memory: drop AddressSpaceOps
[qemu-kvm.git] / hw / mips_malta.c
blobd232630e661889f8a9f96f8ab8a26ad88db94a01
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "arch_init.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
48 #include "blockdev.h"
49 #include "exec-memory.h"
50 #include "sysbus.h" /* SysBusDevice */
52 //#define DEBUG_BOARD_INIT
54 #define ENVP_ADDR 0x80002000l
55 #define ENVP_NB_ENTRIES 16
56 #define ENVP_ENTRY_SIZE 256
58 #define MAX_IDE_BUS 2
60 typedef struct {
61 MemoryRegion iomem;
62 MemoryRegion iomem_lo; /* 0 - 0x900 */
63 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
64 uint32_t leds;
65 uint32_t brk;
66 uint32_t gpout;
67 uint32_t i2cin;
68 uint32_t i2coe;
69 uint32_t i2cout;
70 uint32_t i2csel;
71 CharDriverState *display;
72 char display_text[9];
73 SerialState *uart;
74 } MaltaFPGAState;
76 typedef struct {
77 SysBusDevice busdev;
78 qemu_irq *i8259;
79 } MaltaState;
81 static ISADevice *pit;
83 static struct _loaderparams {
84 int ram_size;
85 const char *kernel_filename;
86 const char *kernel_cmdline;
87 const char *initrd_filename;
88 } loaderparams;
90 /* Malta FPGA */
91 static void malta_fpga_update_display(void *opaque)
93 char leds_text[9];
94 int i;
95 MaltaFPGAState *s = opaque;
97 for (i = 7 ; i >= 0 ; i--) {
98 if (s->leds & (1 << i))
99 leds_text[i] = '#';
100 else
101 leds_text[i] = ' ';
103 leds_text[8] = '\0';
105 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
106 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
110 * EEPROM 24C01 / 24C02 emulation.
112 * Emulation for serial EEPROMs:
113 * 24C01 - 1024 bit (128 x 8)
114 * 24C02 - 2048 bit (256 x 8)
116 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
119 //~ #define DEBUG
121 #if defined(DEBUG)
122 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
123 #else
124 # define logout(fmt, ...) ((void)0)
125 #endif
127 struct _eeprom24c0x_t {
128 uint8_t tick;
129 uint8_t address;
130 uint8_t command;
131 uint8_t ack;
132 uint8_t scl;
133 uint8_t sda;
134 uint8_t data;
135 //~ uint16_t size;
136 uint8_t contents[256];
139 typedef struct _eeprom24c0x_t eeprom24c0x_t;
141 static eeprom24c0x_t eeprom = {
142 .contents = {
143 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
144 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
145 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
146 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
147 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
148 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
151 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
153 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
154 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
155 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
156 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
157 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
158 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
162 static uint8_t eeprom24c0x_read(void)
164 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
165 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
166 return eeprom.sda;
169 static void eeprom24c0x_write(int scl, int sda)
171 if (eeprom.scl && scl && (eeprom.sda != sda)) {
172 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
173 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
174 if (!sda) {
175 eeprom.tick = 1;
176 eeprom.command = 0;
178 } else if (eeprom.tick == 0 && !eeprom.ack) {
179 /* Waiting for start. */
180 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
