Implement sPAPR Virtual LAN (ibmveth)
[qemu-kvm.git] / exec.c
blob964ce318fbc713de6d6bf09cb31b4f5846ee1f48
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #include <signal.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #endif
56 //#define DEBUG_TB_INVALIDATE
57 //#define DEBUG_FLUSH
58 //#define DEBUG_TLB
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
89 #elif defined(_WIN32)
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
93 #else
94 #define code_gen_section \
95 __attribute__((aligned (32)))
96 #endif
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
105 #if !defined(CONFIG_USER_ONLY)
106 int phys_ram_fd;
107 static int in_migration;
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
110 #endif
112 CPUState *first_cpu;
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount = 0;
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122 int64_t qemu_icount;
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133 #endif
134 } PageDesc;
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141 #else
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
143 #endif
144 #else
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
146 #endif
148 /* Size of the L2 (and L3, etc) page tables. */
149 #define L2_BITS 10
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161 #else
162 #define P_L1_BITS P_L1_BITS_REM
163 #endif
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167 #else
168 #define V_L1_BITS V_L1_BITS_REM
169 #endif
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191 } PhysPageDesc;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
205 #endif
207 /* log support */
208 #ifdef WIN32
209 static const char *logfilename = "qemu.log";
210 #else
211 static const char *logfilename = "/tmp/qemu.log";
212 #endif
213 FILE *logfile;
214 int loglevel;
215 static int log_append = 0;
217 /* statistics */
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
220 #endif
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
224 #ifdef _WIN32
225 static void map_exec(void *addr, long size)
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
232 #else
233 static void map_exec(void *addr, long size)
235 unsigned long start, end, page_size;
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
248 #endif
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
253 TARGET_PAGE_SIZE */
254 #ifdef _WIN32
256 SYSTEM_INFO system_info;
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
261 #else
262 qemu_real_host_page_size = getpagesize();
263 #endif
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 } else {
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
297 #endif
301 free(freep);
302 mmap_unlock();
304 #else
305 FILE *f;
307 last_brk = (unsigned long)sbrk(0);
309 f = fopen("/compat/linux/proc/self/maps", "r");
310 if (f) {
311 mmap_lock();
313 do {
314 unsigned long startaddr, endaddr;
315 int n;
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
329 } while (!feof(f));
331 fclose(f);
332 mmap_unlock();
334 #endif
336 #endif
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
341 PageDesc *pd;
342 void **lp;
343 int i;
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 } while (0)
352 #else
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
355 #endif
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
384 #undef ALLOC
386 return pd + (index & (L2_SIZE - 1));
389 static inline PageDesc *page_find(tb_page_addr_t index)
391 return page_find_alloc(index, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
397 PhysPageDesc *pd;
398 void **lp;
399 int i;
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
416 pd = *lp;
417 if (pd == NULL) {
418 int i;
420 if (!alloc) {
421 return NULL;
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
432 return pd + (index & (L2_SIZE - 1));
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
437 return phys_page_find_alloc(index, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
442 target_ulong vaddr);
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
445 #endif
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
458 #endif
460 static void code_gen_alloc(unsigned long tb_size)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466 #else
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 #else
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
475 #endif
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
483 int flags;
484 void *start = NULL;
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
541 #endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
550 #else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553 #endif
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565 void cpu_exec_init_all(unsigned long tb_size)
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
570 page_init();
571 #if !defined(CONFIG_USER_ONLY)
572 io_mem_init();
573 #endif
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578 #endif
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
583 static int cpu_common_post_load(void *opaque, int version_id)
585 CPUState *env = opaque;
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
590 tlb_flush(env, 1);
592 return 0;
595 static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
607 #endif
609 CPUState *qemu_get_cpu(int cpu)
611 CPUState *env = first_cpu;
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
619 return env;
622 void cpu_exec_init(CPUState *env)
624 CPUState **penv;
625 int cpu_index;
627 #if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629 #endif
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
634 penv = &(*penv)->next_cpu;
635 cpu_index++;
637 env->cpu_index = cpu_index;
638 env->numa_node = 0;
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
641 #ifndef CONFIG_USER_ONLY
642 env->thread_id = qemu_get_thread_id();
643 #endif
644 *penv = env;
645 #if defined(CONFIG_USER_ONLY)
646 cpu_list_unlock();
647 #endif
648 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
649 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
650 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
651 cpu_save, cpu_load, env);
652 #endif
655 /* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657 static TranslationBlock *tb_alloc(target_ulong pc)
659 TranslationBlock *tb;
661 if (nb_tbs >= code_gen_max_blocks ||
662 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
663 return NULL;
664 tb = &tbs[nb_tbs++];
665 tb->pc = pc;
666 tb->cflags = 0;
667 return tb;
670 void tb_free(TranslationBlock *tb)
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
676 code_gen_ptr = tb->tc_ptr;
677 nb_tbs--;
681 static inline void invalidate_page_bitmap(PageDesc *p)
683 if (p->code_bitmap) {
684 qemu_free(p->code_bitmap);
685 p->code_bitmap = NULL;
687 p->code_write_count = 0;
690 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
692 static void page_flush_tb_1 (int level, void **lp)
694 int i;
696 if (*lp == NULL) {
697 return;
699 if (level == 0) {
700 PageDesc *pd = *lp;
701 for (i = 0; i < L2_SIZE; ++i) {
702 pd[i].first_tb = NULL;
703 invalidate_page_bitmap(pd + i);
705 } else {
706 void **pp = *lp;
707 for (i = 0; i < L2_SIZE; ++i) {
708 page_flush_tb_1 (level - 1, pp + i);
713 static void page_flush_tb(void)
715 int i;
716 for (i = 0; i < V_L1_SIZE; i++) {
717 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
721 /* flush all the translation blocks */
722 /* XXX: tb_flush is currently not thread safe */
723 void tb_flush(CPUState *env1)
725 CPUState *env;
726 #if defined(DEBUG_FLUSH)
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr - code_gen_buffer),
729 nb_tbs, nb_tbs > 0 ?
730 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
731 #endif
732 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
733 cpu_abort(env1, "Internal error: code buffer overflow\n");
735 nb_tbs = 0;
737 for(env = first_cpu; env != NULL; env = env->next_cpu) {
738 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
741 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
742 page_flush_tb();
744 code_gen_ptr = code_gen_buffer;
745 /* XXX: flush processor icache at this point if cache flush is
746 expensive */
747 tb_flush_count++;
750 #ifdef DEBUG_TB_CHECK
752 static void tb_invalidate_check(target_ulong address)
754 TranslationBlock *tb;
755 int i;
756 address &= TARGET_PAGE_MASK;
757 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
758 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
759 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
760 address >= tb->pc + tb->size)) {
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
763 address, (long)tb->pc, tb->size);
769 /* verify that all the pages have correct rights for code */
770 static void tb_page_check(void)
772 TranslationBlock *tb;
773 int i, flags1, flags2;
775 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
776 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
777 flags1 = page_get_flags(tb->pc);
778 flags2 = page_get_flags(tb->pc + tb->size - 1);
779 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
781 (long)tb->pc, tb->size, flags1, flags2);
787 #endif
789 /* invalidate one TB */
790 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
791 int next_offset)
793 TranslationBlock *tb1;
794 for(;;) {
795 tb1 = *ptb;
796 if (tb1 == tb) {
797 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
798 break;
800 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
804 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
806 TranslationBlock *tb1;
807 unsigned int n1;
809 for(;;) {
810 tb1 = *ptb;
811 n1 = (long)tb1 & 3;
812 tb1 = (TranslationBlock *)((long)tb1 & ~3);
813 if (tb1 == tb) {
814 *ptb = tb1->page_next[n1];
815 break;
817 ptb = &tb1->page_next[n1];
821 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
823 TranslationBlock *tb1, **ptb;
824 unsigned int n1;
826 ptb = &tb->jmp_next[n];
827 tb1 = *ptb;
828 if (tb1) {
829 /* find tb(n) in circular list */
830 for(;;) {
831 tb1 = *ptb;
832 n1 = (long)tb1 & 3;
833 tb1 = (TranslationBlock *)((long)tb1 & ~3);
834 if (n1 == n && tb1 == tb)
835 break;
836 if (n1 == 2) {
837 ptb = &tb1->jmp_first;
838 } else {
839 ptb = &tb1->jmp_next[n1];
842 /* now we can suppress tb(n) from the list */
843 *ptb = tb->jmp_next[n];
845 tb->jmp_next[n] = NULL;
849 /* reset the jump entry 'n' of a TB so that it is not chained to
850 another TB */
851 static inline void tb_reset_jump(TranslationBlock *tb, int n)
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
856 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
858 CPUState *env;
859 PageDesc *p;
860 unsigned int h, n1;
861 tb_page_addr_t phys_pc;
862 TranslationBlock *tb1, *tb2;
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
867 tb_remove(&tb_phys_hash[h], tb,
868 offsetof(TranslationBlock, phys_hash_next));
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
882 tb_invalidated_flag = 1;
884 /* remove the TB from the hash list */
885 h = tb_jmp_cache_hash_func(tb->pc);
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
909 tb_phys_invalidate_count++;
912 static inline void set_bits(uint8_t *tab, int start, int len)
914 int end, mask, end1;
916 end = start + len;
917 tab += start >> 3;
918 mask = 0xff << (start & 7);
919 if ((start & ~7) == (end & ~7)) {
920 if (start < end) {
921 mask &= ~(0xff << (end & 7));
922 *tab |= mask;
924 } else {
925 *tab++ |= mask;
926 start = (start + 8) & ~7;
927 end1 = end & ~7;
928 while (start < end1) {
929 *tab++ = 0xff;
930 start += 8;
932 if (start < end) {
933 mask = ~(0xff << (end & 7));
934 *tab |= mask;
939 static void build_page_bitmap(PageDesc *p)
941 int n, tb_start, tb_end;
942 TranslationBlock *tb;
944 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->pc & ~TARGET_PAGE_MASK;
955 tb_end = tb_start + tb->size;
956 if (tb_end > TARGET_PAGE_SIZE)
