Merge commit 'a1b87fe046bbb5a332e51906053c7e0307f26d89' into upstream-merge
[qemu-kvm.git] / kvm-all.c
blob64b3e8c6f1a172e4d515c3cb4c998eac6eee3eca
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 #ifdef OBSOLETE_KVM_IMPL
51 typedef struct KVMSlot
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 ram_addr_t phys_offset;
56 int slot;
57 int flags;
58 } KVMSlot;
60 typedef struct kvm_dirty_log KVMDirtyLog;
62 struct KVMState
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
83 static KVMState *kvm_state;
86 static const KVMCapabilityInfo kvm_required_capabilites[] = {
87 KVM_CAP_INFO(USER_MEMORY),
88 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
89 KVM_CAP_LAST_INFO
92 #endif
94 static KVMSlot *kvm_alloc_slot(KVMState *s)
96 int i;
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 /* KVM private memory slots */
100 if (i >= 8 && i < 12) {
101 continue;
103 if (s->slots[i].memory_size == 0) {
104 return &s->slots[i];
108 fprintf(stderr, "%s: no free slot available\n", __func__);
109 abort();
112 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
113 target_phys_addr_t start_addr,
114 target_phys_addr_t end_addr)
116 int i;
118 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119 KVMSlot *mem = &s->slots[i];
121 if (start_addr == mem->start_addr &&
122 end_addr == mem->start_addr + mem->memory_size) {
123 return mem;
127 return NULL;
131 * Find overlapping slot with lowest start address
133 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
134 target_phys_addr_t start_addr,
135 target_phys_addr_t end_addr)
137 KVMSlot *found = NULL;
138 int i;
140 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
141 KVMSlot *mem = &s->slots[i];
143 if (mem->memory_size == 0 ||
144 (found && found->start_addr < mem->start_addr)) {
145 continue;
148 if (end_addr > mem->start_addr &&
149 start_addr < mem->start_addr + mem->memory_size) {
150 found = mem;
154 return found;
157 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
158 target_phys_addr_t *phys_addr)
160 int i;
162 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
163 KVMSlot *mem = &s->slots[i];
165 if (ram_addr >= mem->phys_offset &&
166 ram_addr < mem->phys_offset + mem->memory_size) {
167 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
168 return 1;
172 return 0;
175 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
177 struct kvm_userspace_memory_region mem;
179 mem.slot = slot->slot;
180 mem.guest_phys_addr = slot->start_addr;
181 mem.memory_size = slot->memory_size;
182 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
183 mem.flags = slot->flags;
184 if (s->migration_log) {
185 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
187 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
190 #ifdef OBSOLETE_KVM_IMPL
191 static void kvm_reset_vcpu(void *opaque)
193 CPUState *env = opaque;
195 kvm_arch_reset_vcpu(env);
197 #endif
199 int kvm_irqchip_in_kernel(void)
201 return kvm_state->irqchip_in_kernel;
204 int kvm_pit_in_kernel(void)
206 return kvm_state->pit_in_kernel;
210 #ifdef OBSOLETE_KVM_IMPL
211 int kvm_init_vcpu(CPUState *env)
213 KVMState *s = kvm_state;
214 long mmap_size;
215 int ret;
217 DPRINTF("kvm_init_vcpu\n");
219 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
220 if (ret < 0) {
221 DPRINTF("kvm_create_vcpu failed\n");
222 goto err;
225 env->kvm_fd = ret;
226 env->kvm_state = s;
228 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
229 if (mmap_size < 0) {
230 ret = mmap_size;
231 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
232 goto err;
235 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
236 env->kvm_fd, 0);
237 if (env->kvm_run == MAP_FAILED) {
238 ret = -errno;
239 DPRINTF("mmap'ing vcpu state failed\n");
240 goto err;
243 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
244 s->coalesced_mmio_ring =
245 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
248 ret = kvm_arch_init_vcpu(env);
249 if (ret == 0) {
250 qemu_register_reset(kvm_reset_vcpu, env);
251 kvm_arch_reset_vcpu(env);
253 err:
254 return ret;
256 #endif
259 * dirty pages logging control
261 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
262 ram_addr_t size, int flags, int mask)
264 KVMState *s = kvm_state;
265 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
266 int old_flags;
268 if (mem == NULL) {
269 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