181 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
182 } else if (!eeprom.scl && scl) {
183 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
184 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
185 if (eeprom.ack) {
186 logout("\ti2c ack bit = 0\n");
187 sda = 0;
188 eeprom.ack = 0;
189 } else if (eeprom.sda == sda) {
190 uint8_t bit = (sda != 0);
191 logout("\ti2c bit = %d\n", bit);
192 if (eeprom.tick < 9) {
193 eeprom.command <<= 1;
194 eeprom.command += bit;
195 eeprom.tick++;
196 if (eeprom.tick == 9) {
197 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
198 eeprom.ack = 1;
200 } else if (eeprom.tick < 17) {
201 if (eeprom.command & 1) {
202 sda = ((eeprom.data & 0x80) != 0);
204 eeprom.address <<= 1;
205 eeprom.address += bit;
206 eeprom.tick++;
207 eeprom.data <<= 1;
208 if (eeprom.tick == 17) {
209 eeprom.data = eeprom.contents[eeprom.address];
210 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
211 eeprom.ack = 1;
212 eeprom.tick = 0;
214 } else if (eeprom.tick >= 17) {
215 sda = 0;
217 } else {
218 logout("\tsda changed with raising scl\n");
220 } else {
221 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
223 eeprom.scl = scl;
224 eeprom.sda = sda;
227 static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr,
228 unsigned size)
230 MaltaFPGAState *s = opaque;
231 uint32_t val = 0;
232 uint32_t saddr;
234 saddr = (addr & 0xfffff);
236 switch (saddr) {
238 /* SWITCH Register */
239 case 0x00200:
240 val = 0x00000000; /* All switches closed */
241 break;
243 /* STATUS Register */
244 case 0x00208:
245 #ifdef TARGET_WORDS_BIGENDIAN
246 val = 0x00000012;
247 #else
248 val = 0x00000010;
249 #endif
250 break;
252 /* JMPRS Register */
253 case 0x00210:
254 val = 0x00;
255 break;
257 /* LEDBAR Register */
258 case 0x00408:
259 val = s->leds;
260 break;
262 /* BRKRES Register */
263 case 0x00508:
264 val = s->brk;
265 break;
267 /* UART Registers are handled directly by the serial device */
269 /* GPOUT Register */
270 case 0x00a00:
271 val = s->gpout;
272 break;
274 /* XXX: implement a real I2C controller */
276 /* GPINP Register */
277 case 0x00a08:
278 /* IN = OUT until a real I2C control is implemented */
279 if (s->i2csel)
280 val = s->i2cout;
281 else
282 val = 0x00;
283 break;
285 /* I2CINP Register */
286 case 0x00b00:
287 val = ((s->i2cin & ~1) | eeprom24c0x_read());
288 break;
290 /* I2COE Register */
291 case 0x00b08:
292 val = s->i2coe;
293 break;
295 /* I2COUT Register */
296 case 0x00b10:
297 val = s->i2cout;
298 break;
300 /* I2CSEL Register */
301 case 0x00b18:
302 val = s->i2csel;
303 break;
305 default:
306 #if 0
307 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
308 addr);
309 #endif
310 break;
312 return val;
315 static void malta_fpga_write(void *opaque, target_phys_addr_t addr,
316 uint64_t val, unsigned size)
318 MaltaFPGAState *s = opaque;
319 uint32_t saddr;
321 saddr = (addr & 0xfffff);
323 switch (saddr) {
325 /* SWITCH Register */
326 case 0x00200:
327 break;
329 /* JMPRS Register */
330 case 0x00210:
331 break;
333 /* LEDBAR Register */
334 /* XXX: implement a 8-LED array */
335 case 0x00408:
336 s->leds = val & 0xff;
337 break;
339 /* ASCIIWORD Register */
340 case 0x00410:
341 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
342 malta_fpga_update_display(s);
343 break;
345 /* ASCIIPOS0 to ASCIIPOS7 Registers */
346 case 0x00418:
347 case 0x00420:
348 case 0x00428:
349 case 0x00430:
350 case 0x00438:
351 case 0x00440:
352 case 0x00448:
353 case 0x00450:
354 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
355 malta_fpga_update_display(s);
