memory: drop AddressSpaceOps
[qemu-kvm.git] / hw / stellaris.c
blob31a65cfb770a73a07297e7bfa59ca2ed915b2e4b
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "sysbus.h"
11 #include "ssi.h"
12 #include "arm-misc.h"
13 #include "devices.h"
14 #include "qemu-timer.h"
15 #include "i2c.h"
16 #include "net.h"
17 #include "boards.h"
18 #include "exec-memory.h"
20 #define GPIO_A 0
21 #define GPIO_B 1
22 #define GPIO_C 2
23 #define GPIO_D 3
24 #define GPIO_E 4
25 #define GPIO_F 5
26 #define GPIO_G 6
28 #define BP_OLED_I2C 0x01
29 #define BP_OLED_SSI 0x02
30 #define BP_GAMEPAD 0x04
32 typedef const struct {
33 const char *name;
34 uint32_t did0;
35 uint32_t did1;
36 uint32_t dc0;
37 uint32_t dc1;
38 uint32_t dc2;
39 uint32_t dc3;
40 uint32_t dc4;
41 uint32_t peripherals;
42 } stellaris_board_info;
44 /* General purpose timer module. */
46 typedef struct gptm_state {
47 SysBusDevice busdev;
48 MemoryRegion iomem;
49 uint32_t config;
50 uint32_t mode[2];
51 uint32_t control;
52 uint32_t state;
53 uint32_t mask;
54 uint32_t load[2];
55 uint32_t match[2];
56 uint32_t prescale[2];
57 uint32_t match_prescale[2];
58 uint32_t rtc;
59 int64_t tick[2];
60 struct gptm_state *opaque[2];
61 QEMUTimer *timer[2];
62 /* The timers have an alternate output used to trigger the ADC. */
63 qemu_irq trigger;
64 qemu_irq irq;
65 } gptm_state;
67 static void gptm_update_irq(gptm_state *s)
69 int level;
70 level = (s->state & s->mask) != 0;
71 qemu_set_irq(s->irq, level);
74 static void gptm_stop(gptm_state *s, int n)
76 qemu_del_timer(s->timer[n]);
79 static void gptm_reload(gptm_state *s, int n, int reset)
81 int64_t tick;
82 if (reset)
83 tick = qemu_get_clock_ns(vm_clock);
84 else
85 tick = s->tick[n];
87 if (s->config == 0) {
88 /* 32-bit CountDown. */
89 uint32_t count;
90 count = s->load[0] | (s->load[1] << 16);
91 tick += (int64_t)count * system_clock_scale;
92 } else if (s->config == 1) {
93 /* 32-bit RTC. 1Hz tick. */
94 tick += get_ticks_per_sec();
95 } else if (s->mode[n] == 0xa) {
96 /* PWM mode. Not implemented. */
97 } else {
98 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
100 s->tick[n] = tick;
101 qemu_mod_timer(s->timer[n], tick);
104 static void gptm_tick(void *opaque)
106 gptm_state **p = (gptm_state **)opaque;
107 gptm_state *s;
108 int n;
110 s = *p;
111 n = p - s->opaque;
112 if (s->config == 0) {
113 s->state |= 1;
114 if ((s->control & 0x20)) {
115 /* Output trigger. */
116 qemu_irq_pulse(s->trigger);
118 if (s->mode[0] & 1) {
119 /* One-shot. */
120 s->control &= ~1;
121 } else {
122 /* Periodic. */
123 gptm_reload(s, 0, 0);
125 } else if (s->config == 1) {
126 /* RTC. */
127 uint32_t match;
128 s->rtc++;
129 match = s->match[0] | (s->match[1] << 16);
130 if (s->rtc > match)
131 s->rtc = 0;
132 if (s->rtc == 0) {
133 s->state |= 8;
135 gptm_reload(s, 0, 0);
136 } else if (s->mode[n] == 0xa) {
137 /* PWM mode. Not implemented. */
138 } else {
139 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
141 gptm_update_irq(s);
144 static uint64_t gptm_read(void *opaque, target_phys_addr_t offset,
145 unsigned size)
147 gptm_state *s = (gptm_state *)opaque;
149 switch (offset) {
150 case 0x00: /* CFG */
151 return s->config;
152 case 0x04: /* TAMR */
153 return s->mode[0];
154 case 0x08: /* TBMR */
155 return s->mode[1];
156 case 0x0c: /* CTL */
157 return s->control;
158 case 0x18: /* IMR */
159 return s->mask;
160 case 0x1c: /* RIS */
161 return s->state;
162 case 0x20: /* MIS */
163 return s->state & s->mask;
164 case 0x24: /* CR */
165 return 0;
166 case 0x28: /* TAILR */
167 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
168 case 0x2c: /* TBILR */
169 return s->load[1];
170 case 0x30: /* TAMARCHR */
171 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
172 case 0x34: /* TBMATCHR */
173 return s->match[1];
174 case 0x38: /* TAPR */
175 return s->prescale[0];
176 case 0x3c: /* TBPR */
177 return s->prescale[1];
178 case 0x40: /* TAPMR */
179 return s->match_prescale[0];
180 case 0x44: /* TBPMR */
181 return s->match_prescale[1];
182 case 0x48: /* TAR */
183 if (s->control == 1)
184 return s->rtc;
185 case 0x4c: /* TBR */
186 hw_error("TODO: Timer value read\n");
187 default:
188 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
189 return 0;
193 static void gptm_write(void *opaque, target_phys_addr_t offset,
194 uint64_t value, unsigned size)
196 gptm_state *s = (gptm_state *)opaque;
197 uint32_t oldval;
199 /* The timers should be disabled before changing the configuration.