270 TARGET_FMT_plx "\n", __func__, phys_addr,
271 (target_phys_addr_t)(phys_addr + size - 1));
272 return -EINVAL;
275 old_flags = mem->flags;
277 flags = (mem->flags & ~mask) | flags;
278 mem->flags = flags;
280 /* If nothing changed effectively, no need to issue ioctl */
281 if (s->migration_log) {
282 flags |= KVM_MEM_LOG_DIRTY_PAGES;
284 if (flags == old_flags) {
285 return 0;
288 return kvm_set_user_memory_region(s, mem);
291 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
293 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
294 KVM_MEM_LOG_DIRTY_PAGES);
297 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
299 return kvm_dirty_pages_log_change(phys_addr, size, 0,
300 KVM_MEM_LOG_DIRTY_PAGES);
303 static int kvm_set_migration_log(int enable)
305 KVMState *s = kvm_state;
306 KVMSlot *mem;
307 int i, err;
309 s->migration_log = enable;
311 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
312 mem = &s->slots[i];
314 if (!mem->memory_size) {
315 continue;
317 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
318 continue;
320 err = kvm_set_user_memory_region(s, mem);
321 if (err) {
322 return err;
325 return 0;
328 /* get kvm's dirty pages bitmap and update qemu's */
329 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
330 unsigned long *bitmap,
331 unsigned long offset,
332 unsigned long mem_size)
334 unsigned int i, j;
335 unsigned long page_number, addr, addr1, c;
336 ram_addr_t ram_addr;
337 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
338 HOST_LONG_BITS;
341 * bitmap-traveling is faster than memory-traveling (for addr...)
342 * especially when most of the memory is not dirty.
344 for (i = 0; i < len; i++) {
345 if (bitmap[i] != 0) {
346 c = leul_to_cpu(bitmap[i]);
347 do {
348 j = ffsl(c) - 1;
349 c &= ~(1ul << j);
350 page_number = i * HOST_LONG_BITS + j;
351 addr1 = page_number * TARGET_PAGE_SIZE;
352 addr = offset + addr1;
353 ram_addr = cpu_get_physical_page_desc(addr);
354 cpu_physical_memory_set_dirty(ram_addr);
355 } while (c != 0);
358 return 0;
361 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
364 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
365 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
366 * This means all bits are set to dirty.
368 * @start_add: start of logged region.
369 * @end_addr: end of logged region.
371 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
372 target_phys_addr_t end_addr)
374 KVMState *s = kvm_state;
375 unsigned long size, allocated_size = 0;
376 KVMDirtyLog d;
377 KVMSlot *mem;
378 int ret = 0;
380 d.dirty_bitmap = NULL;
381 while (start_addr < end_addr) {
382 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
383 if (mem == NULL) {
384 break;
387 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
388 if (!d.dirty_bitmap) {
389 d.dirty_bitmap = qemu_malloc(size);
390 } else if (size > allocated_size) {
391 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
393 allocated_size = size;
394 memset(d.dirty_bitmap, 0, allocated_size);
396 d.slot = mem->slot;
398 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
399 DPRINTF("ioctl failed %d\n", errno);
400 ret = -1;
401 break;
404 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
405 mem->start_addr, mem->memory_size);
406 start_addr = mem->start_addr + mem->memory_size;
408 qemu_free(d.dirty_bitmap);
410 return ret;
413 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
415 int ret = -ENOSYS;
416 KVMState *s = kvm_state;
418 if (s->coalesced_mmio) {
419 struct kvm_coalesced_mmio_zone zone;
421 zone.addr = start;
422 zone.size = size;
424 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
427 return ret;
430 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
432 int ret = -ENOSYS;
433 KVMState *s = kvm_state;
435 if (s->coalesced_mmio) {
436 struct kvm_coalesced_mmio_zone zone;
438 zone.addr = start;
439 zone.size = size;
441 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
444 return ret;
447 int kvm_check_extension(KVMState *s, unsigned int extension)
449 int ret;
451 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
452 if (ret < 0) {
453 ret = 0;
456 return ret;
459 static int kvm_check_many_ioeventfds(void)
461 /* Userspace can use ioeventfd for io notification. This requires a host
462 * that supports eventfd(2) and an I/O thread; since eventfd does not
463 * support SIGIO it cannot interrupt the vcpu.