356 break;
358 /* SOFTRES Register */
359 case 0x00500:
360 if (val == 0x42)
361 qemu_system_reset_request ();
362 break;
364 /* BRKRES Register */
365 case 0x00508:
366 s->brk = val & 0xff;
367 break;
369 /* UART Registers are handled directly by the serial device */
371 /* GPOUT Register */
372 case 0x00a00:
373 s->gpout = val & 0xff;
374 break;
376 /* I2COE Register */
377 case 0x00b08:
378 s->i2coe = val & 0x03;
379 break;
381 /* I2COUT Register */
382 case 0x00b10:
383 eeprom24c0x_write(val & 0x02, val & 0x01);
384 s->i2cout = val;
385 break;
387 /* I2CSEL Register */
388 case 0x00b18:
389 s->i2csel = val & 0x01;
390 break;
392 default:
393 #if 0
394 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
395 addr);
396 #endif
397 break;
401 static const MemoryRegionOps malta_fpga_ops = {
402 .read = malta_fpga_read,
403 .write = malta_fpga_write,
404 .endianness = DEVICE_NATIVE_ENDIAN,
407 static void malta_fpga_reset(void *opaque)
409 MaltaFPGAState *s = opaque;
411 s->leds = 0x00;
412 s->brk = 0x0a;
413 s->gpout = 0x00;
414 s->i2cin = 0x3;
415 s->i2coe = 0x0;
416 s->i2cout = 0x3;
417 s->i2csel = 0x1;
419 s->display_text[8] = '\0';
420 snprintf(s->display_text, 9, " ");
423 static void malta_fpga_led_init(CharDriverState *chr)
425 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
426 qemu_chr_fe_printf(chr, "+--------+\r\n");
427 qemu_chr_fe_printf(chr, "+ +\r\n");
428 qemu_chr_fe_printf(chr, "+--------+\r\n");
429 qemu_chr_fe_printf(chr, "\n");
430 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
431 qemu_chr_fe_printf(chr, "+--------+\r\n");
432 qemu_chr_fe_printf(chr, "+ +\r\n");
433 qemu_chr_fe_printf(chr, "+--------+\r\n");
436 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
437 target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
439 MaltaFPGAState *s;
441 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
443 memory_region_init_io(&s->iomem, &malta_fpga_ops, s,
444 "malta-fpga", 0x100000);
445 memory_region_init_alias(&s->iomem_lo, "malta-fpga",
446 &s->iomem, 0, 0x900);
447 memory_region_init_alias(&s->iomem_hi, "malta-fpga",
448 &s->iomem, 0xa00, 0x10000-0xa00);
450 memory_region_add_subregion(address_space, base, &s->iomem_lo);
451 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
453 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
455 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
456 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
458 malta_fpga_reset(s);
459 qemu_register_reset(malta_fpga_reset, s);
461 return s;
464 /* Network support */
465 static void network_init(void)
467 int i;
469 for(i = 0; i < nb_nics; i++) {
470 NICInfo *nd = &nd_table[i];
471 const char *default_devaddr = NULL;
473 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
474 /* The malta board has a PCNet card using PCI SLOT 11 */
475 default_devaddr = "0b";
477 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
481 /* ROM and pseudo bootloader
483 The following code implements a very very simple bootloader. It first
484 loads the registers a0 to a3 to the values expected by the OS, and
485 then jump at the kernel address.
487 The bootloader should pass the locations of the kernel arguments and
488 environment variables tables. Those tables contain the 32-bit address
489 of NULL terminated strings. The environment variables table should be
490 terminated by a NULL address.
492 For a simpler implementation, the number of kernel arguments is fixed
493 to two (the name of the kernel and the command line), and the two
494 tables are actually the same one.