957 tb_end = TARGET_PAGE_SIZE;
958 } else {
959 tb_start = 0;
960 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
962 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
963 tb = tb->page_next[n];
967 TranslationBlock *tb_gen_code(CPUState *env,
968 target_ulong pc, target_ulong cs_base,
969 int flags, int cflags)
971 TranslationBlock *tb;
972 uint8_t *tc_ptr;
973 tb_page_addr_t phys_pc, phys_page2;
974 target_ulong virt_page2;
975 int code_gen_size;
977 phys_pc = get_page_addr_code(env, pc);
978 tb = tb_alloc(pc);
979 if (!tb) {
980 /* flush must be done */
981 tb_flush(env);
982 /* cannot fail at this point */
983 tb = tb_alloc(pc);
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag = 1;
987 tc_ptr = code_gen_ptr;
988 tb->tc_ptr = tc_ptr;
989 tb->cs_base = cs_base;
990 tb->flags = flags;
991 tb->cflags = cflags;
992 cpu_gen_code(env, tb, &code_gen_size);
993 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
995 /* check next page if needed */
996 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
997 phys_page2 = -1;
998 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
999 phys_page2 = get_page_addr_code(env, virt_page2);
1001 tb_link_page(tb, phys_pc, phys_page2);
1002 return tb;
1005 /* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
1010 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1011 int is_cpu_write_access)
1013 TranslationBlock *tb, *tb_next, *saved_tb;
1014 CPUState *env = cpu_single_env;
1015 tb_page_addr_t tb_start, tb_end;
1016 PageDesc *p;
1017 int n;
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found = is_cpu_write_access;
1020 TranslationBlock *current_tb = NULL;
1021 int current_tb_modified = 0;
1022 target_ulong current_pc = 0;
1023 target_ulong current_cs_base = 0;
1024 int current_flags = 0;
1025 #endif /* TARGET_HAS_PRECISE_SMC */
1027 p = page_find(start >> TARGET_PAGE_BITS);
1028 if (!p)
1029 return;
1030 if (!p->code_bitmap &&
1031 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1032 is_cpu_write_access) {
1033 /* build code bitmap */
1034 build_page_bitmap(p);
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1039 tb = p->first_tb;
1040 while (tb != NULL) {
1041 n = (long)tb & 3;
1042 tb = (TranslationBlock *)((long)tb & ~3);
1043 tb_next = tb->page_next[n];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1045 if (n == 0) {
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1049 tb_end = tb_start + tb->size;
1050 } else {
1051 tb_start = tb->page_addr[1];
1052 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1054 if (!(tb_end <= start || tb_start >= end)) {
1055 #ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found) {
1057 current_tb_not_found = 0;
1058 current_tb = NULL;
1059 if (env->mem_io_pc) {
1060 /* now we have a real cpu fault */
1061 current_tb = tb_find_pc(env->mem_io_pc);
1064 if (current_tb == tb &&
1065 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
1072 current_tb_modified = 1;
1073 cpu_restore_state(current_tb, env,
1074 env->mem_io_pc, NULL);
1075 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1076 &current_flags);
1078 #endif /* TARGET_HAS_PRECISE_SMC */
1079 /* we need to do that to handle the case where a signal
1080 occurs while doing tb_phys_invalidate() */
1081 saved_tb = NULL;
1082 if (env) {
1083 saved_tb = env->current_tb;
1084 env->current_tb = NULL;
1086 tb_phys_invalidate(tb, -1);
1087 if (env) {
1088 env->current_tb = saved_tb;
1089 if (env->interrupt_request && env->current_tb)
1090 cpu_interrupt(env, env->interrupt_request);
1093 tb = tb_next;
1095 #if !defined(CONFIG_USER_ONLY)
1096 /* if no code remaining, no need to continue to use slow writes */
1097 if (!p->first_tb) {
1098 invalidate_page_bitmap(p);
1099 if (is_cpu_write_access) {
1100 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1103 #endif
1104 #ifdef TARGET_HAS_PRECISE_SMC
1105 if (current_tb_modified) {
1106 /* we generate a block containing just the instruction
1107 modifying the memory. It will ensure that it cannot modify
1108 itself */
1109 env->current_tb = NULL;
1110 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1111 cpu_resume_from_signal(env, NULL);
1113 #endif
1116 /* len must be <= 8 and start must be a multiple of len */
1117 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1119 PageDesc *p;
1120 int offset, b;
1121 #if 0
1122 if (1) {
1123 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1124 cpu_single_env->mem_io_vaddr, len,
1125 cpu_single_env->eip,
1126 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1128 #endif
1129 p = page_find(start >> TARGET_PAGE_BITS);
1130 if (!p)
1131 return;
1132 if (p->code_bitmap) {
1133 offset = start & ~TARGET_PAGE_MASK;
1134 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1135 if (b & ((1 << len) - 1))
1136 goto do_invalidate;
1137 } else {
1138 do_invalidate:
1139 tb_invalidate_phys_page_range(start, start + len, 1);
1143 #if !defined(CONFIG_SOFTMMU)
1144 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1145 unsigned long pc, void *puc)
1147 TranslationBlock *tb;
1148 PageDesc *p;
1149 int n;
1150 #ifdef TARGET_HAS_PRECISE_SMC
1151 TranslationBlock *current_tb = NULL;
1152 CPUState *env = cpu_single_env;
1153 int current_tb_modified = 0;
1154 target_ulong current_pc = 0;
1155 target_ulong current_cs_base = 0;
1156 int current_flags = 0;
1157 #endif
1159 addr &= TARGET_PAGE_MASK;
1160 p = page_find(addr >> TARGET_PAGE_BITS);
1161 if (!p)
1162 return;
1163 tb = p->first_tb;
1164 #ifdef TARGET_HAS_PRECISE_SMC
1165 if (tb && pc != 0) {
1166 current_tb = tb_find_pc(pc);
1168 #endif
1169 while (tb != NULL) {
1170 n = (long)tb & 3;
1171 tb = (TranslationBlock *)((long)tb & ~3);
1172 #ifdef TARGET_HAS_PRECISE_SMC
1173 if (current_tb == tb &&
1174 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1175 /* If we are modifying the current TB, we must stop
1176 its execution. We could be more precise by checking
1177 that the modification is after the current PC, but it
1178 would require a specialized function to partially
1179 restore the CPU state */
1181 current_tb_modified = 1;
1182 cpu_restore_state(current_tb, env, pc, puc);
1183 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1184 &current_flags);
1186 #endif /* TARGET_HAS_PRECISE_SMC */
1187 tb_phys_invalidate(tb, addr);
1188 tb = tb->page_next[n];
1190 p->first_tb = NULL;
1191 #ifdef TARGET_HAS_PRECISE_SMC
1192 if (current_tb_modified) {
1193 /* we generate a block containing just the instruction
1194 modifying the memory. It will ensure that it cannot modify
1195 itself */
1196 env->current_tb = NULL;
1197 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1198 cpu_resume_from_signal(env, puc);
1200 #endif
1202 #endif
1204 /* add the tb in the target page and protect it if necessary */
1205 static inline void tb_alloc_page(TranslationBlock *tb,
1206 unsigned int n, tb_page_addr_t page_addr)
1208 PageDesc *p;
1209 TranslationBlock *last_first_tb;
1211 tb->page_addr[n] = page_addr;
1212 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1213 tb->page_next[n] = p->first_tb;
1214 last_first_tb = p->first_tb;
1215 p->first_tb = (TranslationBlock *)((long)tb | n);
1216 invalidate_page_bitmap(p);
1218 #if defined(TARGET_HAS_SMC) || 1
1220 #if defined(CONFIG_USER_ONLY)
1221 if (p->flags & PAGE_WRITE) {
1222 target_ulong addr;
1223 PageDesc *p2;
1224 int prot;
1226 /* force the host page as non writable (writes will have a
1227 page fault + mprotect overhead) */
1228 page_addr &= qemu_host_page_mask;
1229 prot = 0;
1230 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1231 addr += TARGET_PAGE_SIZE) {
1233 p2 = page_find (addr >> TARGET_PAGE_BITS);
1234 if (!p2)
1235 continue;
1236 prot |= p2->flags;
1237 p2->flags &= ~PAGE_WRITE;
1239 mprotect(g2h(page_addr), qemu_host_page_size,
1240 (prot & PAGE_BITS) & ~PAGE_WRITE);
1241 #ifdef DEBUG_TB_INVALIDATE
1242 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1243 page_addr);
1244 #endif
1246 #else
1247 /* if some code is already present, then the pages are already
1248 protected. So we handle the case where only the first TB is
1249 allocated in a physical page */
1250 if (!last_first_tb) {
1251 tlb_protect_code(page_addr);
1253 #endif
1255 #endif /* TARGET_HAS_SMC */
1258 /* add a new TB and link it to the physical page tables. phys_page2 is
1259 (-1) to indicate that only one page contains the TB. */
1260 void tb_link_page(TranslationBlock *tb,
1261 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1263 unsigned int h;
1264 TranslationBlock **ptb;
1266 /* Grab the mmap lock to stop another thread invalidating this TB
1267 before we are done. */
1268 mmap_lock();
1269 /* add in the physical hash table */
1270 h = tb_phys_hash_func(phys_pc);
1271 ptb = &tb_phys_hash[h];
1272 tb->phys_hash_next = *ptb;
1273 *ptb = tb;
1275 /* add in the page list */
1276 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1277 if (phys_page2 != -1)
1278 tb_alloc_page(tb, 1, phys_page2);
1279 else
1280 tb->page_addr[1] = -1;
1282 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1283 tb->jmp_next[0] = NULL;
1284 tb->jmp_next[1] = NULL;
1286 /* init original jump addresses */
1287 if (tb->tb_next_offset[0] != 0xffff)
1288 tb_reset_jump(tb, 0);
1289 if (tb->tb_next_offset[1] != 0xffff)
1290 tb_reset_jump(tb, 1);
1292 #ifdef DEBUG_TB_CHECK
1293 tb_page_check();
1294 #endif
1295 mmap_unlock();
1298 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1299 tb[1].tc_ptr. Return NULL if not found */
1300 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1302 int m_min, m_max, m;
1303 unsigned long v;
1304 TranslationBlock *tb;
1306 if (nb_tbs <= 0)
1307 return NULL;
1308 if (tc_ptr < (unsigned long)code_gen_buffer ||
1309 tc_ptr >= (unsigned long)code_gen_ptr)
1310 return NULL;
1311 /* binary search (cf Knuth) */
1312 m_min = 0;
1313 m_max = nb_tbs - 1;
1314 while (m_min <= m_max) {
1315 m = (m_min + m_max) >> 1;
1316 tb = &tbs[m];
1317 v = (unsigned long)tb->tc_ptr;
1318 if (v == tc_ptr)
1319 return tb;
1320 else if (tc_ptr < v) {
1321 m_max = m - 1;
1322 } else {
1323 m_min = m + 1;
1326 return &tbs[m_max];
1329 static void tb_reset_jump_recursive(TranslationBlock *tb);
1331 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1333 TranslationBlock *tb1, *tb_next, **ptb;
1334 unsigned int n1;
1336 tb1 = tb->jmp_next[n];
1337 if (tb1 != NULL) {
1338 /* find head of list */
1339 for(;;) {
1340 n1 = (long)tb1 & 3;
1341 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1342 if (n1 == 2)
1343 break;
1344 tb1 = tb1->jmp_next[n1];
1346 /* we are now sure now that tb jumps to tb1 */
1347 tb_next = tb1;
1349 /* remove tb from the jmp_first list */
1350 ptb = &tb_next->jmp_first;
1351 for(;;) {
1352 tb1 = *ptb;
1353 n1 = (long)tb1 & 3;
1354 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1355 if (n1 == n && tb1 == tb)
1356 break;
1357 ptb = &tb1->jmp_next[n1];
1359 *ptb = tb->jmp_next[n];
1360 tb->jmp_next[n] = NULL;
1362 /* suppress the jump to next tb in generated code */
1363 tb_reset_jump(tb, n);
1365 /* suppress jumps in the tb on which we could have jumped */
1366 tb_reset_jump_recursive(tb_next);
1370 static void tb_reset_jump_recursive(TranslationBlock *tb)
1372 tb_reset_jump_recursive2(tb, 0);
1373 tb_reset_jump_recursive2(tb, 1);
1376 #if defined(TARGET_HAS_ICE)
1377 #if defined(CONFIG_USER_ONLY)
1378 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1382 #else
1383 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1385 target_phys_addr_t addr;
1386 target_ulong pd;
1387 ram_addr_t ram_addr;
1388 PhysPageDesc *p;
1390 addr = cpu_get_phys_page_debug(env, pc);
1391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1392 if (!p) {
1393 pd = IO_MEM_UNASSIGNED;
1394 } else {
1395 pd = p->phys_offset;