465 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
466 * can avoid creating too many ioeventfds.
468 #if defined(CONFIG_EVENTFD) /* && defined(CONFIG_IOTHREAD) */
469 int ioeventfds[7];
470 int i, ret = 0;
471 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
472 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
473 if (ioeventfds[i] < 0) {
474 break;
476 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
477 if (ret < 0) {
478 close(ioeventfds[i]);
479 break;
483 /* Decide whether many devices are supported or not */
484 ret = i == ARRAY_SIZE(ioeventfds);
486 while (i-- > 0) {
487 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
488 close(ioeventfds[i]);
490 return ret;
491 #else
492 return 0;
493 #endif
496 #ifdef OBSOLETE_KVM_IMPL
497 static const KVMCapabilityInfo *
498 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
500 while (list->name) {
501 if (!kvm_check_extension(s, list->value)) {
502 return list;
504 list++;
506 return NULL;
508 #endif
510 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
511 ram_addr_t phys_offset)
513 KVMState *s = kvm_state;
514 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
515 KVMSlot *mem, old;
516 int err;
518 /* kvm works in page size chunks, but the function may be called
519 with sub-page size and unaligned start address. */
520 size = TARGET_PAGE_ALIGN(size);
521 start_addr = TARGET_PAGE_ALIGN(start_addr);
523 /* KVM does not support read-only slots */
524 phys_offset &= ~IO_MEM_ROM;
526 while (1) {
527 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
528 if (!mem) {
529 break;
532 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
533 (start_addr + size <= mem->start_addr + mem->memory_size) &&
534 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
535 /* The new slot fits into the existing one and comes with
536 * identical parameters - nothing to be done. */
537 return;
540 old = *mem;
542 /* unregister the overlapping slot */
543 mem->memory_size = 0;
544 err = kvm_set_user_memory_region(s, mem);
545 if (err) {
546 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
547 __func__, strerror(-err));
548 abort();
551 /* Workaround for older KVM versions: we can't join slots, even not by
552 * unregistering the previous ones and then registering the larger
553 * slot. We have to maintain the existing fragmentation. Sigh.
555 * This workaround assumes that the new slot starts at the same
556 * address as the first existing one. If not or if some overlapping
557 * slot comes around later, we will fail (not seen in practice so far)
558 * - and actually require a recent KVM version. */
559 if (s->broken_set_mem_region &&
560 old.start_addr == start_addr && old.memory_size < size &&
561 flags < IO_MEM_UNASSIGNED) {
562 mem = kvm_alloc_slot(s);
563 mem->memory_size = old.memory_size;
564 mem->start_addr = old.start_addr;
565 mem->phys_offset = old.phys_offset;
566 mem->flags = 0;
568 err = kvm_set_user_memory_region(s, mem);
569 if (err) {
570 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
571 strerror(-err));
572 abort();
575 start_addr += old.memory_size;
576 phys_offset += old.memory_size;
577 size -= old.memory_size;
578 continue;
581 /* register prefix slot */
582 if (old.start_addr < start_addr) {
583 mem = kvm_alloc_slot(s);
584 mem->memory_size = start_addr - old.start_addr;
585 mem->start_addr = old.start_addr;
586 mem->phys_offset = old.phys_offset;
587 mem->flags = 0;
589 err = kvm_set_user_memory_region(s, mem);
590 if (err) {
591 fprintf(stderr, "%s: error registering prefix slot: %s\n",
592 __func__, strerror(-err));
593 abort();
597 /* register suffix slot */
598 if (old.start_addr + old.memory_size > start_addr + size) {
599 ram_addr_t size_delta;
601 mem = kvm_alloc_slot(s);
602 mem->start_addr = start_addr + size;
603 size_delta = mem->start_addr - old.start_addr;
604 mem->memory_size = old.memory_size - size_delta;
605 mem->phys_offset = old.phys_offset + size_delta;
606 mem->flags = 0;
608 err = kvm_set_user_memory_region(s, mem);
609 if (err) {
610 fprintf(stderr, "%s: error registering suffix slot: %s\n",
611 __func__, strerror(-err));
612 abort();
617 /* in case the KVM bug workaround already "consumed" the new slot */
618 if (!size) {
619 return;
621 /* KVM does not need to know about this memory */
622 if (flags >= IO_MEM_UNASSIGNED) {
623 return;
625 mem = kvm_alloc_slot(s);
626 mem->memory_size = size;
627 mem->start_addr = start_addr;
628 mem->phys_offset = phys_offset;
629 mem->flags = 0;
631 err = kvm_set_user_memory_region(s, mem);
632 if (err) {
633 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
634 strerror(-err));
635 abort();
639 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
640 target_phys_addr_t start_addr,
641 ram_addr_t size, ram_addr_t phys_offset)
643 kvm_set_phys_mem(start_addr, size, phys_offset);