496 The registers a0 to a3 should contain the following values:
497 a0 - number of kernel arguments
498 a1 - 32-bit address of the kernel arguments table
499 a2 - 32-bit address of the environment variables table
500 a3 - RAM size in bytes
503 static void write_bootloader (CPUState *env, uint8_t *base,
504 int64_t kernel_entry)
506 uint32_t *p;
508 /* Small bootloader */
509 p = (uint32_t *)base;
510 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
511 stl_raw(p++, 0x00000000); /* nop */
513 /* YAMON service vector */
514 stl_raw(base + 0x500, 0xbfc00580); /* start: */
515 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
516 stl_raw(base + 0x520, 0xbfc00580); /* start: */
517 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
518 stl_raw(base + 0x534, 0xbfc00808); /* print: */
519 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
520 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
521 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
522 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
523 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
524 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
525 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
526 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
529 /* Second part of the bootloader */
530 p = (uint32_t *) (base + 0x580);
531 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
532 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
533 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
534 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
535 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
536 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
537 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
538 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
539 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
541 /* Load BAR registers as done by YAMON */
542 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
544 #ifdef TARGET_WORDS_BIGENDIAN
545 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
546 #else
547 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
548 #endif
549 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
551 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
553 #ifdef TARGET_WORDS_BIGENDIAN
554 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
555 #else
556 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
557 #endif
558 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
559 #ifdef TARGET_WORDS_BIGENDIAN
560 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
561 #else
562 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
563 #endif
564 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
566 #ifdef TARGET_WORDS_BIGENDIAN
567 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
568 #else
569 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
570 #endif
571 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
572 #ifdef TARGET_WORDS_BIGENDIAN
573 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
574 #else
575 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
576 #endif
577 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
579 #ifdef TARGET_WORDS_BIGENDIAN
580 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
581 #else
582 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
583 #endif
584 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
585 #ifdef TARGET_WORDS_BIGENDIAN
586 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
587 #else
588 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
589 #endif
590 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
592 /* Jump to kernel code */
593 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
594 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
595 stl_raw(p++, 0x03e00008); /* jr ra */
596 stl_raw(p++, 0x00000000); /* nop */
598 /* YAMON subroutines */
599 p = (uint32_t *) (base + 0x800);
600 stl_raw(p++, 0x03e00008); /* jr ra */
601 stl_raw(p++, 0x24020000); /* li v0,0 */
602 /* 808 YAMON print */
603 stl_raw(p++, 0x03e06821); /* move t5,ra */
604 stl_raw(p++, 0x00805821); /* move t3,a0 */
605 stl_raw(p++, 0x00a05021); /* move t2,a1 */
606 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
607 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
608 stl_raw(p++, 0x10800005); /* beqz a0,834 */
609 stl_raw(p++, 0x00000000); /* nop */
610 stl_raw(p++, 0x0ff0021c); /* jal 870 */
611 stl_raw(p++, 0x00000000); /* nop */
612 stl_raw(p++, 0x08000205); /* j 814 */
613 stl_raw(p++, 0x00000000); /* nop */
614 stl_raw(p++, 0x01a00008); /* jr t5 */
615 stl_raw(p++, 0x01602021); /* move a0,t3 */
616 /* 0x83c YAMON print_count */
617 stl_raw(p++, 0x03e06821); /* move t5,ra */
618 stl_raw(p++, 0x00805821); /* move t3,a0 */
619 stl_raw(p++, 0x00a05021); /* move t2,a1 */
620 stl_raw(p++, 0x00c06021); /* move t4,a2 */
621 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
622 stl_raw(p++, 0x0ff0021c); /* jal 870 */
623 stl_raw(p++, 0x00000000); /* nop */
624 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
625 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
626 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
627 stl_raw(p++, 0x00000000); /* nop */
628 stl_raw(p++, 0x01a00008); /* jr t5 */
629 stl_raw(p++, 0x01602021); /* move a0,t3 */
630 /* 0x870 */
631 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
632 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
633 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
634 stl_raw(p++, 0x00000000); /* nop */
635 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
636 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
637 stl_raw(p++, 0x00000000); /* nop */
638 stl_raw(p++, 0x03e00008); /* jr ra */
639 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
643 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
644 const char *string, ...)