200 We take advantage of this and defer everything until the timer
201 is enabled. */
202 switch (offset) {
203 case 0x00: /* CFG */
204 s->config = value;
205 break;
206 case 0x04: /* TAMR */
207 s->mode[0] = value;
208 break;
209 case 0x08: /* TBMR */
210 s->mode[1] = value;
211 break;
212 case 0x0c: /* CTL */
213 oldval = s->control;
214 s->control = value;
215 /* TODO: Implement pause. */
216 if ((oldval ^ value) & 1) {
217 if (value & 1) {
218 gptm_reload(s, 0, 1);
219 } else {
220 gptm_stop(s, 0);
223 if (((oldval ^ value) & 0x100) && s->config >= 4) {
224 if (value & 0x100) {
225 gptm_reload(s, 1, 1);
226 } else {
227 gptm_stop(s, 1);
230 break;
231 case 0x18: /* IMR */
232 s->mask = value & 0x77;
233 gptm_update_irq(s);
234 break;
235 case 0x24: /* CR */
236 s->state &= ~value;
237 break;
238 case 0x28: /* TAILR */
239 s->load[0] = value & 0xffff;
240 if (s->config < 4) {
241 s->load[1] = value >> 16;
243 break;
244 case 0x2c: /* TBILR */
245 s->load[1] = value & 0xffff;
246 break;
247 case 0x30: /* TAMARCHR */
248 s->match[0] = value & 0xffff;
249 if (s->config < 4) {
250 s->match[1] = value >> 16;
252 break;
253 case 0x34: /* TBMATCHR */
254 s->match[1] = value >> 16;
255 break;
256 case 0x38: /* TAPR */
257 s->prescale[0] = value;
258 break;
259 case 0x3c: /* TBPR */
260 s->prescale[1] = value;
261 break;
262 case 0x40: /* TAPMR */
263 s->match_prescale[0] = value;
264 break;
265 case 0x44: /* TBPMR */
266 s->match_prescale[0] = value;
267 break;
268 default:
269 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
271 gptm_update_irq(s);
274 static const MemoryRegionOps gptm_ops = {
275 .read = gptm_read,
276 .write = gptm_write,
277 .endianness = DEVICE_NATIVE_ENDIAN,
280 static const VMStateDescription vmstate_stellaris_gptm = {
281 .name = "stellaris_gptm",
282 .version_id = 1,
283 .minimum_version_id = 1,
284 .minimum_version_id_old = 1,
285 .fields = (VMStateField[]) {
286 VMSTATE_UINT32(config, gptm_state),
287 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
288 VMSTATE_UINT32(control, gptm_state),
289 VMSTATE_UINT32(state, gptm_state),
290 VMSTATE_UINT32(mask, gptm_state),
291 VMSTATE_UNUSED(8),
292 VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
293 VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
294 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
295 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
296 VMSTATE_UINT32(rtc, gptm_state),
297 VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
298 VMSTATE_TIMER_ARRAY(timer, gptm_state, 2),
299 VMSTATE_END_OF_LIST()
303 static int stellaris_gptm_init(SysBusDevice *dev)
305 gptm_state *s = FROM_SYSBUS(gptm_state, dev);
307 sysbus_init_irq(dev, &s->irq);
308 qdev_init_gpio_out(&dev->qdev, &s->trigger, 1);
310 memory_region_init_io(&s->iomem, &gptm_ops, s,
311 "gptm", 0x1000);
312 sysbus_init_mmio(dev, &s->iomem);
314 s->opaque[0] = s->opaque[1] = s;
315 s->timer[0] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[0]);
316 s->timer[1] = qemu_new_timer_ns(vm_clock, gptm_tick, &s->opaque[1]);
317 vmstate_register(&dev->qdev, -1, &vmstate_stellaris_gptm, s);
318 return 0;
322 /* System controller. */
324 typedef struct {
325 MemoryRegion iomem;
326 uint32_t pborctl;
327 uint32_t ldopctl;
328 uint32_t int_status;
329 uint32_t int_mask;
330 uint32_t resc;
331 uint32_t rcc;
332 uint32_t rcc2;
333 uint32_t rcgc[3];
334 uint32_t scgc[3];
335 uint32_t dcgc[3];
336 uint32_t clkvclr;
337 uint32_t ldoarst;
338 uint32_t user0;
339 uint32_t user1;
340 qemu_irq irq;
341 stellaris_board_info *board;
342 } ssys_state;
344 static void ssys_update(ssys_state *s)
346 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
349 static uint32_t pllcfg_sandstorm[16] = {
350 0x31c0, /* 1 Mhz */
351 0x1ae0, /* 1.8432 Mhz */