646 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
647 target_phys_addr_t start_addr,
648 target_phys_addr_t end_addr)
650 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
653 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
654 int enable)
656 return kvm_set_migration_log(enable);
659 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
660 .set_memory = kvm_client_set_memory,
661 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
662 .migration_log = kvm_client_migration_log,
665 void kvm_cpu_register_phys_memory_client(void)
667 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
670 #ifdef OBSOLETE_KVM_IMPL
672 int kvm_init(void)
674 static const char upgrade_note[] =
675 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
676 "(see http://sourceforge.net/projects/kvm).\n";
677 KVMState *s;
678 const KVMCapabilityInfo *missing_cap;
679 int ret;
680 int i;
682 s = qemu_mallocz(sizeof(KVMState));
684 #ifdef KVM_CAP_SET_GUEST_DEBUG
685 QTAILQ_INIT(&s->kvm_sw_breakpoints);
686 #endif
687 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
688 s->slots[i].slot = i;
690 s->vmfd = -1;
691 s->fd = qemu_open("/dev/kvm", O_RDWR);
692 if (s->fd == -1) {
693 fprintf(stderr, "Could not access KVM kernel module: %m\n");
694 ret = -errno;
695 goto err;
698 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
699 if (ret < KVM_API_VERSION) {
700 if (ret > 0) {
701 ret = -EINVAL;
703 fprintf(stderr, "kvm version too old\n");
704 goto err;
707 if (ret > KVM_API_VERSION) {
708 ret = -EINVAL;
709 fprintf(stderr, "kvm version not supported\n");
710 goto err;
713 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
714 if (s->vmfd < 0) {
715 #ifdef TARGET_S390X
716 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
717 "your host kernel command line\n");
718 #endif
719 goto err;
722 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
723 if (!missing_cap) {
724 missing_cap =
725 kvm_check_extension_list(s, kvm_arch_required_capabilities);
727 if (missing_cap) {
728 ret = -EINVAL;
729 fprintf(stderr, "kvm does not support %s\n%s",
730 missing_cap->name, upgrade_note);
731 goto err;
734 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
736 s->broken_set_mem_region = 1;
737 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
738 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
739 if (ret > 0) {
740 s->broken_set_mem_region = 0;
742 #endif
744 s->vcpu_events = 0;
745 #ifdef KVM_CAP_VCPU_EVENTS
746 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
747 #endif
749 s->robust_singlestep = 0;
750 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
751 s->robust_singlestep =
752 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
753 #endif
755 s->debugregs = 0;
756 #ifdef KVM_CAP_DEBUGREGS
757 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
758 #endif
760 s->xsave = 0;
761 #ifdef KVM_CAP_XSAVE
762 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
763 #endif
765 s->xcrs = 0;
766 #ifdef KVM_CAP_XCRS
767 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
768 #endif
770 ret = kvm_arch_init(s);
771 if (ret < 0) {
772 goto err;
775 kvm_state = s;
776 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
778 s->many_ioeventfds = kvm_check_many_ioeventfds();
780 return 0;
782 err:
783 if (s) {
784 if (s->vmfd != -1) {
785 close(s->vmfd);
787 if (s->fd != -1) {
788 close(s->fd);
791 qemu_free(s);
793 return ret;
795 #endif
797 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
798 uint32_t count)
800 int i;
801 uint8_t *ptr = data;
803 for (i = 0; i < count; i++) {
804 if (direction == KVM_EXIT_IO_IN) {
805 switch (size) {
806 case 1:
807 stb_p(ptr, cpu_inb(port));
808 break;
809 case 2:
810 stw_p(ptr, cpu_inw(port));
811 break;
812 case 4:
813 stl_p(ptr, cpu_inl(port));
814 break;
816 } else {
817 switch (size) {
818 case 1:
819 cpu_outb(port, ldub_p(ptr));
820 break;
821 case 2:
822 cpu_outw(port, lduw_p(ptr));
823 break;
824 case 4:
825 cpu_outl(port, ldl_p(ptr));
826 break;
830 ptr += size;
833 return 1;
836 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
837 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
839 fprintf(stderr, "KVM internal error.");
840 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
841 int i;
843 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
844 for (i = 0; i < run->internal.ndata; ++i) {
845 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
846 i, (uint64_t)run->internal.data[i]);
848 } else {
849 fprintf(stderr, "\n");
851 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
852 fprintf(stderr, "emulation failure\n");
853 if (!kvm_arch_stop_on_emulation_error(env)) {
854 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
855 return 0;
858 /* FIXME: Should trigger a qmp message to let management know
859 * something went wrong.