646 va_list ap;
647 int32_t table_addr;
649 if (index >= ENVP_NB_ENTRIES)
650 return;
652 if (string == NULL) {
653 prom_buf[index] = 0;
654 return;
657 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
658 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
660 va_start(ap, string);
661 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
662 va_end(ap);
665 /* Kernel */
666 static int64_t load_kernel (void)
668 int64_t kernel_entry, kernel_high;
669 long initrd_size;
670 ram_addr_t initrd_offset;
671 int big_endian;
672 uint32_t *prom_buf;
673 long prom_size;
674 int prom_index = 0;
676 #ifdef TARGET_WORDS_BIGENDIAN
677 big_endian = 1;
678 #else
679 big_endian = 0;
680 #endif
682 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
683 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
684 big_endian, ELF_MACHINE, 1) < 0) {
685 fprintf(stderr, "qemu: could not load kernel '%s'\n",
686 loaderparams.kernel_filename);
687 exit(1);
690 /* load initrd */
691 initrd_size = 0;
692 initrd_offset = 0;
693 if (loaderparams.initrd_filename) {
694 initrd_size = get_image_size (loaderparams.initrd_filename);
695 if (initrd_size > 0) {
696 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
697 if (initrd_offset + initrd_size > ram_size) {
698 fprintf(stderr,
699 "qemu: memory too small for initial ram disk '%s'\n",
700 loaderparams.initrd_filename);
701 exit(1);
703 initrd_size = load_image_targphys(loaderparams.initrd_filename,
704 initrd_offset,
705 ram_size - initrd_offset);
707 if (initrd_size == (target_ulong) -1) {
708 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
709 loaderparams.initrd_filename);
710 exit(1);
714 /* Setup prom parameters. */
715 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
716 prom_buf = g_malloc(prom_size);
718 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
719 if (initrd_size > 0) {
720 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
721 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
722 loaderparams.kernel_cmdline);
723 } else {
724 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
727 prom_set(prom_buf, prom_index++, "memsize");
728 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
729 prom_set(prom_buf, prom_index++, "modetty0");
730 prom_set(prom_buf, prom_index++, "38400n8r");
731 prom_set(prom_buf, prom_index++, NULL);
733 rom_add_blob_fixed("prom", prom_buf, prom_size,
734 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
736 return kernel_entry;
739 static void malta_mips_config(CPUState *env)
741 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
742 ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC);
745 static void main_cpu_reset(void *opaque)
747 CPUState *env = opaque;
748 cpu_reset(env);
750 /* The bootloader does not need to be rewritten as it is located in a
751 read only location. The kernel location and the arguments table
752 location does not change. */
753 if (loaderparams.kernel_filename) {
754 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
757 malta_mips_config(env);
760 static void cpu_request_exit(void *opaque, int irq, int level)
762 CPUState *env = cpu_single_env;
764 if (env && level) {
765 cpu_exit(env);
769 static
770 void mips_malta_init (ram_addr_t ram_size,
771 const char *boot_device,
772 const char *kernel_filename, const char *kernel_cmdline,
773 const char *initrd_filename, const char *cpu_model)
775 char *filename;
776 pflash_t *fl;
777 MemoryRegion *system_memory = get_system_memory();
778 MemoryRegion *ram = g_new(MemoryRegion, 1);
779 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
780 target_long bios_size;
781 int64_t kernel_entry;
782 PCIBus *pci_bus;
783 ISABus *isa_bus;
784 CPUState *env;
785 qemu_irq *isa_irq;
786 qemu_irq *cpu_exit_irq;
787 int piix4_devfn;
788 i2c_bus *smbus;
