2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
34 #define MAX_ETH_FRAME_SIZE 1514
36 #define E8390_CMD 0x00 /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
39 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
40 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
41 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
43 #define EN0_TSR 0x04 /* Transmit status reg RD */
44 #define EN0_TPSR 0x04 /* Transmit starting page WR */
45 #define EN0_NCR 0x05 /* Number of collision reg RD */
46 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
47 #define EN0_FIFO 0x06 /* FIFO RD */
48 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
49 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
50 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
51 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
52 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
53 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
54 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
55 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
57 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
58 #define EN0_RSR 0x0c /* rx status reg RD */
59 #define EN0_RXCR 0x0c /* RX configuration reg WR */
60 #define EN0_TXCR 0x0d /* TX configuration reg WR */
61 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
62 #define EN0_DCFG 0x0e /* Data configuration reg WR */
63 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
64 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
65 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
68 #define EN1_CURPAG 0x17
71 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
72 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
74 #define EN3_CONFIG0 0x33
75 #define EN3_CONFIG1 0x34
76 #define EN3_CONFIG2 0x35
77 #define EN3_CONFIG3 0x36
79 /* Register accessed at EN_CMD, the 8390 base addr. */
80 #define E8390_STOP 0x01 /* Stop and reset the chip */
81 #define E8390_START 0x02 /* Start the chip, clear reset */
82 #define E8390_TRANS 0x04 /* Transmit a frame */
83 #define E8390_RREAD 0x08 /* Remote read */
84 #define E8390_RWRITE 0x10 /* Remote write */
85 #define E8390_NODMA 0x20 /* Remote DMA */
86 #define E8390_PAGE0 0x00 /* Select page chip registers */
87 #define E8390_PAGE1 0x40 /* using the two high-order bits */
88 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX 0x01 /* Receiver, no error */
92 #define ENISR_TX 0x02 /* Transmitter, no error */
93 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
94 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
95 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
96 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
97 #define ENISR_RDC 0x40 /* remote dma complete */
98 #define ENISR_RESET 0x80 /* Reset completed */
99 #define ENISR_ALL 0x3f /* Interrupts we will enable */
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK 0x01 /* Received a good packet */
103 #define ENRSR_CRC 0x02 /* CRC error */
104 #define ENRSR_FAE 0x04 /* frame alignment error */
105 #define ENRSR_FO 0x08 /* FIFO overrun */
106 #define ENRSR_MPA 0x10 /* missed pkt */
107 #define ENRSR_PHY 0x20 /* physical/multicast address */
108 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
109 #define ENRSR_DEF 0x80 /* deferring */