861 return -1;
863 #endif
865 void kvm_flush_coalesced_mmio_buffer(void)
867 KVMState *s = kvm_state;
868 if (s->coalesced_mmio_ring) {
869 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
870 while (ring->first != ring->last) {
871 struct kvm_coalesced_mmio *ent;
873 ent = &ring->coalesced_mmio[ring->first];
875 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
876 smp_wmb();
877 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
882 #ifdef OBSOLETE_KVM_IMPL
884 static void do_kvm_cpu_synchronize_state(void *_env)
886 CPUState *env = _env;
888 if (!env->kvm_vcpu_dirty) {
889 kvm_arch_get_registers(env);
890 env->kvm_vcpu_dirty = 1;
894 void kvm_cpu_synchronize_state(CPUState *env)
896 if (!env->kvm_vcpu_dirty) {
897 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
901 void kvm_cpu_synchronize_post_reset(CPUState *env)
903 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
904 env->kvm_vcpu_dirty = 0;
907 void kvm_cpu_synchronize_post_init(CPUState *env)
909 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
910 env->kvm_vcpu_dirty = 0;
913 int kvm_cpu_exec(CPUState *env)
915 struct kvm_run *run = env->kvm_run;
916 int ret;
918 DPRINTF("kvm_cpu_exec()\n");
920 do {
921 #ifndef CONFIG_IOTHREAD
922 if (env->exit_request) {
923 DPRINTF("interrupt exit requested\n");
924 ret = 0;
925 break;
927 #endif
929 if (kvm_arch_process_irqchip_events(env)) {
930 ret = 0;
931 break;
934 if (env->kvm_vcpu_dirty) {
935 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
936 env->kvm_vcpu_dirty = 0;
939 kvm_arch_pre_run(env, run);
940 cpu_single_env = NULL;
941 qemu_mutex_unlock_iothread();
942 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
943 qemu_mutex_lock_iothread();
944 cpu_single_env = env;
945 kvm_arch_post_run(env, run);
947 kvm_flush_coalesced_mmio_buffer();
949 if (ret == -EINTR || ret == -EAGAIN) {
950 cpu_exit(env);
951 DPRINTF("io window exit\n");
952 ret = 0;
953 break;
956 if (ret < 0) {
957 DPRINTF("kvm run failed %s\n", strerror(-ret));
958 abort();
961 ret = 0; /* exit loop */
962 switch (run->exit_reason) {
963 case KVM_EXIT_IO:
964 DPRINTF("handle_io\n");
965 ret = kvm_handle_io(run->io.port,
966 (uint8_t *)run + run->io.data_offset,
967 run->io.direction,
968 run->io.size,
969 run->io.count);
970 break;
971 case KVM_EXIT_MMIO:
972 DPRINTF("handle_mmio\n");
973 cpu_physical_memory_rw(run->mmio.phys_addr,
974 run->mmio.data,
975 run->mmio.len,
976 run->mmio.is_write);
977 ret = 1;
978 break;
979 case KVM_EXIT_IRQ_WINDOW_OPEN:
980 DPRINTF("irq_window_open\n");
981 break;
982 case KVM_EXIT_SHUTDOWN:
983 DPRINTF("shutdown\n");
984 qemu_system_reset_request();
985 ret = 1;
986 break;
987 case KVM_EXIT_UNKNOWN:
988 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
989 (uint64_t)run->hw.hardware_exit_reason);
990 ret = -1;
991 break;
992 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
993 case KVM_EXIT_INTERNAL_ERROR:
994 ret = kvm_handle_internal_error(env, run);
995 break;
996 #endif
997 case KVM_EXIT_DEBUG:
998 DPRINTF("kvm_exit_debug\n");
999 #ifdef KVM_CAP_SET_GUEST_DEBUG
1000 if (kvm_arch_debug(&run->debug.arch)) {
1001 env->exception_index = EXCP_DEBUG;
1002 return 0;
1004 /* re-enter, this exception was guest-internal */
1005 ret = 1;
1006 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1007 break;
1008 default:
1009 DPRINTF("kvm_arch_handle_exit\n");
1010 ret = kvm_arch_handle_exit(env, run);
1011 break;
1013 } while (ret > 0);
1015 if (ret < 0) {
1016 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1017 vm_stop(0);
1018 env->exit_request = 1;
1020 if (env->exit_request) {
1021 env->exit_request = 0;
1022 env->exception_index = EXCP_INTERRUPT;
1025 return ret;
1028 #endif
1029 int kvm_ioctl(KVMState *s, int type, ...)
