memory: drop AddressSpaceOps
[qemu-kvm.git] / hw / omap_gpmc.c
blob2fc4137203bb400cf3f67a5065822b9b16a22940
1 /*
2 * TI OMAP general purpose memory controller emulation.
4 * Copyright (C) 2007-2009 Nokia Corporation
5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) any later version of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "hw.h"
22 #include "flash.h"
23 #include "omap.h"
24 #include "memory.h"
25 #include "exec-memory.h"
27 /* General-Purpose Memory Controller */
28 struct omap_gpmc_s {
29 qemu_irq irq;
30 qemu_irq drq;
31 MemoryRegion iomem;
32 int accept_256;
34 uint8_t revision;
35 uint8_t sysconfig;
36 uint16_t irqst;
37 uint16_t irqen;
38 uint16_t lastirq;
39 uint16_t timeout;
40 uint16_t config;
41 struct omap_gpmc_cs_file_s {
42 uint32_t config[7];
43 MemoryRegion *iomem;
44 MemoryRegion container;
45 MemoryRegion nandiomem;
46 DeviceState *dev;
47 } cs_file[8];
48 int ecc_cs;
49 int ecc_ptr;
50 uint32_t ecc_cfg;
51 ECCState ecc[9];
52 struct prefetch {
53 uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
54 uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
55 int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
56 int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
57 int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
58 MemoryRegion iomem;
59 uint8_t fifo[64];
60 } prefetch;
63 #define OMAP_GPMC_8BIT 0
64 #define OMAP_GPMC_16BIT 1
65 #define OMAP_GPMC_NOR 0
66 #define OMAP_GPMC_NAND 2
68 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
70 return (f->config[0] >> 10) & 3;
73 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
75 /* devsize field is really 2 bits but we ignore the high
76 * bit to ensure consistent behaviour if the guest sets
77 * it (values 2 and 3 are reserved in the TRM)
79 return (f->config[0] >> 12) & 1;
82 /* Extract the chip-select value from the prefetch config1 register */
83 static int prefetch_cs(uint32_t config1)
85 return (config1 >> 24) & 7;
88 static int prefetch_threshold(uint32_t config1)
90 return (config1 >> 8) & 0x7f;
93 static void omap_gpmc_int_update(struct omap_gpmc_s *s)
95 /* The TRM is a bit unclear, but it seems to say that
96 * the TERMINALCOUNTSTATUS bit is set only on the
97 * transition when the prefetch engine goes from
98 * active to inactive, whereas the FIFOEVENTSTATUS
99 * bit is held high as long as the fifo has at
100 * least THRESHOLD bytes available.
101 * So we do the latter here, but TERMINALCOUNTSTATUS
102 * is set elsewhere.
104 if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
105 s->irqst |= 1;
107 if ((s->irqen & s->irqst) != s->lastirq) {
108 s->lastirq = s->irqen & s->irqst;
109 qemu_set_irq(s->irq, s->lastirq);
113 static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
115 if (s->prefetch.config1 & 4) {
116 qemu_set_irq(s->drq, value);
120 /* Access functions for when a NAND-like device is mapped into memory:
121 * all addresses in the region behave like accesses to the relevant
122 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
124 static uint64_t omap_nand_read(void *opaque, target_phys_addr_t addr,
125 unsigned size)
127 struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
128 uint64_t v;
129 nand_setpins(f->dev, 0, 0, 0, 1, 0);
130 switch (omap_gpmc_devsize(f)) {
131 case OMAP_GPMC_8BIT:
132 v = nand_getio(f->dev);
133 if (size == 1) {
134 return v;
136 v |= (nand_getio(f->dev) << 8);
137 if (size == 2) {
138 return v;
140 v |= (nand_getio(f->dev) << 16);
141 v |= (nand_getio(f->dev) << 24);
142 return v;
143 case OMAP_GPMC_16BIT:
144 v = nand_getio(f->dev);
145 if (size == 1) {
146 /* 8 bit read from 16 bit device : probably a guest bug */
147 return v & 0xff;
149 if (size == 2) {
150 return v;
152 v |= (nand_getio(f->dev) << 16);
153 return v;
154 default:
155 abort();
159 static void omap_nand_setio(DeviceState *dev, uint64_t value,
160 int nandsize, int size)
162 /* Write the specified value to the NAND device, respecting
163 * both size of the NAND device and size of the write access.