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
113 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
117 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
121 typedef struct PCINE2000State
{
126 void ne2000_reset(NE2000State
*s
)
130 s
->isr
= ENISR_RESET
;
131 memcpy(s
->mem
, &s
->c
.macaddr
, 6);
135 /* duplicate prom data */
136 for(i
= 15;i
>= 0; i
--) {
137 s
->mem
[2 * i
] = s
->mem
[i
];
138 s
->mem
[2 * i
+ 1] = s
->mem
[i
];
142 static void ne2000_update_irq(NE2000State
*s
)
145 isr
= (s
->isr
& s
->imr
) & 0x7f;
146 #if defined(DEBUG_NE2000)
147 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 isr
? 1 : 0, s
->isr
, s
->imr
);
150 qemu_set_irq(s
->irq
, (isr
!= 0));
153 #define POLYNOMIAL 0x04c11db6
157 static int compute_mcast_idx(const uint8_t *ep
)
164 for (i
= 0; i
< 6; i
++) {
166 for (j
= 0; j
< 8; j
++) {
167 carry
= ((crc
& 0x80000000L
) ? 1 : 0) ^ (b
& 0x01);
171 crc
= ((crc
^ POLYNOMIAL
) | carry
);
177 static int ne2000_buffer_full(NE2000State
*s
)
179 int avail
, index
, boundary
;
181 index
= s
->curpag
<< 8;
182 boundary
= s
->boundary
<< 8;
183 if (index
< boundary
)
184 avail
= boundary
- index
;
186 avail
= (s
->stop
- s
->start
) - (index
- boundary
);
187 if (avail
< (MAX_ETH_FRAME_SIZE
+ 4))
192 int ne2000_can_receive(VLANClientState
*nc
)
194 NE2000State
*s
= DO_UPCAST(NICState
, nc
, nc
)->opaque
;
196 if (s
->cmd
& E8390_STOP
)
198 return !ne2000_buffer_full(s
);
201 #define MIN_BUF_SIZE 60
203 ssize_t
ne2000_receive(VLANClientState
*nc
, const uint8_t *buf
, size_t size_
)
205 NE2000State
*s
= DO_UPCAST(NICState
, nc
, nc
)->opaque
;
208 unsigned int total_len
, next
, avail
, len
, index
, mcast_idx
;
210 static const uint8_t broadcast_macaddr
[6] =
211 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
213 #if defined(DEBUG_NE2000)
214 printf("NE2000: received len=%d\n", size
);
217 if (s
->cmd
& E8390_STOP
|| ne2000_buffer_full(s
))
220 /* XXX: check this */
221 if (s
->rxcr
& 0x10) {
222 /* promiscuous: receive all */
224 if (!memcmp(buf
, broadcast_macaddr
, 6)) {
225 /* broadcast address */
226 if (!(s
->rxcr
& 0x04))
228 } else if (buf
[0] & 0x01) {
230 if (!(s
->rxcr
& 0x08))
232 mcast_idx
= compute_mcast_idx(buf
);
233 if (!(s
->mult
[mcast_idx
>> 3] & (1 << (mcast_idx
& 7))))
235 } else if (s
->mem
[0] == buf
[0] &&
236 s
->mem
[2] == buf
[1] &&
237 s
->mem
[4] == buf
[2] &&
238 s
->mem
[6] == buf
[3] &&
239 s
->mem
[8] == buf
[4] &&
240 s
->mem
[10] == buf
[5]) {
248 /* if too small buffer, then expand it */
249 if (size
< MIN_BUF_SIZE
) {
250 memcpy(buf1
, buf
, size
);
251 memset(buf1
+ size
, 0, MIN_BUF_SIZE
- size
);
256 index
= s
->curpag
<< 8;
257 /* 4 bytes for header */
258 total_len
= size
+ 4;
259 /* address for next packet (4 bytes for CRC) */
260 next
= index
+ ((total_len
+ 4 + 255) & ~0xff);
262 next
-= (s
->stop
- s
->start
);
263 /* prepare packet header */
265 s
->rsr
= ENRSR_RXOK
; /* receive status */
266 /* XXX: check this */
272 p
[3] = total_len
>> 8;
275 /* write packet data */
277 if (index
<= s
->stop
)
278 avail
= s
->stop
- index
;
284 memcpy(s
->mem
+ index
, buf
, len
);
287 if (index
== s
->stop
)
291 s
->curpag
= next
>> 8;
293 /* now we can signal we have received something */
295 ne2000_update_irq(s