1031 int ret;
1032 void *arg;
1033 va_list ap;
1035 va_start(ap, type);
1036 arg = va_arg(ap, void *);
1037 va_end(ap);
1039 ret = ioctl(s->fd, type, arg);
1040 if (ret == -1) {
1041 ret = -errno;
1043 return ret;
1046 int kvm_vm_ioctl(KVMState *s, int type, ...)
1048 int ret;
1049 void *arg;
1050 va_list ap;
1052 va_start(ap, type);
1053 arg = va_arg(ap, void *);
1054 va_end(ap);
1056 ret = ioctl(s->vmfd, type, arg);
1057 if (ret == -1) {
1058 ret = -errno;
1060 return ret;
1063 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1065 int ret;
1066 void *arg;
1067 va_list ap;
1069 va_start(ap, type);
1070 arg = va_arg(ap, void *);
1071 va_end(ap);
1073 ret = ioctl(env->kvm_fd, type, arg);
1074 if (ret == -1) {
1075 ret = -errno;
1077 return ret;
1080 int kvm_has_sync_mmu(void)
1082 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1085 int kvm_has_vcpu_events(void)
1087 return kvm_state->vcpu_events;
1090 int kvm_has_robust_singlestep(void)
1092 return kvm_state->robust_singlestep;
1095 int kvm_has_debugregs(void)
1097 return kvm_state->debugregs;
1100 int kvm_has_xsave(void)
1102 return kvm_state->xsave;
1105 int kvm_has_xcrs(void)
1107 return kvm_state->xcrs;
1110 int kvm_has_many_ioeventfds(void)
1112 if (!kvm_enabled()) {
1113 return 0;
1115 return kvm_state->many_ioeventfds;
1118 void kvm_setup_guest_memory(void *start, size_t size)
1120 if (!kvm_has_sync_mmu()) {
1121 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1123 if (ret) {
1124 perror("qemu_madvise");
1125 fprintf(stderr,
1126 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1127 exit(1);
1132 #ifdef KVM_CAP_SET_GUEST_DEBUG
1133 #ifndef OBSOLETE_KVM_IMPL
1134 #define run_on_cpu on_vcpu
1135 #endif /* !OBSOLETE_KVM_IMPL */
1137 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1138 target_ulong pc)
1140 struct kvm_sw_breakpoint *bp;
1142 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1143 if (bp->pc == pc) {
1144 return bp;
1147 return NULL;
1150 int kvm_sw_breakpoints_active(CPUState *env)
1152 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1155 struct kvm_set_guest_debug_data {
1156 struct kvm_guest_debug dbg;
1157 CPUState *env;
1158 int err;
1161 static void kvm_invoke_set_guest_debug(void *data)
1163 struct kvm_set_guest_debug_data *dbg_data = data;
1164 CPUState *env = dbg_data->env;
1166 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1169 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1171 struct kvm_set_guest_debug_data data;
1173 data.dbg.control = reinject_trap;
1175 if (env->singlestep_enabled) {
1176 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1178 kvm_arch_update_guest_debug(env, &data.dbg);
1179 data.env = env;
1181 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1182 return data.err;
1185 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1186 target_ulong len, int type)
1188 struct kvm_sw_breakpoint *bp;
1189 CPUState *env;
1190 int err;
1192 if (type == GDB_BREAKPOINT_SW) {
1193 bp = kvm_find_sw_breakpoint(current_env, addr);
1194 if (bp) {
1195 bp->use_count++;
1196 return 0;
1199 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1200 if (!bp) {
1201 return -ENOMEM;
1204 bp->pc = addr;
1205 bp->use_count = 1;
1206 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1207 if (err) {
1208 free(bp);
1209 return err;
1212 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1213 bp, entry);
1214 } else {
1215 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1216 if (err) {
1217 return err;
1221 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1222 err = kvm_update_guest_debug(env, 0);
1223 if (err) {
1224 return err;
1227 return 0;
1230 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1231 target_ulong len, int type)
1233 struct kvm_sw_breakpoint *bp;
1234 CPUState *env;
1235 int err;
1237 if (type == GDB_BREAKPOINT_SW) {