1397 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1398 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1400 #endif
1401 #endif /* TARGET_HAS_ICE */
1403 #if defined(CONFIG_USER_ONLY)
1404 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1409 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1410 int flags, CPUWatchpoint **watchpoint)
1412 return -ENOSYS;
1414 #else
1415 /* Add a watchpoint. */
1416 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1417 int flags, CPUWatchpoint **watchpoint)
1419 target_ulong len_mask = ~(len - 1);
1420 CPUWatchpoint *wp;
1422 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1423 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1424 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1425 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1426 return -EINVAL;
1428 wp = qemu_malloc(sizeof(*wp));
1430 wp->vaddr = addr;
1431 wp->len_mask = len_mask;
1432 wp->flags = flags;
1434 /* keep all GDB-injected watchpoints in front */
1435 if (flags & BP_GDB)
1436 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1437 else
1438 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1440 tlb_flush_page(env, addr);
1442 if (watchpoint)
1443 *watchpoint = wp;
1444 return 0;
1447 /* Remove a specific watchpoint. */
1448 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1449 int flags)
1451 target_ulong len_mask = ~(len - 1);
1452 CPUWatchpoint *wp;
1454 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1455 if (addr == wp->vaddr && len_mask == wp->len_mask
1456 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1457 cpu_watchpoint_remove_by_ref(env, wp);
1458 return 0;
1461 return -ENOENT;
1464 /* Remove a specific watchpoint by reference. */
1465 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1467 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1469 tlb_flush_page(env, watchpoint->vaddr);
1471 qemu_free(watchpoint);
1474 /* Remove all matching watchpoints. */
1475 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1477 CPUWatchpoint *wp, *next;
1479 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1480 if (wp->flags & mask)
1481 cpu_watchpoint_remove_by_ref(env, wp);
1484 #endif
1486 /* Add a breakpoint. */
1487 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1488 CPUBreakpoint **breakpoint)
1490 #if defined(TARGET_HAS_ICE)
1491 CPUBreakpoint *bp;
1493 bp = qemu_malloc(sizeof(*bp));
1495 bp->pc = pc;
1496 bp->flags = flags;
1498 /* keep all GDB-injected breakpoints in front */
1499 if (flags & BP_GDB)
1500 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1501 else
1502 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1504 breakpoint_invalidate(env, pc);
1506 if (breakpoint)
1507 *breakpoint = bp;
1508 return 0;
1509 #else
1510 return -ENOSYS;
1511 #endif
1514 /* Remove a specific breakpoint. */
1515 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1517 #if defined(TARGET_HAS_ICE)
1518 CPUBreakpoint *bp;
1520 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1521 if (bp->pc == pc && bp->flags == flags) {
1522 cpu_breakpoint_remove_by_ref(env, bp);
1523 return 0;
1526 return -ENOENT;
1527 #else
1528 return -ENOSYS;
1529 #endif
1532 /* Remove a specific breakpoint by reference. */
1533 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1535 #if defined(TARGET_HAS_ICE)
1536 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1538 breakpoint_invalidate(env, breakpoint->pc);
1540 qemu_free(breakpoint);
1541 #endif
1544 /* Remove all matching breakpoints. */
1545 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1547 #if defined(TARGET_HAS_ICE)
1548 CPUBreakpoint *bp, *next;
1550 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1551 if (bp->flags & mask)
1552 cpu_breakpoint_remove_by_ref(env, bp);
1554 #endif
1557 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1558 CPU loop after each instruction */
1559 void cpu_single_step(CPUState *env, int enabled)
1561 #if defined(TARGET_HAS_ICE)
1562 if (env->singlestep_enabled != enabled) {
1563 env->singlestep_enabled = enabled;
1564 if (kvm_enabled())
1565 kvm_update_guest_debug(env, 0);
1566 else {
1567 /* must flush all the translated code to avoid inconsistencies */
1568 /* XXX: only flush what is necessary */
1569 tb_flush(env);
1572 #endif
1575 /* enable or disable low levels log */
1576 void cpu_set_log(int log_flags)
1578 loglevel = log_flags;
1579 if (loglevel && !logfile) {
1580 logfile = fopen(logfilename, log_append ? "a" : "w");
1581 if (!logfile) {
1582 perror(logfilename);
1583 _exit(1);
1585 #if !defined(CONFIG_SOFTMMU)
1586 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1588 static char logfile_buf[4096];
1589 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1591 #elif !defined(_WIN32)
1592 /* Win32 doesn't support line-buffering and requires size >= 2 */
1593 setvbuf(logfile, NULL, _IOLBF, 0);
1594 #endif
1595 log_append = 1;
1597 if (!loglevel && logfile) {
1598 fclose(logfile);
1599 logfile = NULL;
1603 void cpu_set_log_filename(const char *filename)
1605 logfilename = strdup(filename);
1606 if (logfile) {
1607 fclose(logfile);
1608 logfile = NULL;
1610 cpu_set_log(loglevel);
1613 static void cpu_unlink_tb(CPUState *env)
1615 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1616 problem and hope the cpu will stop of its own accord. For userspace
1617 emulation this often isn't actually as bad as it sounds. Often
1618 signals are used primarily to interrupt blocking syscalls. */
1619 TranslationBlock *tb;
1620 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1622 spin_lock(&interrupt_lock);
1623 tb = env->current_tb;
1624 /* if the cpu is currently executing code, we must unlink it and
1625 all the potentially executing TB */
1626 if (tb) {
1627 env->current_tb = NULL;
1628 tb_reset_jump_recursive(tb);
1630 spin_unlock(&interrupt_lock);
1633 /* mask must never be zero, except for A20 change call */
1634 void cpu_interrupt(CPUState *env, int mask)
1636 int old_mask;
1638 old_mask = env->interrupt_request;
1639 env->interrupt_request |= mask;
1641 #ifndef CONFIG_USER_ONLY
1643 * If called from iothread context, wake the target cpu in
1644 * case its halted.
1646 if (!qemu_cpu_is_self(env)) {
1647 qemu_cpu_kick(env);
1648 return;
1650 #endif
1652 if (use_icount) {
1653 env->icount_decr.u16.high = 0xffff;
1654 #ifndef CONFIG_USER_ONLY
1655 if (!can_do_io(env)
1656 && (mask & ~old_mask) != 0) {
1657 cpu_abort(env, "Raised interrupt while not in I/O function");
1659 #endif
1660 } else {
1661 cpu_unlink_tb(env);
1665 void cpu_reset_interrupt(CPUState *env, int mask)
1667 env->interrupt_request &= ~mask;
1670 void cpu_exit(CPUState *env)
1672 env->exit_request = 1;
1673 cpu_unlink_tb(env);
1676 const CPULogItem cpu_log_items[] = {
1677 { CPU_LOG_TB_OUT_ASM, "out_asm",
1678 "show generated host assembly code for each compiled TB" },
1679 { CPU_LOG_TB_IN_ASM, "in_asm",
1680 "show target assembly code for each compiled TB" },
1681 { CPU_LOG_TB_OP, "op",
1682 "show micro ops for each compiled TB" },
1683 { CPU_LOG_TB_OP_OPT, "op_opt",
1684 "show micro ops "
1685 #ifdef TARGET_I386
1686 "before eflags optimization and "
1687 #endif
1688 "after liveness analysis" },
1689 { CPU_LOG_INT, "int",
1690 "show interrupts/exceptions in short format" },
1691 { CPU_LOG_EXEC, "exec",
1692 "show trace before each executed TB (lots of logs)" },
1693 { CPU_LOG_TB_CPU, "cpu",
1694 "show CPU state before block translation" },
1695 #ifdef TARGET_I386
1696 { CPU_LOG_PCALL, "pcall",
1697 "show protected mode far calls/returns/exceptions" },
1698 { CPU_LOG_RESET, "cpu_reset",
1699 "show CPU state before CPU resets" },
1700 #endif
1701 #ifdef DEBUG_IOPORT
1702 { CPU_LOG_IOPORT, "ioport",
1703 "show all i/o ports accesses" },
1704 #endif
1705 { 0, NULL, NULL },
1708 #ifndef CONFIG_USER_ONLY
1709 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1710 = QLIST_HEAD_INITIALIZER(memory_client_list);
1712 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1713 ram_addr_t size,
1714 ram_addr_t phys_offset)
1716 CPUPhysMemoryClient *client;
1717 QLIST_FOREACH(client, &memory_client_list, list) {
1718 client->set_memory(client, start_addr, size, phys_offset);
1722 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1723 target_phys_addr_t end)
1725 CPUPhysMemoryClient *client;
1726 QLIST_FOREACH(client, &memory_client_list, list) {
1727 int r = client->sync_dirty_bitmap(client, start, end);
1728 if (r < 0)
1729 return r;
1731 return 0;
1734 static int cpu_notify_migration_log(int enable)
1736 CPUPhysMemoryClient *client;
1737 QLIST_FOREACH(client, &memory_client_list, list) {
1738 int r = client->migration_log(client, enable);
1739 if (r < 0)
1740 return r;
1742 return 0;
1745 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1746 int level, void **lp)
1748 int i;
1750 if (*lp == NULL) {
1751 return;
1753 if (level == 0) {
1754 PhysPageDesc *pd = *lp;
1755 for (i = 0; i < L2_SIZE; ++i) {
1756 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1757 client->set_memory(client, pd[i].region_offset,
1758 TARGET_PAGE_SIZE, pd[i].phys_offset);
1761 } else {
1762 void **pp = *lp;
1763 for (i = 0; i < L2_SIZE; ++i) {
1764 phys_page_for_each_1(client, level - 1, pp + i);
1769 static void phys_page_for_each(CPUPhysMemoryClient *client)
1771 int i;
1772 for (i = 0; i < P_L1_SIZE; ++i) {
1773 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1774 l1_phys_map + 1);
1778 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1780 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1781 phys_page_for_each(client);
1784 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1786 QLIST_REMOVE(client, list);
1788 #endif
1790 static int cmp1(const char *s1, int n, const char *s2)
1792 if (strlen(s2) != n)
1793 return 0;
1794 return memcmp(s1, s2, n) == 0;
1797 /* takes a comma separated list of log masks. Return 0 if error. */
1798 int cpu_str_to_log_mask(const char *str)
1800 const CPULogItem *item;
1801 int mask;
1802 const char *p, *p1;
1804 p = str;
1805 mask = 0;
1806 for(;;) {
1807 p1 = strchr(p, ',');
1808 if (!p1)
1809 p1 = p + strlen(p);
1810 if(cmp1(p,p1-p,"all")) {
1811 for(item = cpu_log_items; item->mask != 0; item++) {
1812 mask |= item->mask;
1814 } else {
1815 for(item = cpu_log_items; item->mask != 0; item++) {
1816 if (cmp1(p, p1 - p, item->name))
1817 goto found;
1819 return 0;
1821 found:
1822 mask |= item->mask;
1823 if (*p1 != ',')
1824 break;
1825 p = p1 + 1;
1827 return mask;
1830 void cpu_abort(CPUState *env, const char *fmt, ...)
1832 va_list ap;
1833 va_list ap2;
1835 va_start(ap, fmt);
1836 va_copy(ap2, ap);
1837 fprintf(stderr, "qemu: fatal: ");
1838 vfprintf(stderr, fmt, ap);
1839 fprintf(stderr, "\n");
1840 #ifdef TARGET_I386
1841 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1842 #else
1843 cpu_dump_state(env, stderr, fprintf, 0);
1844 #endif
1845 if (qemu_log_enabled()) {
1846 qemu_log("qemu: fatal: ");
1847 qemu_log_vprintf(fmt, ap2);
1848 qemu_log("\n");
1849 #ifdef TARGET_I386
1850 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1851 #else
1852 log_cpu_state(env, 0);
1853 #endif
1854 qemu_log_flush();
1855 qemu_log_close();
1857 va_end(ap2);
1858 va_end(ap);
1859 #if defined(CONFIG_USER_ONLY)
1861 struct sigaction act;
1862 sigfillset(&act.sa_mask);
1863 act.sa_handler = SIG_DFL;
1864 sigaction(SIGABRT, &act, NULL);
1866 #endif
1867 abort();
1870 CPUState *cpu_copy(CPUState *env)
1872 CPUState *new_env = cpu_init(env->cpu_model_str);
1873 CPUState *next_cpu = new_env->next_cpu;
1874 int cpu_index = new_env->cpu_index;
1875 #if defined(TARGET_HAS_ICE)
1876 CPUBreakpoint *bp;
1877 CPUWatchpoint *wp;
1878 #endif
1880 memcpy(new_env, env, sizeof(CPUState));
1882 /* Preserve chaining and index. */
1883 new_env->next_cpu = next_cpu;
1884 new_env->cpu_index = cpu_index;
1886 /* Clone all break/watchpoints.