);
300 static void ne2000_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
302 NE2000State
*s
= opaque
;
303 int offset
, page
, index
;
307 printf("NE2000: write addr=0x%x val=0x%02x\n", addr
, val
);
309 if (addr
== E8390_CMD
) {
310 /* control register */
312 if (!(val
& E8390_STOP
)) { /* START bit makes no sense on RTL8029... */
313 s
->isr
&= ~ENISR_RESET
;
314 /* test specific case: zero length transfer */
315 if ((val
& (E8390_RREAD
| E8390_RWRITE
)) &&
318 ne2000_update_irq(s
);
320 if (val
& E8390_TRANS
) {
321 index
= (s
->tpsr
<< 8);
322 /* XXX: next 2 lines are a hack to make netware 3.11 work */
323 if (index
>= NE2000_PMEM_END
)
324 index
-= NE2000_PMEM_SIZE
;
325 /* fail safe: check range on the transmitted length */
326 if (index
+ s
->tcnt
<= NE2000_PMEM_END
) {
327 qemu_send_packet(&s
->nic
->nc
, s
->mem
+ index
, s
->tcnt
);
329 /* signal end of transfer */
332 s
->cmd
&= ~E8390_TRANS
;
333 ne2000_update_irq(s
);
338 offset
= addr
| (page
<< 4);
351 ne2000_update_irq(s
);
357 s
->tcnt
= (s
->tcnt
& 0xff00) | val
;
360 s
->tcnt
= (s
->tcnt
& 0x00ff) | (val
<< 8);
363 s
->rsar
= (s
->rsar
& 0xff00) | val
;
366 s
->rsar
= (s
->rsar
& 0x00ff) | (val
<< 8);
369 s
->rcnt
= (s
->rcnt
& 0xff00) | val
;
372 s
->rcnt
= (s
->rcnt
& 0x00ff) | (val
<< 8);
381 s
->isr
&= ~(val
& 0x7f);
382 ne2000_update_irq(s
);
384 case EN1_PHYS
... EN1_PHYS
+ 5:
385 s
->phys
[offset
- EN1_PHYS
] = val
;
390 case EN1_MULT
... EN1_MULT
+ 7:
391 s
->mult
[offset
- EN1_MULT
] = val
;
397 static uint32_t ne2000_ioport_read(void *opaque
, uint32_t addr
)
399 NE2000State
*s
= opaque
;
400 int offset
, page
, ret
;
403 if (addr
== E8390_CMD
) {
407 offset
= addr
| (page
<< 4);
419 ret
= s
->rsar
& 0x00ff;
424 case EN1_PHYS
... EN1_PHYS
+ 5:
425 ret
= s
->phys
[offset
- EN1_PHYS
];
430 case EN1_MULT
... EN1_MULT
+ 7:
431 ret
= s
->mult
[offset
- EN1_MULT
];
449 ret
= 0; /* 10baseT media */
452 ret
= 0x40; /* 10baseT active */
455 ret
= 0x40; /* Full duplex */
463 printf("NE2000: read addr=0x%x val=%02x\n", addr
, ret
);
468 static inline void ne2000_mem_writeb(NE2000State
*s
, uint32_t addr
,
472 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
477 static inline void ne2000_mem_writew(NE2000State
*s
, uint32_t addr
,
480 addr
&= ~1; /* XXX: check exact behaviour if not even */
482 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
483 *(uint16_t *)(s
->mem
+ addr
) = cpu_to_le16(val
);
487 static inline void ne2000_mem_writel(NE2000State
*s
, uint32_t addr
,
490 addr
&= ~1; /* XXX: check exact behaviour if not even */
492 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
493 cpu_to_le32wu((uint32_t *)(s
->mem
+ addr
), val
);
497 static inline uint32_t ne2000_mem_readb(NE2000State
*s
, uint32_t addr
)
500 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
507 static inline uint32_t ne2000_mem_readw(NE2000State
*s
, uint32_t addr
)
509 addr
&= ~1; /* XXX: check exact behaviour if not even */
511 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
512 return le16_to_cpu(*(uint16_t *)(s
->mem
+ addr
));
518 static inline uint32_t ne2000_mem_readl(NE2000State
*s
, uint32_t addr
)
520 addr
&= ~1; /* XXX: check exact behaviour if not even */
522 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