165 switch (nandsize) {
166 case OMAP_GPMC_8BIT:
167 switch (size) {
168 case 1:
169 nand_setio(dev, value & 0xff);
170 break;
171 case 2:
172 nand_setio(dev, value & 0xff);
173 nand_setio(dev, (value >> 8) & 0xff);
174 break;
175 case 4:
176 default:
177 nand_setio(dev, value & 0xff);
178 nand_setio(dev, (value >> 8) & 0xff);
179 nand_setio(dev, (value >> 16) & 0xff);
180 nand_setio(dev, (value >> 24) & 0xff);
181 break;
183 break;
184 case OMAP_GPMC_16BIT:
185 switch (size) {
186 case 1:
187 /* writing to a 16bit device with 8bit access is probably a guest
188 * bug; pass the value through anyway.
190 case 2:
191 nand_setio(dev, value & 0xffff);
192 break;
193 case 4:
194 default:
195 nand_setio(dev, value & 0xffff);
196 nand_setio(dev, (value >> 16) & 0xffff);
197 break;
199 break;
203 static void omap_nand_write(void *opaque, target_phys_addr_t addr,
204 uint64_t value, unsigned size)
206 struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
207 nand_setpins(f->dev, 0, 0, 0, 1, 0);
208 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
211 static const MemoryRegionOps omap_nand_ops = {
212 .read = omap_nand_read,
213 .write = omap_nand_write,
214 .endianness = DEVICE_NATIVE_ENDIAN,
217 static void fill_prefetch_fifo(struct omap_gpmc_s *s)
219 /* Fill the prefetch FIFO by reading data from NAND.
220 * We do this synchronously, unlike the hardware which
221 * will do this asynchronously. We refill when the
222 * FIFO has THRESHOLD bytes free, and we always refill
223 * as much data as possible starting at the top end
224 * of the FIFO.
225 * (We have to refill at THRESHOLD rather than waiting
226 * for the FIFO to empty to allow for the case where
227 * the FIFO size isn't an exact multiple of THRESHOLD
228 * and we're doing DMA transfers.)
229 * This means we never need to handle wrap-around in
230 * the fifo-reading code, and the next byte of data
231 * to read is always fifo[63 - fifopointer].
233 int fptr;
234 int cs = prefetch_cs(s->prefetch.config1);
235 int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
236 int bytes;
237 /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
238 * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
239 * Instead believe the bit that says it is always a byte count.
241 bytes = 64 - s->prefetch.fifopointer;
242 if (bytes > s->prefetch.count) {
243 bytes = s->prefetch.count;
245 s->prefetch.count -= bytes;
246 s->prefetch.fifopointer += bytes;
247 fptr = 64 - s->prefetch.fifopointer;
248 /* Move the existing data in the FIFO so it sits just
249 * before what we're about to read in
251 while (fptr < (64 - bytes)) {
252 s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
253 fptr++;
255 while (fptr < 64) {
256 if (is16bit) {
257 uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
258 s->prefetch.fifo[fptr++] = v & 0xff;
259 s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
260 } else {
261 s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
264 if (s->prefetch.startengine && (s->prefetch.count == 0)) {
265 /* This was the final transfer: raise TERMINALCOUNTSTATUS */
266 s->irqst |= 2;
267 s->prefetch.startengine = 0;
269 /* If there are any bytes in the FIFO at this point then
270 * we must raise a DMA request (either this is a final part
271 * transfer, or we filled the FIFO in which case we certainly
272 * have THRESHOLD bytes available)
274 if (s->prefetch.fifopointer != 0) {
275 omap_gpmc_dma_update(s, 1);
277 omap_gpmc_int_update(s);
280 /* Access functions for a NAND-like device when the prefetch/postwrite
281 * engine is enabled -- all addresses in the region behave alike:
282 * data is read or written to the FIFO.