352 0x18c0, /* 2 Mhz */
353 0xd573, /* 2.4576 Mhz */
354 0x37a6, /* 3.57954 Mhz */
355 0x1ae2, /* 3.6864 Mhz */
356 0x0c40, /* 4 Mhz */
357 0x98bc, /* 4.906 Mhz */
358 0x935b, /* 4.9152 Mhz */
359 0x09c0, /* 5 Mhz */
360 0x4dee, /* 5.12 Mhz */
361 0x0c41, /* 6 Mhz */
362 0x75db, /* 6.144 Mhz */
363 0x1ae6, /* 7.3728 Mhz */
364 0x0600, /* 8 Mhz */
365 0x585b /* 8.192 Mhz */
368 static uint32_t pllcfg_fury[16] = {
369 0x3200, /* 1 Mhz */
370 0x1b20, /* 1.8432 Mhz */
371 0x1900, /* 2 Mhz */
372 0xf42b, /* 2.4576 Mhz */
373 0x37e3, /* 3.57954 Mhz */
374 0x1b21, /* 3.6864 Mhz */
375 0x0c80, /* 4 Mhz */
376 0x98ee, /* 4.906 Mhz */
377 0xd5b4, /* 4.9152 Mhz */
378 0x0a00, /* 5 Mhz */
379 0x4e27, /* 5.12 Mhz */
380 0x1902, /* 6 Mhz */
381 0xec1c, /* 6.144 Mhz */
382 0x1b23, /* 7.3728 Mhz */
383 0x0640, /* 8 Mhz */
384 0xb11c /* 8.192 Mhz */
387 #define DID0_VER_MASK 0x70000000
388 #define DID0_VER_0 0x00000000
389 #define DID0_VER_1 0x10000000
391 #define DID0_CLASS_MASK 0x00FF0000
392 #define DID0_CLASS_SANDSTORM 0x00000000
393 #define DID0_CLASS_FURY 0x00010000
395 static int ssys_board_class(const ssys_state *s)
397 uint32_t did0 = s->board->did0;
398 switch (did0 & DID0_VER_MASK) {
399 case DID0_VER_0:
400 return DID0_CLASS_SANDSTORM;
401 case DID0_VER_1:
402 switch (did0 & DID0_CLASS_MASK) {
403 case DID0_CLASS_SANDSTORM:
404 case DID0_CLASS_FURY:
405 return did0 & DID0_CLASS_MASK;
407 /* for unknown classes, fall through */
408 default:
409 hw_error("ssys_board_class: Unknown class 0x%08x\n", did0);
413 static uint64_t ssys_read(void *opaque, target_phys_addr_t offset,
414 unsigned size)
416 ssys_state *s = (ssys_state *)opaque;
418 switch (offset) {
419 case 0x000: /* DID0 */
420 return s->board->did0;
421 case 0x004: /* DID1 */
422 return s->board->did1;
423 case 0x008: /* DC0 */
424 return s->board->dc0;
425 case 0x010: /* DC1 */
426 return s->board->dc1;
427 case 0x014: /* DC2 */
428 return s->board->dc2;
429 case 0x018: /* DC3 */
430 return s->board->dc3;
431 case 0x01c: /* DC4 */
432 return s->board->dc4;
433 case 0x030: /* PBORCTL */
434 return s->pborctl;
435 case 0x034: /* LDOPCTL */
436 return s->ldopctl;
437 case 0x040: /* SRCR0 */
438 return 0;
439 case 0x044: /* SRCR1 */
440 return 0;
441 case 0x048: /* SRCR2 */
442 return 0;
443 case 0x050: /* RIS */
444 return s->int_status;
445 case 0x054: /* IMC */
446 return s->int_mask;
447 case 0x058: /* MISC */
448 return s->int_status & s->int_mask;
449 case 0x05c: /* RESC */
450 return s->resc;
451 case 0x060: /* RCC */
452 return s->rcc;
453 case 0x064: /* PLLCFG */
455 int xtal;
456 xtal = (s->rcc >> 6) & 0xf;
457 switch (ssys_board_class(s)) {
458 case DID0_CLASS_FURY:
459 return pllcfg_fury[xtal];
460 case DID0_CLASS_SANDSTORM:
461 return pllcfg_sandstorm[xtal];
462 default:
463 hw_error("ssys_read: Unhandled class for PLLCFG read.\n");
464 return 0;
467 case 0x070: /* RCC2 */
468 return s->rcc2;
469 case 0x100: /* RCGC0 */
470 return s->rcgc[0];
471 case 0x104: /* RCGC1 */
472 return s->rcgc[1];
473 case 0x108: /* RCGC2 */
474 return s->rcgc[2];
475 case 0x110: /* SCGC0 */
476 return s->scgc[0];
477 case 0x114: /* SCGC1 */
478 return s->scgc[1];
479 case 0x118: /* SCGC2 */
480 return s->scgc[2];
481 case 0x120: /* DCGC0 */
482 return s->dcgc[0];
483 case 0x124: /* DCGC1 */
484 return s->dcgc[1];
485 case 0x128: /* DCGC2 */
486 return s->dcgc[2];
487 case 0x150: /* CLKVCLR */
488 return s->clkvclr;
489 case 0x160: /* LDOARST */
490 return s->ldoarst;
491 case 0x1e0: /* USER0 */
492 return s->user0;
493 case 0x1e4: /* USER1 */
494 return s->user1;
495 default:
496 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
497 return 0;
501 static bool ssys_use_rcc2(ssys_state *s)
503 return (s->rcc2 >> 31) & 0x1;
507 * Caculate the sys. clock period in ms.
