2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
30 #include "mc146818rtc.h"
33 //#define DEBUG_COALESCED
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
41 #ifdef DEBUG_COALESCED
42 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
44 # define DPRINTF_C(format, ...) do { } while (0)
47 #define RTC_REINJECT_ON_ACK_COUNT 20
50 #define RTC_SECONDS_ALARM 1
52 #define RTC_MINUTES_ALARM 3
54 #define RTC_HOURS_ALARM 5
55 #define RTC_ALARM_DONT_CARE 0xC0
57 #define RTC_DAY_OF_WEEK 6
58 #define RTC_DAY_OF_MONTH 7
67 #define REG_A_UIP 0x80
69 #define REG_B_SET 0x80
70 #define REG_B_PIE 0x40
71 #define REG_B_AIE 0x20
72 #define REG_B_UIE 0x10
73 #define REG_B_SQWE 0x08
75 #define REG_B_24H 0x02
78 #define REG_C_IRQF 0x80
82 typedef struct RTCState
{
85 uint8_t cmos_data
[128];
93 QEMUTimer
*periodic_timer
;
94 int64_t next_periodic_time
;
96 int64_t next_second_time
;
97 uint16_t irq_reinject_on_ack_count
;
98 uint32_t irq_coalesced
;
100 QEMUTimer
*coalesced_timer
;
101 QEMUTimer
*second_timer
;
102 QEMUTimer
*second_timer2
;
103 Notifier clock_reset_notifier
;
104 LostTickPolicy lost_tick_policy
;
107 static void rtc_set_time(RTCState
*s
);
108 static void rtc_copy_date(RTCState
*s
);
111 static void rtc_coalesced_timer_update(RTCState
*s
)
113 if (s
->irq_coalesced
== 0) {
114 qemu_del_timer(s
->coalesced_timer
);
116 /* divide each RTC interval to 2 - 8 smaller intervals */
117 int c
= MIN(s
->irq_coalesced
, 7) + 1;
118 int64_t next_clock
= qemu_get_clock_ns(rtc_clock
) +
119 muldiv64(s
->period
/ c
, get_ticks_per_sec(), 32768);
120 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
124 static void rtc_coalesced_timer(void *opaque
)
126 RTCState
*s
= opaque
;
128 if (s
->irq_coalesced
!= 0) {
129 apic_reset_irq_delivered();
130 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
131 DPRINTF_C("cmos: injecting from timer\n");
132 qemu_irq_raise(s
->irq
);
133 if (apic_get_irq_delivered()) {
135 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
140 rtc_coalesced_timer_update(s
);
144 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
146 int period_code
, period
;
147 int64_t cur_clock
, next_irq_clock
;
149 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
151 && ((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)
152 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
153 if (period_code
<= 2)
155 /* period in 32 Khz cycles */
156 period
= 1 << (period_code
- 1);
158 if (period
!= s
->period
) {
159 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
160 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
164 /* compute 32 khz clock */
165 cur_clock
= muldiv64(current_time
, 32768, get_ticks_per_sec());
166 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
167 s
->next_periodic_time
=
168 muldiv64(next_irq_clock
, get_ticks_per_sec(), 32768) + 1;
169 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
172 s
->irq_coalesced
= 0;
174 qemu_del_timer(s
->periodic_timer
);
178 static void rtc_periodic_timer(void *opaque
)
180 RTCState
*s
= opaque
;
182 rtc_timer_update(s
, s
->next_periodic_time
);
183 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
184 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
185 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
187 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
188 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
189 s
->irq_reinject_on_ack_count
= 0;
190 apic_reset_irq_delivered();
191 qemu_irq_raise(s
->irq
);
192 if (!apic_get_irq_delivered()) {
194 rtc_coalesced_timer_update(s
);
195 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
200 qemu_irq_raise(s
->irq
);
202 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
203 /* Not square wave at all but we don't want 2048Hz interrupts!