284 static uint64_t omap_gpmc_prefetch_read(void *opaque, target_phys_addr_t addr,
285 unsigned size)
287 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
288 uint32_t data;
289 if (s->prefetch.config1 & 1) {
290 /* The TRM doesn't define the behaviour if you read from the
291 * FIFO when the prefetch engine is in write mode. We choose
292 * to always return zero.
294 return 0;
296 /* Note that trying to read an empty fifo repeats the last byte */
297 if (s->prefetch.fifopointer) {
298 s->prefetch.fifopointer--;
300 data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
301 if (s->prefetch.fifopointer ==
302 (64 - prefetch_threshold(s->prefetch.config1))) {
303 /* We've drained THRESHOLD bytes now. So deassert the
304 * DMA request, then refill the FIFO (which will probably
305 * assert it again.)
307 omap_gpmc_dma_update(s, 0);
308 fill_prefetch_fifo(s);
310 omap_gpmc_int_update(s);
311 return data;
314 static void omap_gpmc_prefetch_write(void *opaque, target_phys_addr_t addr,
315 uint64_t value, unsigned size)
317 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
318 int cs = prefetch_cs(s->prefetch.config1);
319 if ((s->prefetch.config1 & 1) == 0) {
320 /* The TRM doesn't define the behaviour of writing to the
321 * FIFO when the prefetch engine is in read mode. We
322 * choose to ignore the write.
324 return;
326 if (s->prefetch.count == 0) {
327 /* The TRM doesn't define the behaviour of writing to the
328 * FIFO if the transfer is complete. We choose to ignore.
330 return;
332 /* The only reason we do any data buffering in postwrite
333 * mode is if we are talking to a 16 bit NAND device, in
334 * which case we need to buffer the first byte of the
335 * 16 bit word until the other byte arrives.
337 int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
338 if (is16bit) {
339 /* fifopointer alternates between 64 (waiting for first
340 * byte of word) and 63 (waiting for second byte)
342 if (s->prefetch.fifopointer == 64) {
343 s->prefetch.fifo[0] = value;
344 s->prefetch.fifopointer--;
345 } else {
346 value = (value << 8) | s->prefetch.fifo[0];
347 omap_nand_write(&s->cs_file[cs], 0, value, 2);
348 s->prefetch.count--;
349 s->prefetch.fifopointer = 64;
351 } else {
352 /* Just write the byte : fifopointer remains 64 at all times */
353 omap_nand_write(&s->cs_file[cs], 0, value, 1);
354 s->prefetch.count--;
356 if (s->prefetch.count == 0) {
357 /* Final transfer: raise TERMINALCOUNTSTATUS */
358 s->irqst |= 2;
359 s->prefetch.startengine = 0;
361 omap_gpmc_int_update(s);
364 static const MemoryRegionOps omap_prefetch_ops = {
365 .read = omap_gpmc_prefetch_read,
366 .write = omap_gpmc_prefetch_write,
367 .endianness = DEVICE_NATIVE_ENDIAN,
368 .impl.min_access_size = 1,
369 .impl.max_access_size = 1,
372 static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
374 /* Return the MemoryRegion* to map/unmap for this chipselect */
375 struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
376 if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
377 return f->iomem;
379 if ((s->prefetch.config1 & 0x80) &&
380 (prefetch_cs(s->prefetch.config1) == cs)) {
381 /* The prefetch engine is enabled for this CS: map the FIFO */
382 return &s->prefetch.iomem;