523 return le32_to_cpupu((uint32_t *)(s
->mem
+ addr
));
529 static inline void ne2000_dma_update(NE2000State
*s
, int len
)
533 /* XXX: check what to do if rsar > stop */
534 if (s
->rsar
== s
->stop
)
537 if (s
->rcnt
<= len
) {
539 /* signal end of transfer */
541 ne2000_update_irq(s
);
547 static void ne2000_asic_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
549 NE2000State
*s
= opaque
;
552 printf("NE2000: asic write val=0x%04x\n", val
);
556 if (s
->dcfg
& 0x01) {
558 ne2000_mem_writew(s
, s
->rsar
, val
);
559 ne2000_dma_update(s
, 2);
562 ne2000_mem_writeb(s
, s
->rsar
, val
);
563 ne2000_dma_update(s
, 1);
567 static uint32_t ne2000_asic_ioport_read(void *opaque
, uint32_t addr
)
569 NE2000State
*s
= opaque
;
572 if (s
->dcfg
& 0x01) {
574 ret
= ne2000_mem_readw(s
, s
->rsar
);
575 ne2000_dma_update(s
, 2);
578 ret
= ne2000_mem_readb(s
, s
->rsar
);
579 ne2000_dma_update(s
, 1);
582 printf("NE2000: asic read val=0x%04x\n", ret
);
587 static void ne2000_asic_ioport_writel(void *opaque
, uint32_t addr
, uint32_t val
)
589 NE2000State
*s
= opaque
;
592 printf("NE2000: asic writel val=0x%04x\n", val
);
597 ne2000_mem_writel(s
, s
->rsar
, val
);
598 ne2000_dma_update(s
, 4);
601 static uint32_t ne2000_asic_ioport_readl(void *opaque
, uint32_t addr
)
603 NE2000State
*s
= opaque
;
607 ret
= ne2000_mem_readl(s
, s
->rsar
);
608 ne2000_dma_update(s
, 4);
610 printf("NE2000: asic readl val=0x%04x\n", ret
);
615 static void ne2000_reset_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
617 /* nothing to do (end of reset pulse) */
620 static uint32_t ne2000_reset_ioport_read(void *opaque
, uint32_t addr
)
622 NE2000State
*s
= opaque
;
627 static int ne2000_post_load(void* opaque
, int version_id
)
629 NE2000State
* s
= opaque
;
631 if (version_id
< 2) {
637 const VMStateDescription vmstate_ne2000
= {
640 .minimum_version_id
= 0,
641 .minimum_version_id_old
= 0,
642 .post_load
= ne2000_post_load
,
643 .fields
= (VMStateField
[]) {
644 VMSTATE_UINT8_V(rxcr
, NE2000State
, 2),
645 VMSTATE_UINT8(cmd
, NE2000State
),
646 VMSTATE_UINT32(start
, NE2000State
),
647 VMSTATE_UINT32(stop
, NE2000State
),
648 VMSTATE_UINT8(boundary
, NE2000State
),
649 VMSTATE_UINT8(tsr
, NE2000State
),
650 VMSTATE_UINT8(tpsr
, NE2000State
),
651 VMSTATE_UINT16(tcnt
, NE2000State
),
652 VMSTATE_UINT16(rcnt
, NE2000State
),
653 VMSTATE_UINT32(rsar
, NE2000State
),
654 VMSTATE_UINT8(rsr
, NE2000State
),
655 VMSTATE_UINT8(isr
, NE2000State
),
656 VMSTATE_UINT8(dcfg
, NE2000State
),
657 VMSTATE_UINT8(imr
, NE2000State
),
658 VMSTATE_BUFFER(phys
, NE2000State
),
659 VMSTATE_UINT8(curpag
, NE2000State
),
660 VMSTATE_BUFFER(mult
, NE2000State
),
661 VMSTATE_UNUSED(4), /* was irq */
662 VMSTATE_BUFFER(mem
, NE2000State
),
663 VMSTATE_END_OF_LIST()
667 static const VMStateDescription vmstate_pci_ne2000
= {
670 .minimum_version_id
= 3,
671 .minimum_version_id_old
= 3,
672 .fields
= (VMStateField
[]) {
673 VMSTATE_PCI_DEVICE(dev
, PCINE2000State
),
674 VMSTATE_STRUCT(ne2000
, PCINE2000State
, 0, vmstate_ne2000
, NE2000State
),
675 VMSTATE_END_OF_LIST()
679 static uint64_t ne2000_read(void *opaque
, target_phys_addr_t addr
,
682 NE2000State
*s
= opaque
;
684 if (addr
< 0x10 && size
== 1) {
685 return ne2000_ioport_read(s
, addr
);
686 } else if (addr