789 int i;
790 DriveInfo *dinfo;
791 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
792 DriveInfo *fd[MAX_FD];
793 int fl_idx = 0;
794 int fl_sectors = 0;
795 int be;
797 DeviceState *dev = qdev_create(NULL, "mips-malta");
798 MaltaState *s = DO_UPCAST(MaltaState, busdev.qdev, dev);
800 qdev_init_nofail(dev);
802 /* Make sure the first 3 serial ports are associated with a device. */
803 for(i = 0; i < 3; i++) {
804 if (!serial_hds[i]) {
805 char label[32];
806 snprintf(label, sizeof(label), "serial%d", i);
807 serial_hds[i] = qemu_chr_new(label, "null", NULL);
811 /* init CPUs */
812 if (cpu_model == NULL) {
813 #ifdef TARGET_MIPS64
814 cpu_model = "20Kc";
815 #else
816 cpu_model = "24Kf";
817 #endif
820 for (i = 0; i < smp_cpus; i++) {
821 env = cpu_init(cpu_model);
822 if (!env) {
823 fprintf(stderr, "Unable to find CPU definition\n");
824 exit(1);
826 /* Init internal devices */
827 cpu_mips_irq_init_cpu(env);
828 cpu_mips_clock_init(env);
829 qemu_register_reset(main_cpu_reset, env);
831 env = first_cpu;
833 /* allocate RAM */
834 if (ram_size > (256 << 20)) {
835 fprintf(stderr,
836 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
837 ((unsigned int)ram_size / (1 << 20)));
838 exit(1);
840 memory_region_init_ram(ram, "mips_malta.ram", ram_size);
841 vmstate_register_ram_global(ram);
842 memory_region_add_subregion(system_memory, 0, ram);
844 #ifdef TARGET_WORDS_BIGENDIAN
845 be = 1;
846 #else
847 be = 0;
848 #endif
849 /* FPGA */
850 malta_fpga_init(system_memory, 0x1f000000LL, env->irq[2], serial_hds[2]);
852 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
853 if (kernel_filename) {
854 /* Write a small bootloader to the flash location. */
855 bios = g_new(MemoryRegion, 1);
856 memory_region_init_ram(bios, "mips_malta.bios", BIOS_SIZE);
857 vmstate_register_ram_global(bios);
858 memory_region_set_readonly(bios, true);
859 memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE);
860 /* Map the bios at two physical locations, as on the real board. */
861 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
862 memory_region_add_subregion(system_memory, 0x1fc00000LL, bios_alias);
863 loaderparams.ram_size = ram_size;
864 loaderparams.kernel_filename = kernel_filename;
865 loaderparams.kernel_cmdline = kernel_cmdline;
866 loaderparams.initrd_filename = initrd_filename;
867 kernel_entry = load_kernel();
868 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
869 } else {
870 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
871 if (dinfo) {
872 /* Load firmware from flash. */
873 bios_size = 0x400000;
874 fl_sectors = bios_size >> 16;
875 #ifdef DEBUG_BOARD_INIT
876 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
877 "addr %08llx '%s' %x\n",
878 fl_idx, bios_size, 0x1e000000LL,
879 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
880 #endif
881 fl = pflash_cfi01_register(0x1e000000LL,
882 NULL, "mips_malta.bios", BIOS_SIZE,
883 dinfo->bdrv, 65536, fl_sectors,
884 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
885 bios = pflash_cfi01_get_memory(fl);
886 /* Map the bios at two physical locations, as on the real board. */
887 memory_region_init_alias(bios_alias, "bios.1fc",
888 bios, 0, BIOS_SIZE);
889 memory_region_add_subregion(system_memory, 0x1fc00000LL,
890 bios_alias);
891 fl_idx++;
892 } else {
893 bios = g_new(MemoryRegion, 1);
894 memory_region_init_ram(bios, "mips_malta.bios", BIOS_SIZE);
895 vmstate_register_ram_global(bios);
896 memory_region_set_readonly(bios, true);
897 memory_region_init_alias(bios_alias, "bios.1fc",
898 bios, 0, BIOS_SIZE);
899 /* Map the bios at two physical locations, as on the real board. */
900 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
901 memory_region_add_subregion(system_memory, 0x1fc00000LL,
902 bios_alias);