384 return &f->nandiomem;
387 static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
389 struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
390 uint32_t mask = (f->config[6] >> 8) & 0xf;
391 uint32_t base = f->config[6] & 0x3f;
392 uint32_t size;
394 if (!f->iomem && !f->dev) {
395 return;
398 if (!(f->config[6] & (1 << 6))) {
399 /* Do nothing unless CSVALID */
400 return;
403 /* TODO: check for overlapping regions and report access errors */
404 if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
405 && !(s->accept_256 && !mask)) {
406 fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
407 __func__, mask);
410 base <<= 24;
411 size = (0x0fffffff & ~(mask << 24)) + 1;
412 /* TODO: rather than setting the size of the mapping (which should be
413 * constant), the mask should cause wrapping of the address space, so
414 * that the same memory becomes accessible at every <i>size</i> bytes
415 * starting from <i>base</i>. */
416 memory_region_init(&f->container, "omap-gpmc-file", size);
417 memory_region_add_subregion(&f->container, 0,
418 omap_gpmc_cs_memregion(s, cs));
419 memory_region_add_subregion(get_system_memory(), base,
420 &f->container);
423 static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
425 struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
426 if (!(f->config[6] & (1 << 6))) {
427 /* Do nothing unless CSVALID */
428 return;
430 if (!f->iomem && !f->dev) {
431 return;
433 memory_region_del_subregion(get_system_memory(), &f->container);
434 memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
435 memory_region_destroy(&f->container);
438 void omap_gpmc_reset(struct omap_gpmc_s *s)
440 int i;
442 s->sysconfig = 0;
443 s->irqst = 0;
444 s->irqen = 0;
445 omap_gpmc_int_update(s);
446 for (i = 0; i < 8; i++) {
447 /* This has to happen before we change any of the config
448 * used to determine which memory regions are mapped or unmapped.
450 omap_gpmc_cs_unmap(s, i);
452 s->timeout = 0;
453 s->config = 0xa00;
454 s->prefetch.config1 = 0x00004000;
455 s->prefetch.transfercount = 0x00000000;
456 s->prefetch.startengine = 0;
457 s->prefetch.fifopointer = 0;
458 s->prefetch.count = 0;
459 for (i = 0; i < 8; i ++) {
460 s->cs_file[i].config[1] = 0x101001;
461 s->cs_file[i].config[2] = 0x020201;
462 s->cs_file[i].config[3] = 0x10031003;
463 s->cs_file[i].config[4] = 0x10f1111;
464 s->cs_file[i].config[5] = 0;
465 s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
467 s->cs_file[i].config[6] = 0xf00;
468 /* In theory we could probe attached devices for some CFG1
469 * bits here, but we just retain them across resets as they
470 * were set initially by omap_gpmc_attach().
472 if (i == 0) {
473 s->cs_file[i].config[0] &= 0x00433e00;
474 s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
475 omap_gpmc_cs_map(s, i);
476 } else {
477 s->cs_file[i].config[0] &= 0x00403c00;
480 s->ecc_cs = 0;
481 s->ecc_ptr = 0;
482 s->ecc_cfg = 0x3fcff000;
483 for (i = 0; i < 9; i ++)
484 ecc_reset(&s->ecc[i]);
487 static int gpmc_wordaccess_only(target_phys_addr_t addr)
489 /* Return true if the register offset is to a register that
490 * only permits word width accesses.
491 * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
492 * for any chipselect.