1238 bp = kvm_find_sw_breakpoint(current_env, addr);
1239 if (!bp) {
1240 return -ENOENT;
1243 if (bp->use_count > 1) {
1244 bp->use_count--;
1245 return 0;
1248 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1249 if (err) {
1250 return err;
1253 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1254 qemu_free(bp);
1255 } else {
1256 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1257 if (err) {
1258 return err;
1262 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1263 err = kvm_update_guest_debug(env, 0);
1264 if (err) {
1265 return err;
1268 return 0;
1271 void kvm_remove_all_breakpoints(CPUState *current_env)
1273 struct kvm_sw_breakpoint *bp, *next;
1274 KVMState *s = current_env->kvm_state;
1275 CPUState *env;
1277 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1278 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1279 /* Try harder to find a CPU that currently sees the breakpoint. */
1280 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1281 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1282 break;
1287 kvm_arch_remove_all_hw_breakpoints();
1289 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1290 kvm_update_guest_debug(env, 0);
1294 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1296 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1298 return -EINVAL;
1301 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1302 target_ulong len, int type)
1304 return -EINVAL;
1307 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1308 target_ulong len, int type)
1310 return -EINVAL;
1313 void kvm_remove_all_breakpoints(CPUState *current_env)
1316 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1318 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1320 struct kvm_signal_mask *sigmask;
1321 int r;
1323 if (!sigset) {
1324 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1327 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1329 sigmask->len = 8;
1330 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1331 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1332 free(sigmask);
1334 return r;
1337 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1339 #ifdef KVM_IOEVENTFD
1340 int ret;
1341 struct kvm_ioeventfd iofd;
1343 iofd.datamatch = val;
1344 iofd.addr = addr;
1345 iofd.len = 4;
1346 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1347 iofd.fd = fd;
1349 if (!kvm_enabled()) {
1350 return -ENOSYS;
1353 if (!assign) {
1354 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1357 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1359 if (ret < 0) {
1360 return -errno;
1363 return 0;
1364 #else
1365 return -ENOSYS;
1366 #endif
1369 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1371 #ifdef KVM_IOEVENTFD
1372 struct kvm_ioeventfd kick = {
1373 .datamatch = val,
1374 .addr = addr,
1375 .len = 2,
1376 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1377 .fd = fd,
1379 int r;
1380 if (!kvm_enabled()) {
1381 return -ENOSYS;
1383 if (!assign) {
1384 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1386 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1387 if (r < 0) {
1388 return r;
1390 return 0;
1391 #else
1392 return -ENOSYS;
1393 #endif
1396 #if defined(KVM_IRQFD)
1397 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1399 struct kvm_irqfd irqfd = {
1400 .fd = fd,
1401 .gsi = gsi,
1402 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1404 int r;
1405 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1406 return -ENOSYS;
1408 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1409 if (r < 0)
1410 return r;
1411 return 0;
1413 #endif
1415 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1417 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1420 int kvm_on_sigbus(int code, void *addr)
1422 return kvm_arch_on_sigbus(code, addr);
1425 #undef PAGE_SIZE
1426 #include "qemu-kvm.c"