1887 Note: Once we support ptrace with hw-debug register access, make sure
1888 BP_CPU break/watchpoints are handled correctly on clone. */
1889 QTAILQ_INIT(&env->breakpoints);
1890 QTAILQ_INIT(&env->watchpoints);
1891 #if defined(TARGET_HAS_ICE)
1892 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1893 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1895 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1896 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1897 wp->flags, NULL);
1899 #endif
1901 return new_env;
1904 #if !defined(CONFIG_USER_ONLY)
1906 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1908 unsigned int i;
1910 /* Discard jump cache entries for any tb which might potentially
1911 overlap the flushed page. */
1912 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1913 memset (&env->tb_jmp_cache[i], 0,
1914 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1916 i = tb_jmp_cache_hash_page(addr);
1917 memset (&env->tb_jmp_cache[i], 0,
1918 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1921 static CPUTLBEntry s_cputlb_empty_entry = {
1922 .addr_read = -1,
1923 .addr_write = -1,
1924 .addr_code = -1,
1925 .addend = -1,
1928 /* NOTE: if flush_global is true, also flush global entries (not
1929 implemented yet) */
1930 void tlb_flush(CPUState *env, int flush_global)
1932 int i;
1934 #if defined(DEBUG_TLB)
1935 printf("tlb_flush:\n");
1936 #endif
1937 /* must reset current TB so that interrupts cannot modify the
1938 links while we are modifying them */
1939 env->current_tb = NULL;
1941 for(i = 0; i < CPU_TLB_SIZE; i++) {
1942 int mmu_idx;
1943 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1944 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1948 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1950 env->tlb_flush_addr = -1;
1951 env->tlb_flush_mask = 0;
1952 tlb_flush_count++;
1955 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1957 if (addr == (tlb_entry->addr_read &
1958 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1959 addr == (tlb_entry->addr_write &
1960 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1961 addr == (tlb_entry->addr_code &
1962 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1963 *tlb_entry = s_cputlb_empty_entry;
1967 void tlb_flush_page(CPUState *env, target_ulong addr)
1969 int i;
1970 int mmu_idx;
1972 #if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1974 #endif
1975 /* Check if we need to flush due to large pages. */
1976 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1977 #if defined(DEBUG_TLB)
1978 printf("tlb_flush_page: forced full flush ("
1979 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1980 env->tlb_flush_addr, env->tlb_flush_mask);
1981 #endif
1982 tlb_flush(env, 1);
1983 return;
1985 /* must reset current TB so that interrupts cannot modify the
1986 links while we are modifying them */
1987 env->current_tb = NULL;
1989 addr &= TARGET_PAGE_MASK;
1990 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1991 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1992 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1994 tlb_flush_jmp_cache(env, addr);
1997 /* update the TLBs so that writes to code in the virtual page 'addr'
1998 can be detected */
1999 static void tlb_protect_code(ram_addr_t ram_addr)
2001 cpu_physical_memory_reset_dirty(ram_addr,
2002 ram_addr + TARGET_PAGE_SIZE,
2003 CODE_DIRTY_FLAG);
2006 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2007 tested for self modifying code */
2008 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2009 target_ulong vaddr)
2011 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2014 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2015 unsigned long start, unsigned long length)
2017 unsigned long addr;
2018 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2019 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2020 if ((addr - start) < length) {
2021 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2026 /* Note: start and end must be within the same ram block. */
2027 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2028 int dirty_flags)
2030 CPUState *env;
2031 unsigned long length, start1;
2032 int i;
2034 start &= TARGET_PAGE_MASK;
2035 end = TARGET_PAGE_ALIGN(end);
2037 length = end - start;
2038 if (length == 0)
2039 return;
2040 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2042 /* we modify the TLB cache so that the dirty bit will be set again
2043 when accessing the range */
2044 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2045 /* Chek that we don't span multiple blocks - this breaks the
2046 address comparisons below. */
2047 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2048 != (end - 1) - start) {
2049 abort();
2052 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2053 int mmu_idx;
2054 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2055 for(i = 0; i < CPU_TLB_SIZE; i++)
2056 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2057 start1, length);
2062 int cpu_physical_memory_set_dirty_tracking(int enable)
2064 int ret = 0;
2065 in_migration = enable;
2066 ret = cpu_notify_migration_log(!!enable);
2067 return ret;
2070 int cpu_physical_memory_get_dirty_tracking(void)
2072 return in_migration;
2075 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2076 target_phys_addr_t end_addr)
2078 int ret;
2080 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2081 return ret;
2084 int cpu_physical_log_start(target_phys_addr_t start_addr,
2085 ram_addr_t size)
2087 CPUPhysMemoryClient *client;
2088 QLIST_FOREACH(client, &memory_client_list, list) {
2089 if (client->log_start) {
2090 int r = client->log_start(client, start_addr, size);
2091 if (r < 0) {
2092 return r;
2096 return 0;
2099 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2100 ram_addr_t size)
2102 CPUPhysMemoryClient *client;
2103 QLIST_FOREACH(client, &memory_client_list, list) {
2104 if (client->log_stop) {
2105 int r = client->log_stop(client, start_addr, size);
2106 if (r < 0) {
2107 return r;
2111 return 0;
2114 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2116 ram_addr_t ram_addr;
2117 void *p;
2119 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2120 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2121 + tlb_entry->addend);
2122 ram_addr = qemu_ram_addr_from_host_nofail(p);
2123 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2124 tlb_entry->addr_write |= TLB_NOTDIRTY;
2129 /* update the TLB according to the current state of the dirty bits */
2130 void cpu_tlb_update_dirty(CPUState *env)
2132 int i;
2133 int mmu_idx;
2134 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2135 for(i = 0; i < CPU_TLB_SIZE; i++)
2136 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2140 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2142 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2143 tlb_entry->addr_write = vaddr;
2146 /* update the TLB corresponding to virtual page vaddr
2147 so that it is no longer dirty */
2148 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2150 int i;
2151 int mmu_idx;
2153 vaddr &= TARGET_PAGE_MASK;
2154 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2155 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2156 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2159 /* Our TLB does not support large pages, so remember the area covered by
2160 large pages and trigger a full TLB flush if these are invalidated. */
2161 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2162 target_ulong size)
2164 target_ulong mask = ~(size - 1);
2166 if (env->tlb_flush_addr == (target_ulong)-1) {
2167 env->tlb_flush_addr = vaddr & mask;
2168 env->tlb_flush_mask = mask;
2169 return;
2171 /* Extend the existing region to include the new page.
2172 This is a compromise between unnecessary flushes and the cost
2173 of maintaining a full variable size TLB. */
2174 mask &= env->tlb_flush_mask;
2175 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2176 mask <<= 1;
2178 env->tlb_flush_addr &= mask;
2179 env->tlb_flush_mask = mask;
2182 /* Add a new TLB entry. At most one entry for a given virtual address
2183 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2184 supplied size is only used by tlb_flush_page. */
2185 void tlb_set_page(CPUState *env, target_ulong vaddr,
2186 target_phys_addr_t paddr, int prot,
2187 int mmu_idx, target_ulong size)
2189 PhysPageDesc *p;
2190 unsigned long pd;
2191 unsigned int index;
2192 target_ulong address;
2193 target_ulong code_address;
2194 unsigned long addend;
2195 CPUTLBEntry *te;
2196 CPUWatchpoint *wp;
2197 target_phys_addr_t iotlb;
2199 assert(size >= TARGET_PAGE_SIZE);
2200 if (size != TARGET_PAGE_SIZE) {
2201 tlb_add_large_page(env, vaddr, size);
2203 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2204 if (!p) {
2205 pd = IO_MEM_UNASSIGNED;
2206 } else {
2207 pd = p->phys_offset;
2209 #if defined(DEBUG_TLB)
2210 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2211 " prot=%x idx=%d pd=0x%08lx\n",
2212 vaddr, paddr, prot, mmu_idx, pd);
2213 #endif
2215 address = vaddr;
2216 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2217 /* IO memory case (romd handled later) */
2218 address |= TLB_MMIO;
2220 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2221 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2222 /* Normal RAM. */
2223 iotlb = pd & TARGET_PAGE_MASK;
2224 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2225 iotlb |= IO_MEM_NOTDIRTY;
2226 else
2227 iotlb |= IO_MEM_ROM;
2228 } else {
2229 /* IO handlers are currently passed a physical address.
2230 It would be nice to pass an offset from the base address
2231 of that region. This would avoid having to special case RAM,
2232 and avoid full address decoding in every device.
2233 We can't use the high bits of pd for this because
2234 IO_MEM_ROMD uses these as a ram address. */
2235 iotlb = (pd & ~TARGET_PAGE_MASK);
2236 if (p) {
2237 iotlb += p->region_offset;
2238 } else {
2239 iotlb += paddr;
2243 code_address = address;
2244 /* Make accesses to pages with watchpoints go via the
2245 watchpoint trap routines. */
2246 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2247 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2248 /* Avoid trapping reads of pages with a write breakpoint. */
2249 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2250 iotlb = io_mem_watch + paddr;
2251 address |= TLB_MMIO;
2252 break;
2257 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2258 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2259 te = &env->tlb_table[mmu_idx][index];
2260 te->addend = addend - vaddr;
2261 if (prot & PAGE_READ) {
2262 te->addr_read = address;
2263 } else {
2264 te->addr_read = -1;
2267 if (prot & PAGE_EXEC) {
2268 te->addr_code = code_address;
2269 } else {
2270 te->addr_code = -1;
2272 if (prot & PAGE_WRITE) {
2273 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2274 (pd & IO_MEM_ROMD)) {
2275 /* Write access calls the I/O callback. */
2276 te->addr_write = address | TLB_MMIO;
2277 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2278 !cpu_physical_memory_is_dirty(pd)) {
2279 te->addr_write = address | TLB_NOTDIRTY;
2280 } else {
2281 te->addr_write = address;
2283 } else {
2284 te->addr_write = -1;
2288 #else
2290 void tlb_flush(CPUState *env, int flush_global)
2294 void tlb_flush_page(CPUState *env, target_ulong addr)
2299 * Walks guest process memory "regions" one by one
2300 * and calls callback function 'fn' for each region.
2303 struct walk_memory_regions_data
2305 walk_memory_regions_fn fn;
2306 void *priv;
2307 unsigned long start;
2308 int prot;
2311 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2312 abi_ulong end, int new_prot)
2314 if (data->start != -1ul) {
2315 int rc = data->fn(data->priv, data->start, end, data->prot);
2316 if (rc != 0) {
2317 return rc;
2321 data->start = (new_prot ? end : -1ul);
2322 data->prot = new_prot;
2324 return 0;
2327 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2328 abi_ulong base, int level, void **lp)
2330 abi_ulong pa;
2331 int i, rc;
2333 if (*lp == NULL) {
2334 return walk_memory_regions_end(data, base, 0);
2337 if (level == 0) {
2338 PageDesc *pd = *lp;
2339 for (i = 0; i < L2_SIZE; ++i) {
2340 int prot = pd[i].flags;
2342 pa = base | (i << TARGET_PAGE_BITS);
2343 if (prot != data->prot) {
2344 rc = walk_memory_regions_end(data, pa, prot);
2345 if (rc != 0) {
2346 return rc;
2350 } else {
2351 void **pp = *lp;
2352 for (i = 0; i < L2_SIZE; ++i) {
2353 pa = base | ((abi_ulong)i <<
2354 (TARGET_PAGE_BITS + L2_BITS * level));
2355 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2356 if (rc != 0) {
2357 return rc;
2362 return 0;
2365 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2367 struct walk_memory_regions_data data;
2368 unsigned long i;
2370 data.fn = fn;
2371 data.priv = priv;
2372 data.start = -1ul;
2373 data.prot = 0;
2375 for (i = 0; i < V_L1_SIZE; i++) {
2376 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2377 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2378 if (rc != 0) {
2379 return rc;
2383 return walk_memory_regions_end(&data, 0, 0);
2386 static int dump_region(void *priv, abi_ulong start,
2387 abi_ulong end, unsigned long prot)
2389 FILE *f = (FILE *)priv;
2391 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2392 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2393 start, end, end - start,
2394 ((prot & PAGE_READ) ? 'r' : '-'),
2395 ((prot & PAGE_WRITE) ? 'w' : '-'),
2396 ((prot & PAGE_EXEC) ? 'x' : '-'));
2398 return (0);
2401 /* dump memory mappings */
2402 void page_dump(FILE *f)
2404 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2405 "start", "end", "size", "prot");
2406 walk_memory_regions(f, dump_region);
2409 int page_get_flags(target_ulong address)
2411 PageDesc *p;
2413 p = page_find(address >> TARGET_PAGE_BITS);
2414 if (!p)
2415 return 0;
2416 return p->flags;
2419 /* Modify the flags of a page and invalidate the code if necessary.