494 if (addr >= 0x60 && addr <= 0x1d4) {
495 int cs = (addr - 0x60) / 0x30;
496 addr -= cs * 0x30;
497 if (addr >= 0x7c && addr < 0x88) {
498 /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
499 return 0;
502 return 1;
505 static uint64_t omap_gpmc_read(void *opaque, target_phys_addr_t addr,
506 unsigned size)
508 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
509 int cs;
510 struct omap_gpmc_cs_file_s *f;
512 if (size != 4 && gpmc_wordaccess_only(addr)) {
513 return omap_badwidth_read32(opaque, addr);
516 switch (addr) {
517 case 0x000: /* GPMC_REVISION */
518 return s->revision;
520 case 0x010: /* GPMC_SYSCONFIG */
521 return s->sysconfig;
523 case 0x014: /* GPMC_SYSSTATUS */
524 return 1; /* RESETDONE */
526 case 0x018: /* GPMC_IRQSTATUS */
527 return s->irqst;
529 case 0x01c: /* GPMC_IRQENABLE */
530 return s->irqen;
532 case 0x040: /* GPMC_TIMEOUT_CONTROL */
533 return s->timeout;
535 case 0x044: /* GPMC_ERR_ADDRESS */
536 case 0x048: /* GPMC_ERR_TYPE */
537 return 0;
539 case 0x050: /* GPMC_CONFIG */
540 return s->config;
542 case 0x054: /* GPMC_STATUS */
543 return 0x001;
545 case 0x060 ... 0x1d4:
546 cs = (addr - 0x060) / 0x30;
547 addr -= cs * 0x30;
548 f = s->cs_file + cs;
549 switch (addr) {
550 case 0x60: /* GPMC_CONFIG1 */
551 return f->config[0];
552 case 0x64: /* GPMC_CONFIG2 */
553 return f->config[1];
554 case 0x68: /* GPMC_CONFIG3 */
555 return f->config[2];
556 case 0x6c: /* GPMC_CONFIG4 */
557 return f->config[3];
558 case 0x70: /* GPMC_CONFIG5 */
559 return f->config[4];
560 case 0x74: /* GPMC_CONFIG6 */
561 return f->config[5];
562 case 0x78: /* GPMC_CONFIG7 */
563 return f->config[6];
564 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
565 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
566 return omap_nand_read(f, 0, size);
568 return 0;
570 break;
572 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
573 return s->prefetch.config1;
574 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
575 return s->prefetch.transfercount;
576 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
577 return s->prefetch.startengine;
578 case 0x1f0: /* GPMC_PREFETCH_STATUS */
579 /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
580 * FIFOTHRESHOLDSTATUS bit should be set when
581 * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
582 * Apparently the underlying functional spec from which the TRM was
583 * created states that the behaviour is ">=", and this also
584 * makes more conceptual sense.
586 return (s->prefetch.fifopointer << 24) |
587 ((s->prefetch.fifopointer >=
588 ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
589 s->prefetch.count;
591 case 0x1f4: /* GPMC_ECC_CONFIG */
592 return s->ecc_cs;
593 case 0x1f8: /* GPMC_ECC_CONTROL */
594 return s->ecc_ptr;
595 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
596 return s->ecc_cfg;
597 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
598 cs = (addr & 0x1f) >> 2;
599 /* TODO: check correctness */
600 return
601 ((s->ecc[cs].cp & 0x07) << 0) |
602 ((s->ecc[cs].cp & 0x38) << 13) |
603 ((s->ecc[cs].lp[0] & 0x1ff) << 3) |
604 ((s->ecc[cs].lp[1] & 0x1ff) << 19);
606 case 0x230: /* GPMC_TESTMODE_CTRL */
607 return 0;
608 case 0x234: /* GPMC_PSA_LSB */
609 case 0x238: /* GPMC_PSA_MSB */
610 return 0x00000000;
613 OMAP_BAD_REG(addr);
614 return 0;
617 static void omap_gpmc_write(void *opaque, target_phys_addr_t addr,
618 uint64_t value, unsigned size)
620 struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
621 int cs;
622 struct omap_gpmc_cs_file_s *f;
624 if (size != 4 && gpmc_wordaccess_only(addr)) {
625 return omap_badwidth_write32(opaque, addr, value);
628 switch (addr) {
629 case 0x000: /* GPMC_REVISION */
630 case 0x014: /* GPMC_SYSSTATUS */
631 case 0x054: /* GPMC_STATUS */
632 case 0x1f0: /* GPMC_PREFETCH_STATUS */
633 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
634 case 0x234: /* GPMC_PSA_LSB */
635 case 0x238: /* GPMC_PSA_MSB */
636 OMAP_RO_REG(addr);