509 static void ssys_calculate_system_clock(ssys_state *s)
511 if (ssys_use_rcc2(s)) {
512 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
513 } else {
514 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
518 static void ssys_write(void *opaque, target_phys_addr_t offset,
519 uint64_t value, unsigned size)
521 ssys_state *s = (ssys_state *)opaque;
523 switch (offset) {
524 case 0x030: /* PBORCTL */
525 s->pborctl = value & 0xffff;
526 break;
527 case 0x034: /* LDOPCTL */
528 s->ldopctl = value & 0x1f;
529 break;
530 case 0x040: /* SRCR0 */
531 case 0x044: /* SRCR1 */
532 case 0x048: /* SRCR2 */
533 fprintf(stderr, "Peripheral reset not implemented\n");
534 break;
535 case 0x054: /* IMC */
536 s->int_mask = value & 0x7f;
537 break;
538 case 0x058: /* MISC */
539 s->int_status &= ~value;
540 break;
541 case 0x05c: /* RESC */
542 s->resc = value & 0x3f;
543 break;
544 case 0x060: /* RCC */
545 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
546 /* PLL enable. */
547 s->int_status |= (1 << 6);
549 s->rcc = value;
550 ssys_calculate_system_clock(s);
551 break;
552 case 0x070: /* RCC2 */
553 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
554 break;
557 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
558 /* PLL enable. */
559 s->int_status |= (1 << 6);
561 s->rcc2 = value;
562 ssys_calculate_system_clock(s);
563 break;
564 case 0x100: /* RCGC0 */
565 s->rcgc[0] = value;
566 break;
567 case 0x104: /* RCGC1 */
568 s->rcgc[1] = value;
569 break;
570 case 0x108: /* RCGC2 */
571 s->rcgc[2] = value;
572 break;
573 case 0x110: /* SCGC0 */
574 s->scgc[0] = value;
575 break;
576 case 0x114: /* SCGC1 */
577 s->scgc[1] = value;
578 break;
579 case 0x118: /* SCGC2 */
580 s->scgc[2] = value;
581 break;
582 case 0x120: /* DCGC0 */
583 s->dcgc[0] = value;
584 break;
585 case 0x124: /* DCGC1 */
586 s->dcgc[1] = value;
587 break;
588 case 0x128: /* DCGC2 */
589 s->dcgc[2] = value;
590 break;
591 case 0x150: /* CLKVCLR */
592 s->clkvclr = value;
593 break;
594 case 0x160: /* LDOARST */
595 s->ldoarst = value;
596 break;
597 default:
598 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
600 ssys_update(s);
603 static const MemoryRegionOps ssys_ops = {
604 .read = ssys_read,
605 .write = ssys_write,
606 .endianness = DEVICE_NATIVE_ENDIAN,
609 static void ssys_reset(void *opaque)
611 ssys_state *s = (ssys_state *)opaque;
613 s->pborctl = 0x7ffd;
614 s->rcc = 0x078e3ac0;
616 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
617 s->rcc2 = 0;
618 } else {
619 s->rcc2 = 0x07802810;
621 s->rcgc[0] = 1;
622 s->scgc[0] = 1;
623 s->dcgc[0] = 1;
624 ssys_calculate_system_clock(s);
627 static int stellaris_sys_post_load(void *opaque, int version_id)
629 ssys_state *s = opaque;
631 ssys_calculate_system_clock(s);
633 return 0;
636 static const VMStateDescription vmstate_stellaris_sys = {
637 .name = "stellaris_sys",
638 .version_id = 2,
639 .minimum_version_id = 1,
640 .minimum_version_id_old = 1,
641 .post_load = stellaris_sys_post_load,
642 .fields = (VMStateField[]) {
643 VMSTATE_UINT32(pborctl, ssys_state),
644 VMSTATE_UINT32(ldopctl, ssys_state),
645 VMSTATE_UINT32(int_mask, ssys_state),
646 VMSTATE_UINT32(int_status, ssys_state),
647 VMSTATE_UINT32(resc, ssys_state),
648 VMSTATE_UINT32(rcc, ssys_state),
649 VMSTATE_UINT32_V(rcc2, ssys_state, 2),
650 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
651 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
652 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
653 VMSTATE_UINT32(clkvclr, ssys_state),
654 VMSTATE_UINT32(ldoarst, ssys_state),
655 VMSTATE_END_OF_LIST()
659 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
660 stellaris_board_info * board,
661 uint8_t *macaddr)
663 ssys_state *s;
665 s = (ssys_state *)g_malloc0(sizeof(ssys_state));
666 s->irq = irq;
667 s->board = board;
668 /* Most devices come preprogrammed with a MAC address in the user data. */
669 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
670 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
672 memory_region_init_io(&s->iomem, &ssys_ops, s, "ssys", 0x00001000);
673 memory_region_add_subregion(get_system_memory(), base, &s->iomem);
674 ssys_reset(s);
675 vmstate_register(NULL, -1, &vmstate_stellaris_sys, s);
676 return 0;
680 /* I2C controller. */
682 typedef struct {
683 SysBusDevice busdev;
684 i2c_bus *bus;
685 qemu_irq irq;
686 MemoryRegion iomem;
687 uint32_t msa;
688 uint32_t mcs;
689 uint32_t mdr;
690 uint32_t mtpr;
691 uint32_t mimr;
692 uint32_t mris;
693 uint32_t mcr;
694 } stellaris_i2c_state;
696 #define STELLARIS_I2C_MCS_BUSY 0x01
697 #define STELLARIS_I2C_MCS_ERROR 0x02
698 #define STELLARIS_I2C_MCS_ADRACK 0x04
699 #define STELLARIS_I2C_MCS_DATACK 0x08
700 #define STELLARIS_I2C_MCS_ARBLST 0x10
701 #define STELLARIS_I2C_MCS_IDLE 0x20
702 #define STELLARIS_I2C_MCS_BUSBSY 0x40
704 static uint64_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset,
705 unsigned size)
707 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
709 switch (offset) {
710 case 0x00: /* MSA */
711 return s->msa;
712 case 0x04: /* MCS */
713 /* We don't emulate timing, so the controller is never busy. */