903 /* Load a BIOS image. */
904 if (bios_name == NULL)
905 bios_name = BIOS_FILENAME;
906 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
907 if (filename) {
908 bios_size = load_image_targphys(filename, 0x1fc00000LL,
909 BIOS_SIZE);
910 g_free(filename);
911 } else {
912 bios_size = -1;
914 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
915 fprintf(stderr,
916 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
917 bios_name);
918 exit(1);
921 /* In little endian mode the 32bit words in the bios are swapped,
922 a neat trick which allows bi-endian firmware. */
923 #ifndef TARGET_WORDS_BIGENDIAN
925 uint32_t *addr = memory_region_get_ram_ptr(bios);
926 uint32_t *end = addr + bios_size;
927 while (addr < end) {
928 bswap32s(addr);
929 addr++;
932 #endif
935 /* Board ID = 0x420 (Malta Board with CoreLV)
936 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
937 map to the board ID. */
938 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
940 /* Init internal devices */
941 cpu_mips_irq_init_cpu(env);
942 cpu_mips_clock_init(env);
945 * We have a circular dependency problem: pci_bus depends on isa_irq,
946 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
947 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
948 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
949 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
951 isa_irq = qemu_irq_proxy(&s->i8259, 16);
953 /* Northbridge */
954 pci_bus = gt64120_register(isa_irq);
956 /* Southbridge */
957 ide_drive_get(hd, MAX_IDE_BUS);
959 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
961 /* Interrupt controller */
962 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
963 s->i8259 = i8259_init(isa_bus, env->irq[2]);
965 isa_bus_irqs(isa_bus, s->i8259);
966 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
967 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
968 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
969 isa_get_irq(NULL, 9), NULL, NULL, 0);
970 /* TODO: Populate SPD eeprom data. */
971 smbus_eeprom_init(smbus, 8, NULL, 0);
972 pit = pit_init(isa_bus, 0x40, 0);
973 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
974 DMA_init(0, cpu_exit_irq);
976 /* Super I/O */
977 isa_create_simple(isa_bus, "i8042");
979 rtc_init(isa_bus, 2000, NULL);
980 serial_isa_init(isa_bus, 0, serial_hds[0]);
981 serial_isa_init(isa_bus, 1, serial_hds[1]);
982 if (parallel_hds[0])
983 parallel_init(isa_bus, 0, parallel_hds[0]);
984 for(i = 0; i < MAX_FD; i++) {
985 fd[i] = drive_get(IF_FLOPPY, 0, i);
987 fdctrl_init_isa(isa_bus, fd);
989 /* Sound card */
990 audio_init(isa_bus, pci_bus);
992 /* Network card */
993 network_init();
995 /* Optional PCI video card */
996 if (cirrus_vga_enabled) {
997 pci_cirrus_vga_init(pci_bus);
998 } else if (vmsvga_enabled) {
999 pci_vmsvga_init(pci_bus);
1000 } else if (std_vga_enabled) {
1001 pci_vga_init(pci_bus);
1005 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1007 return 0;
1010 static void mips_malta_class_init(ObjectClass *klass, void *data)
1012 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1014 k->init = mips_malta_sysbus_device_init;
1017 static TypeInfo mips_malta_device = {
1018 .name = "mips-malta",
1019 .parent = TYPE_SYS_BUS_DEVICE,
1020 .instance_size = sizeof(MaltaState),
1021 .class_init = mips_malta_class_init,
1024 static QEMUMachine mips_malta_machine = {
1025 .name = "malta",
1026 .desc = "MIPS Malta Core LV",
1027 .init = mips_malta_init,
1028 .max_cpus = 16,
1029 .is_default = 1,
1032 static void mips_malta_device_init(void)
1034 type_register_static(&mips_malta_device);
1037 static void mips_malta_machine_init(void)
1039 qemu_register_machine(&mips_malta_machine);
1042 device_init(mips_malta_device_init);
1043 machine_init(mips_malta_machine_init);