637 break;
639 case 0x010: /* GPMC_SYSCONFIG */
640 if ((value >> 3) == 0x3)
641 fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
642 __FUNCTION__, value >> 3);
643 if (value & 2)
644 omap_gpmc_reset(s);
645 s->sysconfig = value & 0x19;
646 break;
648 case 0x018: /* GPMC_IRQSTATUS */
649 s->irqst &= ~value;
650 omap_gpmc_int_update(s);
651 break;
653 case 0x01c: /* GPMC_IRQENABLE */
654 s->irqen = value & 0xf03;
655 omap_gpmc_int_update(s);
656 break;
658 case 0x040: /* GPMC_TIMEOUT_CONTROL */
659 s->timeout = value & 0x1ff1;
660 break;
662 case 0x044: /* GPMC_ERR_ADDRESS */
663 case 0x048: /* GPMC_ERR_TYPE */
664 break;
666 case 0x050: /* GPMC_CONFIG */
667 s->config = value & 0xf13;
668 break;
670 case 0x060 ... 0x1d4:
671 cs = (addr - 0x060) / 0x30;
672 addr -= cs * 0x30;
673 f = s->cs_file + cs;
674 switch (addr) {
675 case 0x60: /* GPMC_CONFIG1 */
676 f->config[0] = value & 0xffef3e13;
677 break;
678 case 0x64: /* GPMC_CONFIG2 */
679 f->config[1] = value & 0x001f1f8f;
680 break;
681 case 0x68: /* GPMC_CONFIG3 */
682 f->config[2] = value & 0x001f1f8f;
683 break;
684 case 0x6c: /* GPMC_CONFIG4 */
685 f->config[3] = value & 0x1f8f1f8f;
686 break;
687 case 0x70: /* GPMC_CONFIG5 */
688 f->config[4] = value & 0x0f1f1f1f;
689 break;
690 case 0x74: /* GPMC_CONFIG6 */
691 f->config[5] = value & 0x00000fcf;
692 break;
693 case 0x78: /* GPMC_CONFIG7 */
694 if ((f->config[6] ^ value) & 0xf7f) {
695 omap_gpmc_cs_unmap(s, cs);
696 f->config[6] = value & 0x00000f7f;
697 omap_gpmc_cs_map(s, cs);
699 break;
700 case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
701 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
702 nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
703 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
705 break;
706 case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
707 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
708 nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
709 omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
711 break;
712 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
713 if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
714 omap_nand_write(f, 0, value, size);
716 break;
717 default:
718 goto bad_reg;
720 break;
722 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
723 if (!s->prefetch.startengine) {
724 uint32_t newconfig1 = value & 0x7f8f7fbf;
725 uint32_t changed;
726 changed = newconfig1 ^ s->prefetch.config1;
727 if (changed & (0x80 | 0x7000000)) {
728 /* Turning the engine on or off, or mapping it somewhere else.
729 * cs_map() and cs_unmap() check the prefetch config and
730 * overall CSVALID bits, so it is sufficient to unmap-and-map
731 * both the old cs and the new one. Note that we adhere to
732 * the "unmap/change config/map" order (and not unmap twice
733 * if newcs == oldcs), otherwise we'll try to delete the wrong
734 * memory region.
736 int oldcs = prefetch_cs(s->prefetch.config1);
737 int newcs = prefetch_cs(newconfig1);
738 omap_gpmc_cs_unmap(s, oldcs);
739 if (oldcs != newcs) {
740 omap_gpmc_cs_unmap(s, newcs);
742 s->prefetch.config1 = newconfig1;
743 omap_gpmc_cs_map(s, oldcs);
744 if (oldcs != newcs) {
745 omap_gpmc_cs_map(s, newcs);
747 } else {
748 s->prefetch.config1 = newconfig1;
751 break;
753 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
754 if (!s->prefetch.startengine) {
755 s->prefetch.transfercount = value & 0x3fff;
757 break;
759 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
760 if (s->prefetch.startengine != (value & 1)) {
761 s->prefetch.startengine = value & 1;
762 if (s->prefetch.startengine) {
763 /* Prefetch engine start */
764 s->prefetch.count = s->prefetch.transfercount;
765 if (s->prefetch.config1 & 1) {
766 /* Write */
767 s->prefetch.fifopointer = 64;
768 } else {
769 /* Read */
770 s->prefetch.fifopointer = 0;
771 fill_prefetch_fifo(s);
773 } else {
774 /* Prefetch engine forcibly stopped. The TRM
775 * doesn't define the behaviour if you do this.