714 return s->mcs | STELLARIS_I2C_MCS_IDLE;
715 case 0x08: /* MDR */
716 return s->mdr;
717 case 0x0c: /* MTPR */
718 return s->mtpr;
719 case 0x10: /* MIMR */
720 return s->mimr;
721 case 0x14: /* MRIS */
722 return s->mris;
723 case 0x18: /* MMIS */
724 return s->mris & s->mimr;
725 case 0x20: /* MCR */
726 return s->mcr;
727 default:
728 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
729 return 0;
733 static void stellaris_i2c_update(stellaris_i2c_state *s)
735 int level;
737 level = (s->mris & s->mimr) != 0;
738 qemu_set_irq(s->irq, level);
741 static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
742 uint64_t value, unsigned size)
744 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
746 switch (offset) {
747 case 0x00: /* MSA */
748 s->msa = value & 0xff;
749 break;
750 case 0x04: /* MCS */
751 if ((s->mcr & 0x10) == 0) {
752 /* Disabled. Do nothing. */
753 break;
755 /* Grab the bus if this is starting a transfer. */
756 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
757 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
758 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
759 } else {
760 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
761 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
764 /* If we don't have the bus then indicate an error. */
765 if (!i2c_bus_busy(s->bus)
766 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
767 s->mcs |= STELLARIS_I2C_MCS_ERROR;
768 break;
770 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
771 if (value & 1) {
772 /* Transfer a byte. */
773 /* TODO: Handle errors. */
774 if (s->msa & 1) {
775 /* Recv */
776 s->mdr = i2c_recv(s->bus) & 0xff;
777 } else {
778 /* Send */
779 i2c_send(s->bus, s->mdr);
781 /* Raise an interrupt. */
782 s->mris |= 1;
784 if (value & 4) {
785 /* Finish transfer. */
786 i2c_end_transfer(s->bus);
787 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
789 break;
790 case 0x08: /* MDR */
791 s->mdr = value & 0xff;
792 break;
793 case 0x0c: /* MTPR */
794 s->mtpr = value & 0xff;
795 break;
796 case 0x10: /* MIMR */
797 s->mimr = 1;
798 break;
799 case 0x1c: /* MICR */
800 s->mris &= ~value;
801 break;
802 case 0x20: /* MCR */
803 if (value & 1)
804 hw_error(
805 "stellaris_i2c_write: Loopback not implemented\n");
806 if (value & 0x20)
807 hw_error(
808 "stellaris_i2c_write: Slave mode not implemented\n");
809 s->mcr = value & 0x31;
810 break;
811 default:
812 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
813 (int)offset);
815 stellaris_i2c_update(s);
818 static void stellaris_i2c_reset(stellaris_i2c_state *s)
820 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
821 i2c_end_transfer(s->bus);
823 s->msa = 0;
824 s->mcs = 0;
825 s->mdr = 0;
826 s->mtpr = 1;
827 s->mimr = 0;
828 s->mris = 0;
829 s->mcr = 0;
830 stellaris_i2c_update(s);
833 static const MemoryRegionOps stellaris_i2c_ops = {
834 .read = stellaris_i2c_read,
835 .write = stellaris_i2c_write,
836 .endianness = DEVICE_NATIVE_ENDIAN,
839 static const VMStateDescription vmstate_stellaris_i2c = {
840 .name = "stellaris_i2c",
841 .version_id = 1,
842 .minimum_version_id = 1,
843 .minimum_version_id_old = 1,
844 .fields = (VMStateField[]) {
845 VMSTATE_UINT32(msa, stellaris_i2c_state),
846 VMSTATE_UINT32(mcs, stellaris_i2c_state),
847 VMSTATE_UINT32(mdr, stellaris_i2c_state),
848 VMSTATE_UINT32(mtpr, stellaris_i2c_state),
849 VMSTATE_UINT32(mimr, stellaris_i2c_state),
850 VMSTATE_UINT32(mris, stellaris_i2c_state),
851 VMSTATE_UINT32(mcr, stellaris_i2c_state),
852 VMSTATE_END_OF_LIST()
856 static int stellaris_i2c_init(SysBusDevice * dev)
858 stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
859 i2c_bus *bus;
861 sysbus_init_irq(dev, &s->irq);
862 bus = i2c_init_bus(&dev->qdev, "i2c");
863 s->bus = bus;
865 memory_region_init_io(&s->iomem, &stellaris_i2c_ops, s,
866 "i2c", 0x1000);
867 sysbus_init_mmio(dev, &s->iomem);
868 /* ??? For now we only implement the master interface. */
869 stellaris_i2c_reset(s);
870 vmstate_register(&dev->qdev, -1, &vmstate_stellaris_i2c, s);
871 return 0;
874 /* Analogue to Digital Converter. This is only partially implemented,
875 enough for applications that use a combined ADC and timer tick. */
877 #define STELLARIS_ADC_EM_CONTROLLER 0
878 #define STELLARIS_ADC_EM_COMP 1
879 #define STELLARIS_ADC_EM_EXTERNAL 4
880 #define STELLARIS_ADC_EM_TIMER 5
881 #define STELLARIS_ADC_EM_PWM0 6
882 #define STELLARIS_ADC_EM_PWM1 7
883 #define STELLARIS_ADC_EM_PWM2 8
885 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
886 #define STELLARIS_ADC_FIFO_FULL 0x1000
888 typedef struct
890 SysBusDevice busdev;
891 MemoryRegion iomem;
892 uint32_t actss;
893 uint32_t ris;
894 uint32_t im;
895 uint32_t emux;
896 uint32_t ostat;
897 uint32_t ustat;
898 uint32_t sspri;
899 uint32_t sac;
900 struct {
901 uint32_t state;
902 uint32_t data[16];
903 } fifo[4];
904 uint32_t ssmux[4];
905 uint32_t ssctl[4];
906 uint32_t noise;
907 qemu_irq irq[4];
908 } stellaris_adc_state;
910 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
912 int tail;
914 tail = s->fifo[n].state & 0xf;