204 Must be seen as a pulse. */
205 qemu_irq_raise(s
->sqw_irq
);
209 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
211 RTCState
*s
= opaque
;
213 if ((addr
& 1) == 0) {
214 s
->cmos_index
= data
& 0x7f;
216 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
217 s
->cmos_index
, data
);
218 switch(s
->cmos_index
) {
219 case RTC_SECONDS_ALARM
:
220 case RTC_MINUTES_ALARM
:
221 case RTC_HOURS_ALARM
:
222 s
->cmos_data
[s
->cmos_index
] = data
;
227 case RTC_DAY_OF_WEEK
:
228 case RTC_DAY_OF_MONTH
:
231 s
->cmos_data
[s
->cmos_index
] = data
;
232 /* if in set mode, do not update the time */
233 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
238 /* UIP bit is read only */
239 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
240 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
241 rtc_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
244 if (data
& REG_B_SET
) {
245 /* set mode: reset UIP mode */
246 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
249 /* if disabling set mode, update the time */
250 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
254 if (((s
->cmos_data
[RTC_REG_B
] ^ data
) & (REG_B_DM
| REG_B_24H
)) &&
255 !(data
& REG_B_SET
)) {
256 /* If the time format has changed and not in set mode,
257 update the registers immediately. */
258 s
->cmos_data
[RTC_REG_B
] = data
;
261 s
->cmos_data
[RTC_REG_B
] = data
;
263 rtc_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
267 /* cannot write to them */
270 s
->cmos_data
[s
->cmos_index
] = data
;
276 static inline int rtc_to_bcd(RTCState
*s
, int a
)
278 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
281 return ((a
/ 10) << 4) | (a
% 10);
285 static inline int rtc_from_bcd(RTCState
*s
, int a
)
287 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
290 return ((a
>> 4) * 10) + (a
& 0x0f);
294 static void rtc_set_time(RTCState
*s
)
296 struct tm
*tm
= &s
->current_tm
;
298 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
299 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
300 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
301 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
303 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
307 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
308 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
309 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
310 tm
->tm_year
= rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
- 1900;
312 rtc_change_mon_event(tm
);
315 static void rtc_copy_date(RTCState
*s
)
317 const struct tm
*tm
= &s
->current_tm
;
320 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
321 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
322 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
324 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
327 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
328 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
329 if (tm
->tm_hour
>= 12)
330 s
->cmos_data
[RTC_HOURS
] |= 0x80;
332 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
333 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
334 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
335 year
= (tm
->tm_year
- s
->base_year
) % 100;
338 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
);
341 /* month is between 0 and 11. */
342 static int get_days_in_month(int month
, int year
)
344 static const int days_tab
[12] = {
345 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
348 if ((unsigned )month
>= 12)
352 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
358 /* update 'tm' to the next second */
359 static void rtc_next_second(struct tm
*tm
)
364 if ((unsigned)tm
->tm_sec
>= 60) {
367 if ((unsigned)tm
->tm_min
>= 60) {
370 if ((unsigned)tm
->tm_hour
>= 24) {
374 if ((unsigned)tm
->tm_wday
>= 7)
376 days_in_month
= get_days_in_month(tm
->tm_mon
,
379 if (tm
->tm_mday
< 1) {
381 } else if (tm
->tm_mday
> days_in_month
) {
384 if (tm
->tm_mon
>= 12) {
395 static void rtc_update_second(void *opaque
)
397 RTCState
*s
= opaque
;
400 /* if the oscillator is not in normal operation, we do not update */
401 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
402 s
->next_second_time
+= get_ticks_per_sec();
403 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
405 rtc_next_second(&s
->current_tm
);
407 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