776 * We clear the prefetch count, which means that
777 * we permit no more writes, and don't read any
778 * more data from NAND. The CPU can still drain
779 * the FIFO of unread data.
781 s->prefetch.count = 0;
783 omap_gpmc_int_update(s);
785 break;
787 case 0x1f4: /* GPMC_ECC_CONFIG */
788 s->ecc_cs = 0x8f;
789 break;
790 case 0x1f8: /* GPMC_ECC_CONTROL */
791 if (value & (1 << 8))
792 for (cs = 0; cs < 9; cs ++)
793 ecc_reset(&s->ecc[cs]);
794 s->ecc_ptr = value & 0xf;
795 if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
796 s->ecc_ptr = 0;
797 s->ecc_cs &= ~1;
799 break;
800 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
801 s->ecc_cfg = value & 0x3fcff1ff;
802 break;
803 case 0x230: /* GPMC_TESTMODE_CTRL */
804 if (value & 7)
805 fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
806 break;
808 default:
809 bad_reg:
810 OMAP_BAD_REG(addr);
811 return;
815 static const MemoryRegionOps omap_gpmc_ops = {
816 .read = omap_gpmc_read,
817 .write = omap_gpmc_write,
818 .endianness = DEVICE_NATIVE_ENDIAN,
821 struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
822 target_phys_addr_t base,
823 qemu_irq irq, qemu_irq drq)
825 int cs;
826 struct omap_gpmc_s *s = (struct omap_gpmc_s *)
827 g_malloc0(sizeof(struct omap_gpmc_s));
829 memory_region_init_io(&s->iomem, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
830 memory_region_add_subregion(get_system_memory(), base, &s->iomem);
832 s->irq = irq;
833 s->drq = drq;
834 s->accept_256 = cpu_is_omap3630(mpu);
835 s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
836 s->lastirq = 0;
837 omap_gpmc_reset(s);
839 /* We have to register a different IO memory handler for each
840 * chip select region in case a NAND device is mapped there. We
841 * make the region the worst-case size of 256MB and rely on the
842 * container memory region in cs_map to chop it down to the actual
843 * guest-requested size.
845 for (cs = 0; cs < 8; cs++) {
846 memory_region_init_io(&s->cs_file[cs].nandiomem,
847 &omap_nand_ops,
848 &s->cs_file[cs],
849 "omap-nand",
850 256 * 1024 * 1024);
853 memory_region_init_io(&s->prefetch.iomem, &omap_prefetch_ops, s,
854 "omap-gpmc-prefetch", 256 * 1024 * 1024);
855 return s;
858 void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
860 struct omap_gpmc_cs_file_s *f;
861 assert(iomem);
863 if (cs < 0 || cs >= 8) {
864 fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
865 exit(-1);
867 f = &s->cs_file[cs];
869 omap_gpmc_cs_unmap(s, cs);
870 f->config[0] &= ~(0xf << 10);
871 f->iomem = iomem;
872 omap_gpmc_cs_map(s, cs);
875 void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
877 struct omap_gpmc_cs_file_s *f;
878 assert(nand);
880 if (cs < 0 || cs >= 8) {
881 fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
882 exit(-1);
884 f = &s->cs_file[cs];
886 omap_gpmc_cs_unmap(s, cs);
887 f->config[0] &= ~(0xf << 10);
888 f->config[0] |= (OMAP_GPMC_NAND << 10);
889 f->dev = nand;
890 if (nand_getbuswidth(f->dev) == 16) {
891 f->config[0] |= OMAP_GPMC_16BIT << 12;
893 omap_gpmc_cs_map(s, cs);