915 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
916 s->ustat |= 1 << n;
917 } else {
918 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
919 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
920 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
921 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
923 return s->fifo[n].data[tail];
926 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
927 uint32_t value)
929 int head;
931 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
932 FIFO fir each sequencer. */
933 head = (s->fifo[n].state >> 4) & 0xf;
934 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
935 s->ostat |= 1 << n;
936 return;
938 s->fifo[n].data[head] = value;
939 head = (head + 1) & 0xf;
940 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
941 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
942 if ((s->fifo[n].state & 0xf) == head)
943 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
946 static void stellaris_adc_update(stellaris_adc_state *s)
948 int level;
949 int n;
951 for (n = 0; n < 4; n++) {
952 level = (s->ris & s->im & (1 << n)) != 0;
953 qemu_set_irq(s->irq[n], level);
957 static void stellaris_adc_trigger(void *opaque, int irq, int level)
959 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
960 int n;
962 for (n = 0; n < 4; n++) {
963 if ((s->actss & (1 << n)) == 0) {
964 continue;
967 if (((s->emux >> (n * 4)) & 0xff) != 5) {
968 continue;
971 /* Some applications use the ADC as a random number source, so introduce
972 some variation into the signal. */
973 s->noise = s->noise * 314159 + 1;
974 /* ??? actual inputs not implemented. Return an arbitrary value. */
975 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
976 s->ris |= (1 << n);
977 stellaris_adc_update(s);
981 static void stellaris_adc_reset(stellaris_adc_state *s)
983 int n;
985 for (n = 0; n < 4; n++) {
986 s->ssmux[n] = 0;
987 s->ssctl[n] = 0;
988 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
992 static uint64_t stellaris_adc_read(void *opaque, target_phys_addr_t offset,
993 unsigned size)
995 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
997 /* TODO: Implement this. */
998 if (offset >= 0x40 && offset < 0xc0) {
999 int n;
1000 n = (offset - 0x40) >> 5;
1001 switch (offset & 0x1f) {
1002 case 0x00: /* SSMUX */
1003 return s->ssmux[n];
1004 case 0x04: /* SSCTL */
1005 return s->ssctl[n];
1006 case 0x08: /* SSFIFO */
1007 return stellaris_adc_fifo_read(s, n);
1008 case 0x0c: /* SSFSTAT */
1009 return s->fifo[n].state;
1010 default:
1011 break;
1014 switch (offset) {
1015 case 0x00: /* ACTSS */
1016 return s->actss;
1017 case 0x04: /* RIS */
1018 return s->ris;
1019 case 0x08: /* IM */
1020 return s->im;
1021 case 0x0c: /* ISC */
1022 return s->ris & s->im;
1023 case 0x10: /* OSTAT */
1024 return s->ostat;
1025 case 0x14: /* EMUX */
1026 return s->emux;
1027 case 0x18: /* USTAT */
1028 return s->ustat;
1029 case 0x20: /* SSPRI */
1030 return s->sspri;
1031 case 0x30: /* SAC */
1032 return s->sac;
1033 default:
1034 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1035 (int)offset);
1036 return 0;
1040 static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
1041 uint64_t value, unsigned size)
1043 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1045 /* TODO: Implement this. */
1046 if (offset >= 0x40 && offset < 0xc0) {
1047 int n;
1048 n = (offset - 0x40) >> 5;
1049 switch (offset & 0x1f) {
1050 case 0x00: /* SSMUX */
1051 s->ssmux[n] = value & 0x33333333;
1052 return;
1053 case 0x04: /* SSCTL */
1054 if (value != 6) {
1055 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n",
1056 value);
1058 s->ssctl[n] = value;
1059 return;
1060 default:
1061 break;
1064 switch (offset) {
1065 case 0x00: /* ACTSS */
1066 s->actss = value & 0xf;
1067 break;
1068 case 0x08: /* IM */
1069 s->im = value;
1070 break;
1071 case 0x0c: /* ISC */
1072 s->ris &= ~value;
1073 break;
1074 case 0x10: /* OSTAT */
1075 s->ostat &= ~value;
1076 break;
1077 case 0x14: /* EMUX */
1078 s->emux = value;
1079 break;
1080 case 0x18: /* USTAT */
1081 s->ustat &= ~value;
1082 break;
1083 case 0x20: /* SSPRI */
1084 s->sspri = value;
1085 break;
1086 case 0x28: /* PSSI */
1087 hw_error("Not implemented: ADC sample initiate\n");
1088 break;
1089 case 0x30: /* SAC */
1090 s->sac = value;
1091 break;
1092 default:
1093 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1095 stellaris_adc_update(s);
1098 static const MemoryRegionOps stellaris_adc_ops = {
1099 .read = stellaris_adc_read,
1100 .write = stellaris_adc_write,
1101 .endianness = DEVICE_NATIVE_ENDIAN,
1104 static const VMStateDescription vmstate_stellaris_adc = {
1105 .name = "stellaris_adc",
1106 .version_id = 1,
1107 .minimum_version_id = 1,
1108 .minimum_version_id_old = 1,
1109 .fields = (VMStateField[]) {
1110 VMSTATE_UINT32(actss, stellaris_adc_state),
1111 VMSTATE_UINT32(ris, stellaris_adc_state),
1112 VMSTATE_UINT32(im, stellaris_adc_state),
1113 VMSTATE_UINT32(emux, stellaris_adc_state),
1114 VMSTATE_UINT32(ostat, stellaris_adc_state),
1115 VMSTATE_UINT32(ustat, stellaris_adc_state),
1116 VMSTATE_UINT32(sspri, stellaris_adc_state),