2420 The flag PAGE_WRITE_ORG is positioned automatically depending
2421 on PAGE_WRITE. The mmap_lock should already be held. */
2422 void page_set_flags(target_ulong start, target_ulong end, int flags)
2424 target_ulong addr, len;
2426 /* This function should never be called with addresses outside the
2427 guest address space. If this assert fires, it probably indicates
2428 a missing call to h2g_valid. */
2429 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2430 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2431 #endif
2432 assert(start < end);
2434 start = start & TARGET_PAGE_MASK;
2435 end = TARGET_PAGE_ALIGN(end);
2437 if (flags & PAGE_WRITE) {
2438 flags |= PAGE_WRITE_ORG;
2441 for (addr = start, len = end - start;
2442 len != 0;
2443 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2444 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2446 /* If the write protection bit is set, then we invalidate
2447 the code inside. */
2448 if (!(p->flags & PAGE_WRITE) &&
2449 (flags & PAGE_WRITE) &&
2450 p->first_tb) {
2451 tb_invalidate_phys_page(addr, 0, NULL);
2453 p->flags = flags;
2457 int page_check_range(target_ulong start, target_ulong len, int flags)
2459 PageDesc *p;
2460 target_ulong end;
2461 target_ulong addr;
2463 /* This function should never be called with addresses outside the
2464 guest address space. If this assert fires, it probably indicates
2465 a missing call to h2g_valid. */
2466 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2467 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2468 #endif
2470 if (len == 0) {
2471 return 0;
2473 if (start + len - 1 < start) {
2474 /* We've wrapped around. */
2475 return -1;
2478 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2479 start = start & TARGET_PAGE_MASK;
2481 for (addr = start, len = end - start;
2482 len != 0;
2483 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2484 p = page_find(addr >> TARGET_PAGE_BITS);
2485 if( !p )
2486 return -1;
2487 if( !(p->flags & PAGE_VALID) )
2488 return -1;
2490 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2491 return -1;
2492 if (flags & PAGE_WRITE) {
2493 if (!(p->flags & PAGE_WRITE_ORG))
2494 return -1;
2495 /* unprotect the page if it was put read-only because it
2496 contains translated code */
2497 if (!(p->flags & PAGE_WRITE)) {
2498 if (!page_unprotect(addr, 0, NULL))
2499 return -1;
2501 return 0;
2504 return 0;
2507 /* called from signal handler: invalidate the code and unprotect the
2508 page. Return TRUE if the fault was successfully handled. */
2509 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2511 unsigned int prot;
2512 PageDesc *p;
2513 target_ulong host_start, host_end, addr;
2515 /* Technically this isn't safe inside a signal handler. However we
2516 know this only ever happens in a synchronous SEGV handler, so in
2517 practice it seems to be ok. */
2518 mmap_lock();
2520 p = page_find(address >> TARGET_PAGE_BITS);
2521 if (!p) {
2522 mmap_unlock();
2523 return 0;
2526 /* if the page was really writable, then we change its
2527 protection back to writable */
2528 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2529 host_start = address & qemu_host_page_mask;
2530 host_end = host_start + qemu_host_page_size;
2532 prot = 0;
2533 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2534 p = page_find(addr >> TARGET_PAGE_BITS);
2535 p->flags |= PAGE_WRITE;
2536 prot |= p->flags;
2538 /* and since the content will be modified, we must invalidate
2539 the corresponding translated code. */
2540 tb_invalidate_phys_page(addr, pc, puc);
2541 #ifdef DEBUG_TB_CHECK
2542 tb_invalidate_check(addr);
2543 #endif
2545 mprotect((void *)g2h(host_start), qemu_host_page_size,
2546 prot & PAGE_BITS);
2548 mmap_unlock();
2549 return 1;
2551 mmap_unlock();
2552 return 0;
2555 static inline void tlb_set_dirty(CPUState *env,
2556 unsigned long addr, target_ulong vaddr)
2559 #endif /* defined(CONFIG_USER_ONLY) */
2561 #if !defined(CONFIG_USER_ONLY)
2563 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2564 typedef struct subpage_t {
2565 target_phys_addr_t base;
2566 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2567 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2568 } subpage_t;
2570 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2571 ram_addr_t memory, ram_addr_t region_offset);
2572 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2573 ram_addr_t orig_memory,
2574 ram_addr_t region_offset);
2575 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2576 need_subpage) \
2577 do { \
2578 if (addr > start_addr) \
2579 start_addr2 = 0; \
2580 else { \
2581 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2582 if (start_addr2 > 0) \
2583 need_subpage = 1; \
2586 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2587 end_addr2 = TARGET_PAGE_SIZE - 1; \
2588 else { \
2589 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2590 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2591 need_subpage = 1; \
2593 } while (0)
2595 /* register physical memory.
2596 For RAM, 'size' must be a multiple of the target page size.
2597 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2598 io memory page. The address used when calling the IO function is
2599 the offset from the start of the region, plus region_offset. Both
2600 start_addr and region_offset are rounded down to a page boundary
2601 before calculating this offset. This should not be a problem unless
2602 the low bits of start_addr and region_offset differ. */
2603 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2604 ram_addr_t size,
2605 ram_addr_t phys_offset,
2606 ram_addr_t region_offset)
2608 target_phys_addr_t addr, end_addr;
2609 PhysPageDesc *p;
2610 CPUState *env;
2611 ram_addr_t orig_size = size;
2612 subpage_t *subpage;
2614 cpu_notify_set_memory(start_addr, size, phys_offset);
2616 if (phys_offset == IO_MEM_UNASSIGNED) {
2617 region_offset = start_addr;
2619 region_offset &= TARGET_PAGE_MASK;
2620 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2621 end_addr = start_addr + (target_phys_addr_t)size;
2622 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2623 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2624 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2625 ram_addr_t orig_memory = p->phys_offset;
2626 target_phys_addr_t start_addr2, end_addr2;
2627 int need_subpage = 0;
2629 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2630 need_subpage);
2631 if (need_subpage) {
2632 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2633 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2634 &p->phys_offset, orig_memory,
2635 p->region_offset);
2636 } else {
2637 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2638 >> IO_MEM_SHIFT];
2640 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2641 region_offset);
2642 p->region_offset = 0;
2643 } else {
2644 p->phys_offset = phys_offset;
2645 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2646 (phys_offset & IO_MEM_ROMD))
2647 phys_offset += TARGET_PAGE_SIZE;
2649 } else {
2650 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2651 p->phys_offset = phys_offset;
2652 p->region_offset = region_offset;
2653 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2654 (phys_offset & IO_MEM_ROMD)) {
2655 phys_offset += TARGET_PAGE_SIZE;
2656 } else {
2657 target_phys_addr_t start_addr2, end_addr2;
2658 int need_subpage = 0;
2660 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2661 end_addr2, need_subpage);
2663 if (need_subpage) {
2664 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2665 &p->phys_offset, IO_MEM_UNASSIGNED,
2666 addr & TARGET_PAGE_MASK);
2667 subpage_register(subpage, start_addr2, end_addr2,
2668 phys_offset, region_offset);
2669 p->region_offset = 0;
2673 region_offset += TARGET_PAGE_SIZE;
2676 /* since each CPU stores ram addresses in its TLB cache, we must
2677 reset the modified entries */
2678 /* XXX: slow ! */
2679 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2680 tlb_flush(env, 1);
2684 /* XXX: temporary until new memory mapping API */
2685 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2687 PhysPageDesc *p;
2689 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2690 if (!p)
2691 return IO_MEM_UNASSIGNED;
2692 return p->phys_offset;
2695 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2697 if (kvm_enabled())
2698 kvm_coalesce_mmio_region(addr, size);
2701 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2703 if (kvm_enabled())
2704 kvm_uncoalesce_mmio_region(addr, size);
2707 void qemu_flush_coalesced_mmio_buffer(void)
2709 if (kvm_enabled())
2710 kvm_flush_coalesced_mmio_buffer();
2713 #if defined(__linux__) && !defined(TARGET_S390X)
2715 #include <sys/vfs.h>
2717 #define HUGETLBFS_MAGIC 0x958458f6
2719 static long gethugepagesize(const char *path)
2721 struct statfs fs;
2722 int ret;
2724 do {
2725 ret = statfs(path, &fs);
2726 } while (ret != 0 && errno == EINTR);
2728 if (ret != 0) {
2729 perror(path);
2730 return 0;
2733 if (fs.f_type != HUGETLBFS_MAGIC)
2734 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2736 return fs.f_bsize;
2739 static void *file_ram_alloc(RAMBlock *block,
2740 ram_addr_t memory,
2741 const char *path)
2743 char *filename;
2744 void *area;
2745 int fd;
2746 #ifdef MAP_POPULATE
2747 int flags;
2748 #endif
2749 unsigned long hpagesize;
2751 hpagesize = gethugepagesize(path);
2752 if (!hpagesize) {
2753 return NULL;
2756 if (memory < hpagesize) {
2757 return NULL;
2760 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2761 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2762 return NULL;
2765 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2766 return NULL;
2769 fd = mkstemp(filename);
2770 if (fd < 0) {
2771 perror("unable to create backing store for hugepages");
2772 free(filename);
2773 return NULL;
2775 unlink(filename);
2776 free(filename);
2778 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2781 * ftruncate is not supported by hugetlbfs in older
2782 * hosts, so don't bother bailing out on errors.
2783 * If anything goes wrong with it under other filesystems,
2784 * mmap will fail.
2786 if (ftruncate(fd, memory))
2787 perror("ftruncate");
2789 #ifdef MAP_POPULATE
2790 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2791 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2792 * to sidestep this quirk.
2794 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2795 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2796 #else
2797 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2798 #endif
2799 if (area == MAP_FAILED) {
2800 perror("file_ram_alloc: can't mmap RAM pages");
2801 close(fd);
2802 return (NULL);
2804 block->fd = fd;
2805 return area;
2807 #endif
2809 static ram_addr_t find_ram_offset(ram_addr_t size)
2811 RAMBlock *block, *next_block;
2812 ram_addr_t offset = 0, mingap = ULONG_MAX;
2814 if (QLIST_EMPTY(&ram_list.blocks))
2815 return 0;
2817 QLIST_FOREACH(block, &ram_list.blocks, next) {
2818 ram_addr_t end, next = ULONG_MAX;
2820 end = block->offset + block->length;
2822 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2823 if (next_block->offset >= end) {
2824 next = MIN(next, next_block->offset);
2827 if (next - end >= size && next - end < mingap) {
2828 offset = end;
2829 mingap = next - end;
2832 return offset;
2835 static ram_addr_t last_ram_offset(void)
2837 RAMBlock *block;
2838 ram_addr_t last = 0;
2840 QLIST_FOREACH(block, &ram_list.blocks, next)
2841 last = MAX(last, block->offset + block->length);
2843 return last;
2846 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2847 ram_addr_t size, void *host)
2849 RAMBlock *new_block, *block;
2851 size = TARGET_PAGE_ALIGN(size);
2852 new_block = qemu_mallocz(sizeof(*new_block));
2854 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2855 char *id = dev->parent_bus->info->get_dev_path(dev);
2856 if (id) {
2857 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2858 qemu_free(id);
2861 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2863 QLIST_FOREACH(block, &ram_list.blocks, next) {
2864 if (!strcmp(block->idstr, new_block->idstr)) {
2865 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2866 new_block->idstr);
2867 abort();
2871 if (host) {
2872 new_block->host = host;
2873 new_block->flags |= RAM_PREALLOC_MASK;
2874 } else {
2875 if (mem_path) {
2876 #if defined (__linux__) && !defined(TARGET_S390X)
2877 new_block->host = file_ram_alloc(new_block, size, mem_path);
2878 if (!new_block->host) {
2879 new_block->host = qemu_vmalloc(size);
2880 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2882 #else
2883 fprintf(stderr, "-mem-path option unsupported\n");
2884 exit(1);
2885 #endif
2886 } else {
2887 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2888 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2889 new_block->host = mmap((void*)0x1000000, size,
2890 PROT_EXEC|PROT_READ|PROT_WRITE,
2891 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2892 #else
2893 new_block->host = qemu_vmalloc(size);
2894 #endif
2895 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2899 new_block->offset = find_ram_offset(size);
2900 new_block->length = size;
2902 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2904 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2905 last_ram_offset() >> TARGET_PAGE_BITS);
2906 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2907 0xff, size >> TARGET_PAGE_BITS);
2909 if (kvm_enabled())
2910 kvm_setup_guest_memory(new_block->host, size);
2912 return new_block->offset;
2915 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2917 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2920 void qemu_ram_free(ram_addr_t addr)
2922 RAMBlock *block;
2924 QLIST_FOREACH(block, &ram_list.blocks, next) {
2925 if (addr == block->offset) {
2926 QLIST_REMOVE(block, next);
2927 if (block->flags & RAM_PREALLOC_MASK) {
2929 } else if (mem_path) {
2930 #if defined (__linux__) && !defined(TARGET_S390X)
2931 if (block->fd) {
2932 munmap(block->host, block->length);
2933 close(block->fd);
2934 } else {
2935 qemu_vfree(block->host);
2937 #else
2938 abort();
2939 #endif
2940 } else {
2941 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2942 munmap(block->host, block->length);
2943 #else
2944 qemu_vfree(block->host);
2945 #endif
2947 qemu_free(block);
2948 return;
2954 #ifndef _WIN32
2955 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2957 RAMBlock *block;
2958 ram_addr_t offset;
2959 int flags;
2960 void *area, *vaddr;
2962 QLIST_FOREACH(block, &ram_list.blocks, next) {
2963 offset = addr - block->offset;
2964 if (offset < block->length) {
2965 vaddr = block->host + offset;
2966 if (block->flags & RAM_PREALLOC_MASK) {
2968 } else {
2969 flags = MAP_FIXED;
2970 munmap(vaddr, length);
2971 if (mem_path) {
2972 #if defined(__linux__) && !defined(TARGET_S390X)
2973 if (block->fd) {
2974 #ifdef MAP_POPULATE
2975 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2976 MAP_PRIVATE;
2977 #else
2978 flags |= MAP_PRIVATE;
2979 #endif
2980 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2981 flags, block->fd, offset);
2982 } else {
2983 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2984 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2985 flags, -1, 0);
2987 #else
2988 abort();
2989 #endif
2990 } else {
2991 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2992 flags |= MAP_SHARED | MAP_ANONYMOUS;
2993 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2994 flags, -1, 0);
2995 #else
2996 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2997 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2998 flags, -1, 0);
2999 #endif
3001 if (area != vaddr) {
3002 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3003 length, addr);
3004 exit(1);
3006 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3008 return;
3012 #endif /* !_WIN32 */
3014 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3015 With the exception of the softmmu code in this file, this should
3016 only be used for local memory (e.g. video ram) that the device owns,
3017 and knows it isn't going to access beyond the end of the block.
