (mem) {
1695 return mem;
1697 #endif
1698 return qemu_vmalloc(size);
1701 void kvm_setup_guest_memory(void *start, size_t size)
1703 if (!kvm_has_sync_mmu()) {
1704 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1706 if (ret) {
1707 perror("qemu_madvise");
1708 fprintf(stderr,
1709 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1710 exit(1);
1715 #ifdef KVM_CAP_SET_GUEST_DEBUG
1716 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1717 target_ulong pc)
1719 struct kvm_sw_breakpoint *bp;
1721 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1722 if (bp->pc == pc) {
1723 return bp;
1726 return NULL;
1729 int kvm_sw_breakpoints_active(CPUArchState *env)
1731 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1734 struct kvm_set_guest_debug_data {
1735 struct kvm_guest_debug dbg;
1736 CPUArchState *env;
1737 int err;
1740 static void kvm_invoke_set_guest_debug(void *data)
1742 struct kvm_set_guest_debug_data *dbg_data = data;
1743 CPUArchState *env = dbg_data->env;
1745 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1748 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1750 struct kvm_set_guest_debug_data data;
1752 data.dbg.control = reinject_trap;
1754 if (env->singlestep_enabled) {
1755 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1757 kvm_arch_update_guest_debug(env, &data.dbg);
1758 data.env = env;
1760 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1761 return data.err;
1764 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1765 target_ulong len, int type)
1767 struct kvm_sw_breakpoint *bp;
1768 CPUArchState *env;
1769 int err;
1771 if (type == GDB_BREAKPOINT_SW) {
1772 bp = kvm_find_sw_breakpoint(current_env, addr);
1773 if (bp) {
1774 bp->use_count++;
1775 return 0;
1778 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1779 if (!bp) {
1780 return -ENOMEM;
1783 bp->pc = addr;
1784 bp->use_count = 1;
1785 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1786 if (err) {
1787 g_free(bp);
1788 return err;
1791 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1792 bp, entry);
1793 } else {
1794 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1795 if (err) {
1796 return err;
1800 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1801 err = kvm_update_guest_debug(env, 0);
1802 if (err) {
1803 return err;
1806 return 0;
1809 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1810 target_ulong len, int type)
1812 struct kvm_sw_breakpoint *bp;
1813 CPUArchState *env;
1814 int err;
1816 if (type == GDB_BREAKPOINT_SW) {
1817 bp = kvm_find_sw_breakpoint(current_env, addr);
1818 if (!bp) {
1819 return -ENOENT;
1822 if (bp->use_count > 1) {
1823 bp->use_count--;
1824 return 0;
1827 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1828 if (err) {
1829 return err;
1832 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1833 g_free(bp);
1834 } else {
1835 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1836 if (err) {
1837 return err;
1841 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1842 err = kvm_update_guest_debug(env, 0);
1843 if (err) {
1844 return err;
1847 return 0;
1850 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1852 struct kvm_sw_breakpoint *bp, *next;
1853 KVMState *s = current_env->kvm_state;
1854 CPUArchState *env;
1856 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1857 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1858 /* Try harder to find a CPU that currently sees the breakpoint. */
1859 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1860 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1861 break;
1866 kvm_arch_remove_all_hw_breakpoints();
1868 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1869 kvm_update_guest_debug(env, 0);
1873 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1875 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1877 return -EINVAL;
1880 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1881 target_ulong len, int type)
1883 return -EINVAL;
1886 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1887 target_ulong len, int type)
1889 return -EINVAL;
1892 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1895 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1897 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1899 struct kvm_signal_mask *sigmask;
1900 int r;
1902 if (!sigset) {
1903 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1906 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1908 sigmask->len = 8;
1909 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1910 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1911 g_free(sigmask);
1913 return r;
1916 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1917 uint32_t size)
1919 int ret;
1920 struct kvm_ioeventfd iofd;
1922 iofd.datamatch = val;
1923 iofd.addr = addr;
1924 iofd.len = size;
1925 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1926 iofd.fd = fd;
1928 if (!kvm_enabled()) {
1929 return -ENOSYS;
1932 if (!assign) {
1933 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1936 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1938 if (ret < 0) {
1939 return -errno;
1942 return 0;
1945 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1947 struct kvm_ioeventfd kick = {
1948 .datamatch = val,
1949 .addr = addr,
1950 .len = 2,
1951 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1952 .fd = fd,
1954 int r;
1955 if (!kvm_enabled()) {
1956 return -ENOSYS;
1958 if (!assign) {
1959 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1961 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1962 if (r < 0) {
1963 return r;
1965 return 0;
1968 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1970 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1973 int kvm_on_sigbus(int code, void *addr)
1975 return kvm_arch_on_sigbus(code, addr);
1978 #undef PAGE_SIZE
1979 #include "qemu-kvm.c"