1117 VMSTATE_UINT32(sac, stellaris_adc_state),
1118 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1119 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1120 VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1121 VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1122 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1123 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1124 VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1125 VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1126 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1127 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1128 VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1129 VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1130 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1131 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1132 VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1133 VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1134 VMSTATE_UINT32(noise, stellaris_adc_state),
1135 VMSTATE_END_OF_LIST()
1139 static int stellaris_adc_init(SysBusDevice *dev)
1141 stellaris_adc_state *s = FROM_SYSBUS(stellaris_adc_state, dev);
1142 int n;
1144 for (n = 0; n < 4; n++) {
1145 sysbus_init_irq(dev, &s->irq[n]);
1148 memory_region_init_io(&s->iomem, &stellaris_adc_ops, s,
1149 "adc", 0x1000);
1150 sysbus_init_mmio(dev, &s->iomem);
1151 stellaris_adc_reset(s);
1152 qdev_init_gpio_in(&dev->qdev, stellaris_adc_trigger, 1);
1153 vmstate_register(&dev->qdev, -1, &vmstate_stellaris_adc, s);
1154 return 0;
1157 /* Some boards have both an OLED controller and SD card connected to
1158 the same SSI port, with the SD card chip select connected to a
1159 GPIO pin. Technically the OLED chip select is connected to the SSI
1160 Fss pin. We do not bother emulating that as both devices should
1161 never be selected simultaneously, and our OLED controller ignores stray
1162 0xff commands that occur when deselecting the SD card. */
1164 typedef struct {
1165 SSISlave ssidev;
1166 qemu_irq irq;
1167 int current_dev;
1168 SSIBus *bus[2];
1169 } stellaris_ssi_bus_state;
1171 static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
1173 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1175 s->current_dev = level;
1178 static uint32_t stellaris_ssi_bus_transfer(SSISlave *dev, uint32_t val)
1180 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1182 return ssi_transfer(s->bus[s->current_dev], val);
1185 static const VMStateDescription vmstate_stellaris_ssi_bus = {
1186 .name = "stellaris_ssi_bus",
1187 .version_id = 1,
1188 .minimum_version_id = 1,
1189 .minimum_version_id_old = 1,
1190 .fields = (VMStateField[]) {
1191 VMSTATE_INT32(current_dev, stellaris_ssi_bus_state),
1192 VMSTATE_END_OF_LIST()
1196 static int stellaris_ssi_bus_init(SSISlave *dev)
1198 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1200 s->bus[0] = ssi_create_bus(&dev->qdev, "ssi0");
1201 s->bus[1] = ssi_create_bus(&dev->qdev, "ssi1");
1202 qdev_init_gpio_in(&dev->qdev, stellaris_ssi_bus_select, 1);
1204 vmstate_register(&dev->qdev, -1, &vmstate_stellaris_ssi_bus, s);
1205 return 0;
1208 /* Board init. */
1209 static stellaris_board_info stellaris_boards[] = {
1210 { "LM3S811EVB",
1212 0x0032000e,
1213 0x001f001f, /* dc0 */
1214 0x001132bf,
1215 0x01071013,
1216 0x3f0f01ff,
1217 0x0000001f,
1218 BP_OLED_I2C
1220 { "LM3S6965EVB",
1221 0x10010002,
1222 0x1073402e,
1223 0x00ff007f, /* dc0 */
1224 0x001133ff,
1225 0x030f5317,
1226 0x0f0f87ff,
1227 0x5000007f,
1228 BP_OLED_SSI | BP_GAMEPAD
1232 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1233 stellaris_board_info *board)
1235 static const int uart_irq[] = {5, 6, 33, 34};
1236 static const int timer_irq[] = {19, 21, 23, 35};
1237 static const uint32_t gpio_addr[7] =
1238 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1239 0x40024000, 0x40025000, 0x40026000};
1240 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1242 MemoryRegion *address_space_mem = get_system_memory();
1243 qemu_irq *pic;
1244 DeviceState *gpio_dev[7];
1245 qemu_irq gpio_in[7][8];
1246 qemu_irq gpio_out[7][8];
1247 qemu_irq adc;
1248 int sram_size;
1249 int flash_size;
1250 i2c_bus *i2c;
1251 DeviceState *dev;
1252 int i;
1253 int j;
1255 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1256 sram_size = (board->dc0 >> 18) + 1;
1257 pic = armv7m_init(address_space_mem,
1258 flash_size, sram_size, kernel_filename, cpu_model);
1260 if (board->dc1 & (1 << 16)) {
1261 dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
1262 pic[14], pic[15], pic[16], pic[17], NULL);
1263 adc = qdev_get_gpio_in(dev, 0);
1264 } else {
1265 adc = NULL;
1267 for (i = 0; i < 4; i++) {
1268 if (board->dc2 & (0x10000 << i)) {
1269 dev = sysbus_create_simple("stellaris-gptm",
1270 0x40030000 + i * 0x1000,
1271 pic[timer_irq[i]]);
1272 /* TODO: This is incorrect, but we get away with it because
1273 the ADC output is only ever pulsed. */
1274 qdev_connect_gpio_out(dev, 0, adc);
1278 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr.a);
1280 for (i = 0; i < 7; i++) {
1281 if (board->dc4 & (1 << i)) {