408 /* update in progress bit */
409 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
411 /* should be 244 us = 8 / 32768 seconds, but currently the
412 timers do not have the necessary resolution. */
413 delay
= (get_ticks_per_sec() * 1) / 100;
416 qemu_mod_timer(s
->second_timer2
,
417 s
->next_second_time
+ delay
);
421 static void rtc_update_second2(void *opaque
)
423 RTCState
*s
= opaque
;
425 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
430 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
431 rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]) == s
->current_tm
.tm_sec
) &&
432 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
433 rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]) == s
->current_tm
.tm_min
) &&
434 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
435 rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]) == s
->current_tm
.tm_hour
)) {
437 s
->cmos_data
[RTC_REG_C
] |= REG_C_AF
;
438 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
439 qemu_irq_raise(s
->irq
);
440 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
444 /* update ended interrupt */
445 s
->cmos_data
[RTC_REG_C
] |= REG_C_UF
;
446 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
447 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
448 qemu_irq_raise(s
->irq
);
451 /* clear update in progress bit */
452 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
454 s
->next_second_time
+= get_ticks_per_sec();
455 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
458 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
460 RTCState
*s
= opaque
;
462 if ((addr
& 1) == 0) {
465 switch(s
->cmos_index
) {
469 case RTC_DAY_OF_WEEK
:
470 case RTC_DAY_OF_MONTH
:
473 ret
= s
->cmos_data
[s
->cmos_index
];
476 ret
= s
->cmos_data
[s
->cmos_index
];
479 ret
= s
->cmos_data
[s
->cmos_index
];
480 qemu_irq_lower(s
->irq
);
481 s
->cmos_data
[RTC_REG_C
] = 0x00;
483 if(s
->irq_coalesced
&&
484 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
485 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
486 s
->irq_reinject_on_ack_count
++;
487 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
488 apic_reset_irq_delivered();
489 DPRINTF_C("cmos: injecting on ack\n");
490 qemu_irq_raise(s
->irq
);
491 if (apic_get_irq_delivered()) {
493 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
500 ret
= s
->cmos_data
[s
->cmos_index
];
503 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
509 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
511 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
512 if (addr
>= 0 && addr
<= 127)
513 s
->cmos_data
[addr
] = val
;
516 void rtc_set_date(ISADevice
*dev
, const struct tm
*tm
)
518 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
523 /* PC cmos mappings */
524 #define REG_IBM_CENTURY_BYTE 0x32
525 #define REG_IBM_PS2_CENTURY_BYTE 0x37
527 static void rtc_set_date_from_host(ISADevice
*dev
)
529 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
533 /* set the CMOS date */
534 qemu_get_timedate(&tm
, 0);
535 rtc_set_date(dev
, &tm
);
537 val
= rtc_to_bcd(s
, (tm
.tm_year
/ 100) + 19);
538 rtc_set_memory(dev
, REG_IBM_CENTURY_BYTE
, val
);
539 rtc_set_memory(dev
, REG_IBM_PS2_CENTURY_BYTE
, val
);
542 static int rtc_post_load(void *opaque
, int version_id
)
545 RTCState
*s
= opaque
;
547 if (version_id
>= 2) {
548 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
549 rtc_coalesced_timer_update(s
);
556 static const VMStateDescription vmstate_rtc
= {
557 .name
= "mc146818rtc",
559 .minimum_version_id
= 1,
560 .minimum_version_id_old
= 1,
561 .post_load
= rtc_post_load
,
562 .fields
= (VMStateField
[]) {
563 VMSTATE_BUFFER(cmos_data
, RTCState
),
564 VMSTATE_UINT8(cmos_index
, RTCState
),
565 VMSTATE_INT32(current_tm
.tm_sec
, RTCState
),
566 VMSTATE_INT32(current_tm
.tm_min
, RTCState
),
567 VMSTATE_INT32(current_tm
.tm_hour
, RTCState
),
568 VMSTATE_INT32(current_tm
.tm_wday
, RTCState
),
569 VMSTATE_INT32(current_tm
.tm_mday
, RTCState
),
570 VMSTATE_INT32(current_tm
.tm_mon
, RTCState
),
571 VMSTATE_INT32(current_tm
.tm_year
, RTCState
),
572 VMSTATE_TIMER(periodic_timer
, RTCState
),
573 VMSTATE_INT64(next_periodic_time
, RTCState
),
574 VMSTATE_INT64(next_second_time
, RTCState
),
575 VMSTATE_TIMER(second_timer
, RTCState
),
576 VMSTATE_TIMER(second_timer2
, RTCState
),