3019 It should not be used for general purpose DMA.
3020 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3022 void *qemu_get_ram_ptr(ram_addr_t addr)
3024 RAMBlock *block;
3026 QLIST_FOREACH(block, &ram_list.blocks, next) {
3027 if (addr - block->offset < block->length) {
3028 /* Move this entry to to start of the list. */
3029 if (block != QLIST_FIRST(&ram_list.blocks)) {
3030 QLIST_REMOVE(block, next);
3031 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3033 return block->host + (addr - block->offset);
3037 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3038 abort();
3040 return NULL;
3043 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3044 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3046 void *qemu_safe_ram_ptr(ram_addr_t addr)
3048 RAMBlock *block;
3050 QLIST_FOREACH(block, &ram_list.blocks, next) {
3051 if (addr - block->offset < block->length) {
3052 return block->host + (addr - block->offset);
3056 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3057 abort();
3059 return NULL;
3062 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3064 RAMBlock *block;
3065 uint8_t *host = ptr;
3067 QLIST_FOREACH(block, &ram_list.blocks, next) {
3068 if (host - block->host < block->length) {
3069 *ram_addr = block->offset + (host - block->host);
3070 return 0;
3073 return -1;
3076 /* Some of the softmmu routines need to translate from a host pointer
3077 (typically a TLB entry) back to a ram offset. */
3078 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3080 ram_addr_t ram_addr;
3082 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3083 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3084 abort();
3086 return ram_addr;
3089 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3091 #ifdef DEBUG_UNASSIGNED
3092 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3093 #endif
3094 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3095 do_unassigned_access(addr, 0, 0, 0, 1);
3096 #endif
3097 return 0;
3100 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3102 #ifdef DEBUG_UNASSIGNED
3103 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3104 #endif
3105 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3106 do_unassigned_access(addr, 0, 0, 0, 2);
3107 #endif
3108 return 0;
3111 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3113 #ifdef DEBUG_UNASSIGNED
3114 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3115 #endif
3116 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3117 do_unassigned_access(addr, 0, 0, 0, 4);
3118 #endif
3119 return 0;
3122 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3124 #ifdef DEBUG_UNASSIGNED
3125 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3126 #endif
3127 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3128 do_unassigned_access(addr, 1, 0, 0, 1);
3129 #endif
3132 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3134 #ifdef DEBUG_UNASSIGNED
3135 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3136 #endif
3137 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3138 do_unassigned_access(addr, 1, 0, 0, 2);
3139 #endif
3142 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3144 #ifdef DEBUG_UNASSIGNED
3145 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3146 #endif
3147 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3148 do_unassigned_access(addr, 1, 0, 0, 4);
3149 #endif
3152 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3153 unassigned_mem_readb,
3154 unassigned_mem_readw,
3155 unassigned_mem_readl,
3158 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3159 unassigned_mem_writeb,
3160 unassigned_mem_writew,
3161 unassigned_mem_writel,
3164 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3165 uint32_t val)
3167 int dirty_flags;
3168 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3169 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3170 #if !defined(CONFIG_USER_ONLY)
3171 tb_invalidate_phys_page_fast(ram_addr, 1);
3172 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3173 #endif
3175 stb_p(qemu_get_ram_ptr(ram_addr), val);
3176 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3177 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3178 /* we remove the notdirty callback only if the code has been
3179 flushed */
3180 if (dirty_flags == 0xff)
3181 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3184 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3185 uint32_t val)
3187 int dirty_flags;
3188 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3189 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3190 #if !defined(CONFIG_USER_ONLY)
3191 tb_invalidate_phys_page_fast(ram_addr, 2);
3192 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3193 #endif
3195 stw_p(qemu_get_ram_ptr(ram_addr), val);
3196 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3197 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3198 /* we remove the notdirty callback only if the code has been
3199 flushed */
3200 if (dirty_flags == 0xff)
3201 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3204 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3205 uint32_t val)
3207 int dirty_flags;
3208 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3209 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3210 #if !defined(CONFIG_USER_ONLY)
3211 tb_invalidate_phys_page_fast(ram_addr, 4);
3212 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3213 #endif
3215 stl_p(qemu_get_ram_ptr(ram_addr), val);
3216 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3217 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3218 /* we remove the notdirty callback only if the code has been
3219 flushed */
3220 if (dirty_flags == 0xff)
3221 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3224 static CPUReadMemoryFunc * const error_mem_read[3] = {
3225 NULL, /* never used */
3226 NULL, /* never used */
3227 NULL, /* never used */
3230 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3231 notdirty_mem_writeb,
3232 notdirty_mem_writew,
3233 notdirty_mem_writel,
3236 /* Generate a debug exception if a watchpoint has been hit. */
3237 static void check_watchpoint(int offset, int len_mask, int flags)
3239 CPUState *env = cpu_single_env;
3240 target_ulong pc, cs_base;
3241 TranslationBlock *tb;
3242 target_ulong vaddr;
3243 CPUWatchpoint *wp;
3244 int cpu_flags;
3246 if (env->watchpoint_hit) {
3247 /* We re-entered the check after replacing the TB. Now raise
3248 * the debug interrupt so that is will trigger after the
3249 * current instruction. */
3250 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3251 return;
3253 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3254 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3255 if ((vaddr == (wp->vaddr & len_mask) ||
3256 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3257 wp->flags |= BP_WATCHPOINT_HIT;
3258 if (!env->watchpoint_hit) {
3259 env->watchpoint_hit = wp;
3260 tb = tb_find_pc(env->mem_io_pc);
3261 if (!tb) {
3262 cpu_abort(env, "check_watchpoint: could not find TB for "
3263 "pc=%p", (void *)env->mem_io_pc);
3265 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3266 tb_phys_invalidate(tb, -1);
3267 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3268 env->exception_index = EXCP_DEBUG;
3269 } else {
3270 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3271 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3273 cpu_resume_from_signal(env, NULL);
3275 } else {
3276 wp->flags &= ~BP_WATCHPOINT_HIT;
3281 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3282 so these check for a hit then pass through to the normal out-of-line
3283 phys routines. */
3284 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3286 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3287 return ldub_phys(addr);
3290 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3292 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3293 return lduw_phys(addr);
3296 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3298 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3299 return ldl_phys(addr);
3302 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3303 uint32_t val)
3305 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3306 stb_phys(addr, val);
3309 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3310 uint32_t val)
3312 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3313 stw_phys(addr, val);
3316 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3317 uint32_t val)
3319 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3320 stl_phys(addr, val);
3323 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3324 watch_mem_readb,
3325 watch_mem_readw,
3326 watch_mem_readl,
3329 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3330 watch_mem_writeb,
3331 watch_mem_writew,
3332 watch_mem_writel,
3335 static inline uint32_t subpage_readlen (subpage_t *mmio,
3336 target_phys_addr_t addr,
3337 unsigned int len)
3339 unsigned int idx = SUBPAGE_IDX(addr);
3340 #if defined(DEBUG_SUBPAGE)
3341 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3342 mmio, len, addr, idx);
3343 #endif
3345 addr += mmio->region_offset[idx];
3346 idx = mmio->sub_io_index[idx];
3347 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3350 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3351 uint32_t value, unsigned int len)
3353 unsigned int idx = SUBPAGE_IDX(addr);
3354 #if defined(DEBUG_SUBPAGE)
3355 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3356 __func__, mmio, len, addr, idx, value);
3357 #endif
3359 addr += mmio->region_offset[idx];
3360 idx = mmio->sub_io_index[idx];
3361 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3364 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3366 return subpage_readlen(opaque, addr, 0);
3369 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3370 uint32_t value)
3372 subpage_writelen(opaque, addr, value, 0);
3375 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3377 return subpage_readlen(opaque, addr, 1);
3380 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3381 uint32_t value)
3383 subpage_writelen(opaque, addr, value, 1);
3386 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3388 return subpage_readlen(opaque, addr, 2);
3391 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3392 uint32_t value)
3394 subpage_writelen(opaque, addr, value, 2);
3397 static CPUReadMemoryFunc * const subpage_read[] = {
3398 &subpage_readb,
3399 &subpage_readw,
3400 &subpage_readl,
3403 static CPUWriteMemoryFunc * const subpage_write[] = {
3404 &subpage_writeb,
3405 &subpage_writew,
3406 &subpage_writel,
3409 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3410 ram_addr_t memory, ram_addr_t region_offset)
3412 int idx, eidx;
3414 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3415 return -1;
3416 idx = SUBPAGE_IDX(start);
3417 eidx = SUBPAGE_IDX(end);
3418 #if defined(DEBUG_SUBPAGE)
3419 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3420 mmio, start, end, idx, eidx, memory);
3421 #endif
3422 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3423 memory = IO_MEM_UNASSIGNED;
3424 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3425 for (; idx <= eidx; idx++) {
3426 mmio->sub_io_index[idx] = memory;
3427 mmio->region_offset[idx] = region_offset;
3430 return 0;
3433 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3434 ram_addr_t orig_memory,
3435 ram_addr_t region_offset)
3437 subpage_t *mmio;
3438 int subpage_memory;
3440 mmio = qemu_mallocz(sizeof(subpage_t));
3442 mmio->base = base;
3443 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3444 DEVICE_NATIVE_ENDIAN);
3445 #if defined(DEBUG_SUBPAGE)
3446 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3447 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3448 #endif
3449 *phys = subpage_memory | IO_MEM_SUBPAGE;
3450 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3452 return mmio;
3455 static int get_free_io_mem_idx(void)
3457 int i;
3459 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3460 if (!io_mem_used[i]) {
3461 io_mem_used[i] = 1;
3462 return i;
3464 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3465 return -1;
3469 * Usually, devices operate in little endian mode. There are devices out
3470 * there that operate in big endian too. Each device gets byte swapped
3471 * mmio if plugged onto a CPU that does the other endianness.
3473 * CPU Device swap?