1282 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1283 pic[gpio_irq[i]]);
1284 for (j = 0; j < 8; j++) {
1285 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1286 gpio_out[i][j] = NULL;
1291 if (board->dc2 & (1 << 12)) {
1292 dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1293 i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1294 if (board->peripherals & BP_OLED_I2C) {
1295 i2c_create_slave(i2c, "ssd0303", 0x3d);
1299 for (i = 0; i < 4; i++) {
1300 if (board->dc2 & (1 << i)) {
1301 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1302 pic[uart_irq[i]]);
1305 if (board->dc2 & (1 << 4)) {
1306 dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1307 if (board->peripherals & BP_OLED_SSI) {
1308 DeviceState *mux;
1309 void *bus;
1311 bus = qdev_get_child_bus(dev, "ssi");
1312 mux = ssi_create_slave(bus, "evb6965-ssi");
1313 gpio_out[GPIO_D][0] = qdev_get_gpio_in(mux, 0);
1315 bus = qdev_get_child_bus(mux, "ssi0");
1316 ssi_create_slave(bus, "ssi-sd");
1318 bus = qdev_get_child_bus(mux, "ssi1");
1319 dev = ssi_create_slave(bus, "ssd0323");
1320 gpio_out[GPIO_C][7] = qdev_get_gpio_in(dev, 0);
1322 /* Make sure the select pin is high. */
1323 qemu_irq_raise(gpio_out[GPIO_D][0]);
1326 if (board->dc4 & (1 << 28)) {
1327 DeviceState *enet;
1329 qemu_check_nic_model(&nd_table[0], "stellaris");
1331 enet = qdev_create(NULL, "stellaris_enet");
1332 qdev_set_nic_properties(enet, &nd_table[0]);
1333 qdev_init_nofail(enet);
1334 sysbus_mmio_map(sysbus_from_qdev(enet), 0, 0x40048000);
1335 sysbus_connect_irq(sysbus_from_qdev(enet), 0, pic[42]);
1337 if (board->peripherals & BP_GAMEPAD) {
1338 qemu_irq gpad_irq[5];
1339 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1341 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1342 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1343 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1344 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1345 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1347 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1349 for (i = 0; i < 7; i++) {
1350 if (board->dc4 & (1 << i)) {
1351 for (j = 0; j < 8; j++) {
1352 if (gpio_out[i][j]) {
1353 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1360 /* FIXME: Figure out how to generate these from stellaris_boards. */
1361 static void lm3s811evb_init(ram_addr_t ram_size,
1362 const char *boot_device,
1363 const char *kernel_filename, const char *kernel_cmdline,
1364 const char *initrd_filename, const char *cpu_model)
1366 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1369 static void lm3s6965evb_init(ram_addr_t ram_size,
1370 const char *boot_device,
1371 const char *kernel_filename, const char *kernel_cmdline,
1372 const char *initrd_filename, const char *cpu_model)
1374 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1377 static QEMUMachine lm3s811evb_machine = {
1378 .name = "lm3s811evb",
1379 .desc = "Stellaris LM3S811EVB",
1380 .init = lm3s811evb_init,
1383 static QEMUMachine lm3s6965evb_machine = {
1384 .name = "lm3s6965evb",
1385 .desc = "Stellaris LM3S6965EVB",
1386 .init = lm3s6965evb_init,
1389 static void stellaris_machine_init(void)
1391 qemu_register_machine(&lm3s811evb_machine);
1392 qemu_register_machine(&lm3s6965evb_machine);
1395 machine_init(stellaris_machine_init);
1397 static void stellaris_ssi_bus_class_init(ObjectClass *klass, void *data)
1399 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1401 k->init = stellaris_ssi_bus_init;
1402 k->transfer = stellaris_ssi_bus_transfer;
1405 static TypeInfo stellaris_ssi_bus_info = {
1406 .name = "evb6965-ssi",
1407 .parent = TYPE_SSI_SLAVE,
1408 .instance_size = sizeof(stellaris_ssi_bus_state),
1409 .class_init = stellaris_ssi_bus_class_init,
1412 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1414 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1416 sdc->init = stellaris_i2c_init;
1419 static TypeInfo stellaris_i2c_info = {
1420 .name = "stellaris-i2c",
1421 .parent = TYPE_SYS_BUS_DEVICE,
1422 .instance_size = sizeof(stellaris_i2c_state),
1423 .class_init = stellaris_i2c_class_init,
1426 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1428 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1430 sdc->init = stellaris_gptm_init;
1433 static TypeInfo stellaris_gptm_info = {
1434 .name = "stellaris-gptm",
1435 .parent = TYPE_SYS_BUS_DEVICE,
1436 .instance_size = sizeof(gptm_state),
1437 .class_init = stellaris_gptm_class_init,
1440 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1442 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1444 sdc->init = stellaris_adc_init;
1447 static TypeInfo stellaris_adc_info = {
1448 .name = "stellaris-adc",
1449 .parent = TYPE_SYS_BUS_DEVICE,
1450 .instance_size = sizeof(stellaris_adc_state),
1451 .class_init = stellaris_adc_class_init,
1454 static void stellaris_register_devices(void)
1456 type_register_static(&stellaris_i2c_info);
1457 type_register_static(&stellaris_gptm_info);
1458 type_register_static(&stellaris_adc_info);
1459 type_register_static(&stellaris_ssi_bus_info);
1462 device_init(stellaris_register_devices)