577 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
578 VMSTATE_UINT32_V(period
, RTCState
, 2),
579 VMSTATE_END_OF_LIST()
583 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
585 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
586 int64_t now
= *(int64_t *)data
;
588 rtc_set_date_from_host(&s
->dev
);
589 s
->next_second_time
= now
+ (get_ticks_per_sec() * 99) / 100;
590 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
591 rtc_timer_update(s
, now
);
593 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
594 rtc_coalesced_timer_update(s
);
599 static void rtc_reset(void *opaque
)
601 RTCState
*s
= opaque
;
603 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
604 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
606 qemu_irq_lower(s
->irq
);
609 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
610 s
->irq_coalesced
= 0;
615 static const MemoryRegionPortio cmos_portio
[] = {
616 {0, 2, 1, .read
= cmos_ioport_read
, .write
= cmos_ioport_write
},
617 PORTIO_END_OF_LIST(),
620 static const MemoryRegionOps cmos_ops
= {
621 .old_portio
= cmos_portio
624 // FIXME add int32 visitor
625 static void visit_type_int32(Visitor
*v
, int *value
, const char *name
, Error
**errp
)
627 int64_t val
= *value
;
628 visit_type_int(v
, &val
, name
, errp
);
631 static void rtc_get_date(Object
*obj
, Visitor
*v
, void *opaque
,
632 const char *name
, Error
**errp
)
634 ISADevice
*isa
= ISA_DEVICE(obj
);
635 RTCState
*s
= DO_UPCAST(RTCState
, dev
, isa
);
637 visit_start_struct(v
, NULL
, "struct tm", name
, 0, errp
);
638 visit_type_int32(v
, &s
->current_tm
.tm_year
, "tm_year", errp
);
639 visit_type_int32(v
, &s
->current_tm
.tm_mon
, "tm_mon", errp
);
640 visit_type_int32(v
, &s
->current_tm
.tm_mday
, "tm_mday", errp
);
641 visit_type_int32(v
, &s
->current_tm
.tm_hour
, "tm_hour", errp
);
642 visit_type_int32(v
, &s
->current_tm
.tm_min
, "tm_min", errp
);
643 visit_type_int32(v
, &s
->current_tm
.tm_sec
, "tm_sec", errp
);
644 visit_end_struct(v
, errp
);
647 static int rtc_initfn(ISADevice
*dev
)
649 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
652 s
->cmos_data
[RTC_REG_A
] = 0x26;
653 s
->cmos_data
[RTC_REG_B
] = 0x02;
654 s
->cmos_data
[RTC_REG_C
] = 0x00;
655 s
->cmos_data
[RTC_REG_D
] = 0x80;
657 rtc_set_date_from_host(dev
);
660 switch (s
->lost_tick_policy
) {
663 qemu_new_timer_ns(rtc_clock
, rtc_coalesced_timer
, s
);
665 case LOST_TICK_DISCARD
:
672 s
->periodic_timer
= qemu_new_timer_ns(rtc_clock
, rtc_periodic_timer
, s
);
673 s
->second_timer
= qemu_new_timer_ns(rtc_clock
, rtc_update_second
, s
);
674 s
->second_timer2
= qemu_new_timer_ns(rtc_clock
, rtc_update_second2
, s
);
676 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
677 qemu_register_clock_reset_notifier(rtc_clock
, &s
->clock_reset_notifier
);
679 s
->next_second_time
=
680 qemu_get_clock_ns(rtc_clock
) + (get_ticks_per_sec() * 99) / 100;
681 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
683 memory_region_init_io(&s
->io
, &cmos_ops
, s
, "rtc", 2);
684 isa_register_ioport(dev
, &s
->io
, base
);
686 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 2);
687 qemu_register_reset(rtc_reset
, s
);
689 object_property_add(OBJECT(s
), "date", "struct tm",
690 rtc_get_date
, NULL
, NULL
, s
, NULL
);
695 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
700 dev
= isa_create(bus
, "mc146818rtc");
701 s
= DO_UPCAST(RTCState
, dev
, dev
);
702 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
703 qdev_init_nofail(&dev
->qdev
);
705 s
->irq
= intercept_irq
;
707 isa_init_irq(dev
, &s
->irq
, RTC_ISA_IRQ
);
712 static Property mc146818rtc_properties
[] = {
713 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
714 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
715 lost_tick_policy
, LOST_TICK_DISCARD
),
716 DEFINE_PROP_END_OF_LIST(),
719 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
721 DeviceClass
*dc
= DEVICE_CLASS(klass
);
722 ISADeviceClass
*ic
= ISA_DEVICE_CLASS(klass
);
723 ic
->init
= rtc_initfn
;
725 dc
->vmsd
= &vmstate_rtc
;
726 dc
->props
= mc146818rtc_properties
;
729 static TypeInfo mc146818rtc_info
= {
730 .name
= "mc146818rtc",
731 .parent
= TYPE_ISA_DEVICE
,
732 .instance_size
= sizeof(RTCState
),
733 .class_init
= rtc_class_initfn
,
736 static void mc146818rtc_register(void)
738 type_register_static(&mc146818rtc_info
);
740 device_init(mc146818rtc_register
)