== 0x10) {
688 return ne2000_asic_ioport_read(s
, addr
);
690 return ne2000_asic_ioport_readl(s
, addr
);
692 } else if (addr
== 0x1f && size
== 1) {
693 return ne2000_reset_ioport_read(s
, addr
);
695 return ((uint64_t)1 << (size
* 8)) - 1;
698 static void ne2000_write(void *opaque
, target_phys_addr_t addr
,
699 uint64_t data
, unsigned size
)
701 NE2000State
*s
= opaque
;
703 if (addr
< 0x10 && size
== 1) {
704 return ne2000_ioport_write(s
, addr
, data
);
705 } else if (addr
== 0x10) {
707 return ne2000_asic_ioport_write(s
, addr
, data
);
709 return ne2000_asic_ioport_writel(s
, addr
, data
);
711 } else if (addr
== 0x1f && size
== 1) {
712 return ne2000_reset_ioport_write(s
, addr
, data
);
716 static const MemoryRegionOps ne2000_ops
= {
718 .write
= ne2000_write
,
719 .endianness
= DEVICE_NATIVE_ENDIAN
,
722 /***********************************************************/
723 /* PCI NE2000 definitions */
725 void ne2000_setup_io(NE2000State
*s
, unsigned size
)
727 memory_region_init_io(&s
->io
, &ne2000_ops
, s
, "ne2000", size
);
730 static void ne2000_cleanup(VLANClientState
*nc
)
732 NE2000State
*s
= DO_UPCAST(NICState
, nc
, nc
)->opaque
;
737 static NetClientInfo net_ne2000_info
= {
738 .type
= NET_CLIENT_TYPE_NIC
,
739 .size
= sizeof(NICState
),
740 .can_receive
= ne2000_can_receive
,
741 .receive
= ne2000_receive
,
742 .cleanup
= ne2000_cleanup
,
745 static int pci_ne2000_init(PCIDevice
*pci_dev
)
747 PCINE2000State
*d
= DO_UPCAST(PCINE2000State
, dev
, pci_dev
);
751 pci_conf
= d
->dev
.config
;
752 pci_conf
[PCI_INTERRUPT_PIN
] = 1; /* interrupt pin A */
755 ne2000_setup_io(s
, 0x100);
756 pci_register_bar(&d
->dev
, 0, PCI_BASE_ADDRESS_SPACE_IO
, &s
->io
);
757 s
->irq
= d
->dev
.irq
[0];
759 qemu_macaddr_default_if_unset(&s
->c
.macaddr
);
762 s
->nic
= qemu_new_nic(&net_ne2000_info
, &s
->c
,
763 object_get_typename(OBJECT(pci_dev
)), pci_dev
->qdev
.id
, s
);
764 qemu_format_nic_info_str(&s
->nic
->nc
, s
->c
.macaddr
.a
);
766 if (!pci_dev
->qdev
.hotplugged
) {
767 static int loaded
= 0;
769 rom_add_option("pxe-ne2k_pci.rom", -1);
774 add_boot_device_path(s
->c
.bootindex
, &pci_dev
->qdev
, "/ethernet-phy@0");
779 static int pci_ne2000_exit(PCIDevice
*pci_dev
)
781 PCINE2000State
*d
= DO_UPCAST(PCINE2000State
, dev
, pci_dev
);
782 NE2000State
*s
= &d
->ne2000
;
784 memory_region_destroy(&s
->io
);
785 qemu_del_vlan_client(&s
->nic
->nc
);
789 static Property ne2000_properties
[] = {
790 DEFINE_NIC_PROPERTIES(PCINE2000State
, ne2000
.c
),
791 DEFINE_PROP_END_OF_LIST(),
794 static void ne2000_class_init(ObjectClass
*klass
, void *data
)
796 DeviceClass
*dc
= DEVICE_CLASS(klass
);
797 PCIDeviceClass
*k
= PCI_DEVICE_CLASS(klass
);
799 k
->init
= pci_ne2000_init
;
800 k
->exit
= pci_ne2000_exit
;
801 k
->vendor_id
= PCI_VENDOR_ID_REALTEK
;
802 k
->device_id
= PCI_DEVICE_ID_REALTEK_8029
;
803 k
->class_id
= PCI_CLASS_NETWORK_ETHERNET
;
804 dc
->vmsd
= &vmstate_pci_ne2000
;
805 dc
->props
= ne2000_properties
;
808 static TypeInfo ne2000_info
= {
810 .parent
= TYPE_PCI_DEVICE
,
811 .instance_size
= sizeof(PCINE2000State
),
812 .class_init
= ne2000_class_init
,
815 static void ne2000_register_devices(void)
817 type_register_static(&ne2000_info
);
820 device_init(ne2000_register_devices
)