3475 * little little no
3476 * little big yes
3477 * big little yes
3478 * big big no
3481 typedef struct SwapEndianContainer {
3482 CPUReadMemoryFunc *read[3];
3483 CPUWriteMemoryFunc *write[3];
3484 void *opaque;
3485 } SwapEndianContainer;
3487 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3489 uint32_t val;
3490 SwapEndianContainer *c = opaque;
3491 val = c->read[0](c->opaque, addr);
3492 return val;
3495 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3497 uint32_t val;
3498 SwapEndianContainer *c = opaque;
3499 val = bswap16(c->read[1](c->opaque, addr));
3500 return val;
3503 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3505 uint32_t val;
3506 SwapEndianContainer *c = opaque;
3507 val = bswap32(c->read[2](c->opaque, addr));
3508 return val;
3511 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3512 swapendian_mem_readb,
3513 swapendian_mem_readw,
3514 swapendian_mem_readl
3517 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3518 uint32_t val)
3520 SwapEndianContainer *c = opaque;
3521 c->write[0](c->opaque, addr, val);
3524 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3525 uint32_t val)
3527 SwapEndianContainer *c = opaque;
3528 c->write[1](c->opaque, addr, bswap16(val));
3531 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3532 uint32_t val)
3534 SwapEndianContainer *c = opaque;
3535 c->write[2](c->opaque, addr, bswap32(val));
3538 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3539 swapendian_mem_writeb,
3540 swapendian_mem_writew,
3541 swapendian_mem_writel
3544 static void swapendian_init(int io_index)
3546 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3547 int i;
3549 /* Swap mmio for big endian targets */
3550 c->opaque = io_mem_opaque[io_index];
3551 for (i = 0; i < 3; i++) {
3552 c->read[i] = io_mem_read[io_index][i];
3553 c->write[i] = io_mem_write[io_index][i];
3555 io_mem_read[io_index][i] = swapendian_readfn[i];
3556 io_mem_write[io_index][i] = swapendian_writefn[i];
3558 io_mem_opaque[io_index] = c;
3561 static void swapendian_del(int io_index)
3563 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3564 qemu_free(io_mem_opaque[io_index]);
3568 /* mem_read and mem_write are arrays of functions containing the
3569 function to access byte (index 0), word (index 1) and dword (index
3570 2). Functions can be omitted with a NULL function pointer.
3571 If io_index is non zero, the corresponding io zone is
3572 modified. If it is zero, a new io zone is allocated. The return
3573 value can be used with cpu_register_physical_memory(). (-1) is
3574 returned if error. */
3575 static int cpu_register_io_memory_fixed(int io_index,
3576 CPUReadMemoryFunc * const *mem_read,
3577 CPUWriteMemoryFunc * const *mem_write,
3578 void *opaque, enum device_endian endian)
3580 int i;
3582 if (io_index <= 0) {
3583 io_index = get_free_io_mem_idx();
3584 if (io_index == -1)
3585 return io_index;
3586 } else {
3587 io_index >>= IO_MEM_SHIFT;
3588 if (io_index >= IO_MEM_NB_ENTRIES)
3589 return -1;
3592 for (i = 0; i < 3; ++i) {
3593 io_mem_read[io_index][i]
3594 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3596 for (i = 0; i < 3; ++i) {
3597 io_mem_write[io_index][i]
3598 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3600 io_mem_opaque[io_index] = opaque;
3602 switch (endian) {
3603 case DEVICE_BIG_ENDIAN:
3604 #ifndef TARGET_WORDS_BIGENDIAN
3605 swapendian_init(io_index);
3606 #endif
3607 break;
3608 case DEVICE_LITTLE_ENDIAN:
3609 #ifdef TARGET_WORDS_BIGENDIAN
3610 swapendian_init(io_index);
3611 #endif
3612 break;
3613 case DEVICE_NATIVE_ENDIAN:
3614 default:
3615 break;
3618 return (io_index << IO_MEM_SHIFT);
3621 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3622 CPUWriteMemoryFunc * const *mem_write,
3623 void *opaque, enum device_endian endian)
3625 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3628 void cpu_unregister_io_memory(int io_table_address)
3630 int i;
3631 int io_index = io_table_address >> IO_MEM_SHIFT;
3633 swapendian_del(io_index);
3635 for (i=0;i < 3; i++) {
3636 io_mem_read[io_index][i] = unassigned_mem_read[i];
3637 io_mem_write[io_index][i] = unassigned_mem_write[i];
3639 io_mem_opaque[io_index] = NULL;
3640 io_mem_used[io_index] = 0;
3643 static void io_mem_init(void)
3645 int i;
3647 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3648 unassigned_mem_write, NULL,
3649 DEVICE_NATIVE_ENDIAN);
3650 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3651 unassigned_mem_write, NULL,
3652 DEVICE_NATIVE_ENDIAN);
3653 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3654 notdirty_mem_write, NULL,
3655 DEVICE_NATIVE_ENDIAN);
3656 for (i=0; i<5; i++)
3657 io_mem_used[i] = 1;
3659 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3660 watch_mem_write, NULL,
3661 DEVICE_NATIVE_ENDIAN);
3664 #endif /* !defined(CONFIG_USER_ONLY) */
3666 /* physical memory access (slow version, mainly for debug) */
3667 #if defined(CONFIG_USER_ONLY)
3668 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3669 uint8_t *buf, int len, int is_write)
3671 int l, flags;
3672 target_ulong page;
3673 void * p;
3675 while (len > 0) {
3676 page = addr & TARGET_PAGE_MASK;
3677 l = (page + TARGET_PAGE_SIZE) - addr;
3678 if (l > len)
3679 l = len;
3680 flags = page_get_flags(page);
3681 if (!(flags & PAGE_VALID))
3682 return -1;
3683 if (is_write) {
3684 if (!(flags & PAGE_WRITE))
3685 return -1;
3686 /* XXX: this code should not depend on lock_user */
3687 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3688 return -1;
3689 memcpy(p, buf, l);
3690 unlock_user(p, addr, l);
3691 } else {
3692 if (!(flags & PAGE_READ))
3693 return -1;
3694 /* XXX: this code should not depend on lock_user */
3695 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3696 return -1;
3697 memcpy(buf, p, l);
3698 unlock_user(p, addr, 0);
3700 len -= l;
3701 buf += l;
3702 addr += l;
3704 return 0;
3707 #else
3708 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3709 int len, int is_write)
3711 int l, io_index;
3712 uint8_t *ptr;
3713 uint32_t val;
3714 target_phys_addr_t page;
3715 unsigned long pd;
3716 PhysPageDesc *p;
3718 while (len > 0) {
3719 page = addr & TARGET_PAGE_MASK;
3720 l = (page + TARGET_PAGE_SIZE) - addr;
3721 if (l > len)
3722 l = len;
3723 p = phys_page_find(page >> TARGET_PAGE_BITS);
3724 if (!p) {
3725 pd = IO_MEM_UNASSIGNED;
3726 } else {
3727 pd = p->phys_offset;
3730 if (is_write) {
3731 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3732 target_phys_addr_t addr1 = addr;
3733 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3734 if (p)
3735 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3736 /* XXX: could force cpu_single_env to NULL to avoid
3737 potential bugs */
3738 if (l >= 4 && ((addr1 & 3) == 0)) {
3739 /* 32 bit write access */
3740 val = ldl_p(buf);
3741 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3742 l = 4;
3743 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3744 /* 16 bit write access */
3745 val = lduw_p(buf);
3746 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3747 l = 2;
3748 } else {
3749 /* 8 bit write access */
3750 val = ldub_p(buf);
3751 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3752 l = 1;
3754 } else {
3755 unsigned long addr1;
3756 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3757 /* RAM case */
3758 ptr = qemu_get_ram_ptr(addr1);
3759 memcpy(ptr, buf, l);
3760 if (!cpu_physical_memory_is_dirty(addr1)) {
3761 /* invalidate code */
3762 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3763 /* set dirty bit */
3764 cpu_physical_memory_set_dirty_flags(
3765 addr1, (0xff & ~CODE_DIRTY_FLAG));
3768 } else {
3769 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3770 !(pd & IO_MEM_ROMD)) {
3771 target_phys_addr_t addr1 = addr;
3772 /* I/O case */
3773 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3774 if (p)
3775 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3776 if (l >= 4 && ((addr1 & 3) == 0)) {
3777 /* 32 bit read access */
3778 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3779 stl_p(buf, val);
3780 l = 4;
3781 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3782 /* 16 bit read access */
3783 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3784 stw_p(buf, val);
3785 l = 2;
3786 } else {
3787 /* 8 bit read access */
3788 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3789 stb_p(buf, val);
3790 l = 1;
3792 } else {
3793 /* RAM case */
3794 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3795 (addr & ~TARGET_PAGE_MASK);
3796 memcpy(buf, ptr, l);
3799 len -= l;
3800 buf += l;
3801 addr += l;
3805 /* used for ROM loading : can write in RAM and ROM */
3806 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3807 const uint8_t *buf, int len)
3809 int l;
3810 uint8_t *ptr;
3811 target_phys_addr_t page;
3812 unsigned long pd;
3813 PhysPageDesc *p;
3815 while (len > 0) {
3816 page = addr & TARGET_PAGE_MASK;
3817 l = (page + TARGET_PAGE_SIZE) - addr;
3818 if (l > len)
3819 l = len;
3820 p = phys_page_find(page >> TARGET_PAGE_BITS);
3821 if (!p) {
3822 pd = IO_MEM_UNASSIGNED;
3823 } else {
3824 pd = p->phys_offset;
3827 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3828 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3829 !(pd & IO_MEM_ROMD)) {
3830 /* do nothing */
3831 } else {
3832 unsigned long addr1;
3833 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3834 /* ROM/RAM case */
3835 ptr = qemu_get_ram_ptr(addr1);
3836 memcpy(ptr, buf, l);
3838 len -= l;
3839 buf += l;
3840 addr += l;
3844 typedef struct {
3845 void *buffer;
3846 target_phys_addr_t addr;
3847 target_phys_addr_t len;
3848 } BounceBuffer;
3850 static BounceBuffer bounce;
3852 typedef struct MapClient {
3853 void *opaque;
3854 void (*callback)(void *opaque);
3855 QLIST_ENTRY(MapClient) link;
3856 } MapClient;
3858 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3859 = QLIST_HEAD_INITIALIZER(map_client_list);
3861 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3863 MapClient *client = qemu_malloc(sizeof(*client));
3865 client->opaque = opaque;
3866 client->callback = callback;
3867 QLIST_INSERT_HEAD(&map_client_list, client, link);
3868 return client;
3871 void cpu_unregister_map_client(void *_client)
3873 MapClient *client = (MapClient *)_client;
3875 QLIST_REMOVE(client, link);
3876 qemu_free(client);
3879 static void cpu_notify_map_clients(void)
3881 MapClient *client;
3883 while (!QLIST_EMPTY(&map_client_list)) {
3884 client = QLIST_FIRST(&map_client_list);
3885 client->callback(client->opaque);
3886 cpu_unregister_map_client(client);
3890 /* Map a physical memory region into a host virtual address.
3891 * May map a subset of the requested range, given by and returned in *plen.
3892 * May return NULL if resources needed to perform the mapping are exhausted.
3893 * Use only for reads OR writes - not for read-modify-write operations.
3894 * Use cpu_register_map_client() to know when retrying the map operation is
3895 * likely to succeed.
3897 void *cpu_physical_memory_map(target_phys_addr_t addr,
3898 target_phys_addr_t *plen,
3899 int is_write)
3901 target_phys_addr_t len = *plen;
3902 target_phys_addr_t done = 0;
3903 int l;
3904 uint8_t *ret = NULL;
3905 uint8_t *ptr;
3906 target_phys_addr_t page;
3907 unsigned long pd;
3908 PhysPageDesc *p;
3909 unsigned long addr1;
3911 while (len > 0) {
3912 page = addr & TARGET_PAGE_MASK;
3913 l = (page + TARGET_PAGE_SIZE) - addr;
3914 if (l > len)
3915 l = len;
3916 p = phys_page_find(page >> TARGET_PAGE_BITS);
3917 if (!p) {
3918 pd = IO_MEM_UNASSIGNED;
3919 } else {
3920 pd = p->phys_offset;
3923 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3924 if (done || bounce.buffer) {
3925 break;
3927 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3928 bounce.addr = addr;
3929 bounce.len = l;
3930 if (!is_write) {
3931 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3933 ptr = bounce.buffer;
3934 } else {
3935 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3936 ptr = qemu_get_ram_ptr(addr1);
3938 if (!done) {
3939 ret = ptr;
3940 } else if (ret + done != ptr) {
3941 break;
3944 len -= l;
3945 addr += l;
3946 done += l;
3948 *plen = done;
3949 return ret;
3952 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3953 * Will also mark the memory as dirty if is_write == 1. access_len gives
3954 * the amount of memory that was actually read or written by the caller.
3956 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3957 int is_write, target_phys_addr_t access_len)
3959 if (buffer != bounce.buffer) {
3960 if (is_write) {
3961 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3962 while (access_len) {
3963 unsigned l;
3964 l = TARGET_PAGE_SIZE;
3965 if (l > access_len)
3966 l = access_len;
3967 if (!cpu_physical_memory_is_dirty(addr1)) {
3968 /* invalidate code */
3969 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3970 /* set dirty bit */
3971 cpu_physical_memory_set_dirty_flags(
3972 addr1, (0xff & ~CODE_DIRTY_FLAG));
3974 addr1 += l;
3975 access_len -= l;
3978 return;
3980 if (is_write) {
3981 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3983 qemu_vfree(bounce.buffer);
3984 bounce.buffer = NULL;
3985 cpu_notify_map_clients();
3988 /* warning: addr must be aligned */
3989 uint32_t ldl_phys(target_phys_addr_t addr)
3991 int io_index;
3992 uint8_t *ptr;
3993 uint32_t val;
3994 unsigned long pd;
3995 PhysPageDesc *p;
3997 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3998 if (!p) {
3999 pd = IO_MEM_UNASSIGNED;
4000 } else {
4001 pd = p->phys_offset;
4004 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4005 !(pd & IO_MEM_ROMD)) {
4006 /* I/O case */
4007 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4008 if (p)
4009 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4010 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4011 } else {
4012 /* RAM case */
4013 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4014 (addr & ~TARGET_PAGE_MASK);
4015 val = ldl_p(ptr);
4017 return val;
4020 /* warning: addr must be aligned */
4021 uint64_t ldq_phys(target_phys_addr_t addr)
4023 int io_index;
4024 uint8_t *ptr;
4025 uint64_t val;
4026 unsigned long pd;
4027 PhysPageDesc *p;
4029 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4030 if (!p) {
4031 pd = IO_MEM_UNASSIGNED;
4032 } else {
4033 pd = p->phys_offset;
4036 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4037 !(pd & IO_MEM_ROMD)) {
4038 /* I/O case */
4039 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4040 if (p)
4041 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4042 #ifdef TARGET_WORDS_BIGENDIAN
4043 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4044 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4045 #else
4046 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4047 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4048 #endif
4049 } else {
4050 /* RAM case */
4051 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4052 (addr & ~TARGET_PAGE_MASK);
4053 val = ldq_p(ptr);
4055 return val;
4058 /* XXX: optimize */
4059 uint32_t ldub_phys(target_phys_addr_t addr)
4061 uint8_t val;
4062 cpu_physical_memory_read(addr, &val, 1);
4063 return val;
4066 /* warning: addr must be aligned */
4067 uint32_t lduw_phys(target_phys_addr_t addr)
4069 int io_index;
4070 uint8_t *ptr;
4071 uint64_t val;
4072 unsigned long pd;
4073 PhysPageDesc *p;
4075 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4076 if (!p) {
4077 pd = IO_MEM_UNASSIGNED;
4078 } else {
4079 pd = p->phys_offset;
4082 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4083 !(pd & IO_MEM_ROMD)) {
4084 /* I/O case */
4085 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4086 if (p)
4087 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4088 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4089 } else {
4090 /* RAM case */
4091 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4092 (addr & ~TARGET_PAGE_MASK);
4093 val = lduw_p(ptr);
4095 return val;
4098 /* warning: addr must be aligned. The ram page is not masked as dirty
4099 and the code inside is not invalidated. It is useful if the dirty
4100 bits are used to track modified PTEs */
4101 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4103 int io_index;
4104 uint8_t *ptr;
4105 unsigned long pd;
4106 PhysPageDesc *p;
4108 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4109 if (!p) {
4110 pd = IO_MEM_UNASSIGNED;
4111 } else {
4112 pd = p->phys_offset;
4115 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4116 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4117 if (p)
4118 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4119 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4120 } else {
4121 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4122 ptr = qemu_get_ram_ptr(addr1);
4123 stl_p(ptr, val);
4125 if (unlikely(in_migration)) {
4126 if (!cpu_physical_memory_is_dirty(addr1)) {
4127 /* invalidate code */
4128 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4129 /* set dirty bit */
4130 cpu_physical_memory_set_dirty_flags(
4131 addr1, (0xff & ~CODE_DIRTY_FLAG));
4137 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4139 int io_index;
4140 uint8_t *ptr;
4141 unsigned long pd;
4142 PhysPageDesc *p;
4144 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4145 if (!p) {
4146 pd = IO_MEM_UNASSIGNED;
4147 } else {
4148 pd = p->phys_offset;
4151 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4152 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4153 if (p)
4154 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4155 #ifdef TARGET_WORDS_BIGENDIAN
4156 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4157 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4158 #else
4159 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4160 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4161 #endif
4162 } else {
4163 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4164 (addr & ~TARGET_PAGE_MASK);
4165 stq_p(ptr, val);
4169 /* warning: addr must be aligned */
4170 void stl_phys(target_phys_addr_t addr, uint32_t val)
4172 int io_index;
4173 uint8_t *ptr;
4174 unsigned long pd;
4175 PhysPageDesc *p;
4177 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4178 if (!p) {
4179 pd = IO_MEM_UNASSIGNED;
4180 } else {
4181 pd = p->phys_offset;
4184 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4185 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4186 if (p)
4187 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4188 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4189 } else {
4190 unsigned long addr1;
4191 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4192 /* RAM case */
4193 ptr = qemu_get_ram_ptr(addr1);
4194 stl_p(ptr, val);
4195 if (!cpu_physical_memory_is_dirty(addr1)) {
4196 /* invalidate code */
4197 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4198 /* set dirty bit */
4199 cpu_physical_memory_set_dirty_flags(addr1,
4200 (0xff & ~CODE_DIRTY_FLAG));
4205 /* XXX: optimize */
4206 void stb_phys(target_phys_addr_t addr, uint32_t val)
4208 uint8_t v = val;
4209 cpu_physical_memory_write(addr, &v, 1);
4212 /* warning: addr must be aligned */
4213 void stw_phys(target_phys_addr_t addr, uint32_t val)
4215 int io_index;
4216 uint8_t *ptr;
4217 unsigned long pd;
4218 PhysPageDesc *p;
4220 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4221 if (!p) {
4222 pd = IO_MEM_UNASSIGNED;
4223 } else {
4224 pd = p->phys_offset;
4227 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4228 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4229 if (p)
4230 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4231 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4232 } else {
4233 unsigned long addr1;
4234 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4235 /* RAM case */
4236 ptr = qemu_get_ram_ptr(addr1);
4237 stw_p(ptr, val);
4238 if (!cpu_physical_memory_is_dirty(addr1)) {
4239 /* invalidate code */
4240 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4241 /* set dirty bit */
4242 cpu_physical_memory_set_dirty_flags(addr1,
4243 (0xff & ~CODE_DIRTY_FLAG));
4248 /* XXX: optimize */
4249 void stq_phys(target_phys_addr_t addr, uint64_t val)
4251 val = tswap64(val);
4252 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4255 /* virtual memory access for debug (includes writing to ROM) */
4256 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4257 uint8_t *buf, int len, int is_write)
4259 int l;
4260 target_phys_addr_t phys_addr;
4261 target_ulong page;
4263 while (len > 0) {
4264 page = addr & TARGET_PAGE_MASK;
4265 phys_addr = cpu_get_phys_page_debug(env, page);
4266 /* if no physical page mapped, return an error */
4267 if (phys_addr == -1)
4268 return -1;
4269 l = (page + TARGET_PAGE_SIZE) - addr;
4270 if (l > len)
4271 l = len;
4272 phys_addr += (addr & ~TARGET_PAGE_MASK);
4273 if (is_write)
4274 cpu_physical_memory_write_rom(phys_addr, buf, l);
4275 else
4276 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4277 len -= l;
4278 buf += l;
4279 addr += l;
4281 return 0;
4283 #endif
4285 /* in deterministic execution mode, instructions doing device I/Os
4286 must be at the end of the TB */
4287 void cpu_io_recompile(CPUState *env, void *retaddr)
4289 TranslationBlock *tb;
4290 uint32_t n, cflags;
4291 target_ulong pc, cs_base;
4292 uint64_t flags;
4294 tb = tb_find_pc((unsigned long)retaddr);
4295 if (!tb) {
4296 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4297 retaddr);
4299 n = env->icount_decr.u16.low + tb->icount;
4300 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4301 /* Calculate how many instructions had been executed before the fault
4302 occurred. */
4303 n = n - env->icount_decr.u16.low;
4304 /* Generate a new TB ending on the I/O insn. */
4305 n++;
4306 /* On MIPS and SH, delay slot instructions can only be restarted if
4307 they were already the first instruction in the TB. If this is not
4308 the first instruction in a TB then re-execute the preceding
4309 branch. */
4310 #if defined(TARGET_MIPS)
4311 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4312 env->active_tc.PC -= 4;
4313 env->icount_decr.u16.low++;
4314 env->hflags &= ~MIPS_HFLAG_BMASK;
4316 #elif defined(TARGET_SH4)
4317 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4318 && n > 1) {
4319 env->pc -= 2;
4320 env->icount_decr.u16.low++;
4321 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4323 #endif
4324 /* This should never happen. */
4325 if (n > CF_COUNT_MASK)
4326 cpu_abort(env, "TB too big during recompile");
4328 cflags = n | CF_LAST_IO;
4329 pc = tb->pc;
4330 cs_base = tb->cs_base;
4331 flags = tb->flags;
4332 tb_phys_invalidate(tb, -1);
4333 /* FIXME: In theory this could raise an exception. In practice
4334 we have already translated the block once so it's probably ok. */
4335 tb_gen_code(env, pc, cs_base, flags, cflags);
4336 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4337 the first in the TB) then we end up generating a whole new TB and
4338 repeating the fault, which is horribly inefficient.
4339 Better would be to execute just this insn uncached, or generate a
4340 second new TB. */
4341 cpu_resume_from_signal(env, NULL);
4344 #if !defined(CONFIG_USER_ONLY)
4346 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4348 int i, target_code_size, max_target_code_size;
4349 int direct_jmp_count, direct_jmp2_count, cross_page;
4350 TranslationBlock *tb;
4352 target_code_size = 0;
4353 max_target_code_size = 0;
4354 cross_page = 0;
4355 direct_jmp_count = 0;
4356 direct_jmp2_count = 0;
4357 for(i = 0; i < nb_tbs; i++) {
4358 tb = &tbs[i];
4359 target_code_size += tb->size;
4360 if (tb->size > max_target_code_size)
4361 max_target_code_size = tb->size;
4362 if (tb->page_addr[1] != -1)
4363 cross_page++;
4364 if (tb->tb_next_offset[0] != 0xffff) {
4365 direct_jmp_count++;
4366 if (tb->tb_next_offset[1] != 0xffff) {
4367 direct_jmp2_count++;
4371 /* XXX: avoid using doubles ? */
4372 cpu_fprintf(f, "Translation buffer state:\n");
4373 cpu_fprintf(f, "gen code size %td/%ld\n",
4374 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4375 cpu_fprintf(f, "TB count %d/%d\n",
4376 nb_tbs, code_gen_max_blocks);
4377 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4378 nb_tbs ? target_code_size / nb_tbs : 0,
4379 max_target_code_size);
4380 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4381 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4382 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4383 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4384 cross_page,
4385 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4386 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4387 direct_jmp_count,
4388 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4389 direct_jmp2_count,
4390 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4391 cpu_fprintf(f, "\nStatistics:\n");
4392 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4393 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4394 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4395 tcg_dump_info(f, cpu_fprintf);
4398 #define MMUSUFFIX _cmmu
4399 #define GETPC() NULL
4400 #define env cpu_single_env
4401 #define SOFTMMU_CODE_ACCESS
4403 #define SHIFT 0
4404 #include "softmmu_template.h"
4406 #define SHIFT 1
4407 #include "softmmu_template.h"
4409 #define SHIFT 2
4410 #include "softmmu_template.h"
4412 #define SHIFT 3
4413 #include "softmmu_template.h"
4415 #undef env
4417 #endif