2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
49 #include "exec-memory.h"
53 /* SLOF memory layout:
55 * SLOF raw image loaded at 0, copies its romfs right below the flat
56 * device-tree, then position SLOF itself 31M below that
58 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * We load our kernel at 4M, leaving space for SLOF initial image
63 #define FDT_MAX_SIZE 0x10000
64 #define RTAS_MAX_SIZE 0x10000
65 #define FW_MAX_SIZE 0x400000
66 #define FW_FILE_NAME "slof.bin"
67 #define FW_OVERHEAD 0x2800000
68 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70 #define MIN_RMA_SLOF 128UL
72 #define TIMEBASE_FREQ 512000000ULL
75 #define XICS_IRQS 1024
77 #define SPAPR_PCI_BUID 0x800000020000001ULL
78 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
79 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
80 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
82 #define PHANDLE_XICP 0x00001111
84 sPAPREnvironment
*spapr
;
86 qemu_irq
spapr_allocate_irq(uint32_t hint
, uint32_t *irq_num
,
87 enum xics_irq_type type
)
94 /* FIXME: we should probably check for collisions somehow */
96 irq
= spapr
->next_irq
++;
99 qirq
= xics_assign_irq(spapr
->icp
, irq
, type
);
111 static int spapr_set_associativity(void *fdt
, sPAPREnvironment
*spapr
)
116 int smt
= kvmppc_smt_threads();
118 assert(spapr
->cpu_model
);
120 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
121 uint32_t associativity
[] = {cpu_to_be32(0x5),
125 cpu_to_be32(env
->numa_node
),
126 cpu_to_be32(env
->cpu_index
)};
128 if ((env
->cpu_index
% smt
) != 0) {
132 snprintf(cpu_model
, 32, "/cpus/%s@%x", spapr
->cpu_model
,
135 offset
= fdt_path_offset(fdt
, cpu_model
);
140 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
141 sizeof(associativity
));
149 static void *spapr_create_fdt_skel(const char *cpu_model
,
150 target_phys_addr_t rma_size
,
151 target_phys_addr_t initrd_base
,
152 target_phys_addr_t initrd_size
,
153 target_phys_addr_t kernel_size
,
154 const char *boot_device
,
155 const char *kernel_cmdline
,
160 uint64_t mem_reg_property
[2];
161 uint32_t start_prop
= cpu_to_be32(initrd_base
);
162 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
163 uint32_t pft_size_prop
[] = {0, cpu_to_be32(hash_shift
)};
164 char hypertas_prop
[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
165 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
166 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(smp_cpus
)};
169 int smt
= kvmppc_smt_threads();
170 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
171 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
172 uint32_t associativity
[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
173 cpu_to_be32(0x0), cpu_to_be32(0x0),
176 target_phys_addr_t node0_size
, mem_start
;
182 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
183 #exp, fdt_strerror(ret)); \
188 fdt
= g_malloc0(FDT_MAX_SIZE
);
189 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
192 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
195 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
197 _FDT((fdt_finish_reservemap(fdt
)));
200 _FDT((fdt_begin_node(fdt
, "")));
201 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
202 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
204 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
205 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
208 _FDT((fdt_begin_node(fdt
, "chosen")));
210 /* Set Form1_affinity */
211 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
213 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
214 _FDT((fdt_property(fdt
, "linux,initrd-start",
215 &start_prop
, sizeof(start_prop
))));
216 _FDT((fdt_property(fdt
, "linux,initrd-end",
217 &end_prop
, sizeof(end_prop
))));
219 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
220 cpu_to_be64(kernel_size
) };
222 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
224 _FDT((fdt_property_string(fdt
, "qemu,boot-device", boot_device
)));
226 _FDT((fdt_end_node(fdt
)));
229 node0_size
= (nb_numa_nodes
> 1) ? node_mem
[0] : ram_size
;
230 if (rma_size
> node0_size
) {
231 rma_size
= node0_size
;
235 mem_reg_property
[0] = 0;
236 mem_reg_property
[1] = cpu_to_be64(rma_size
);
237 _FDT((fdt_begin_node(fdt
, "memory@0")));
238 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
239 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
240 sizeof(mem_reg_property
))));
241 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
242 sizeof(associativity
))));
243 _FDT((fdt_end_node(fdt
)));
246 if (node0_size
> rma_size
) {
247 mem_reg_property
[0] = cpu_to_be64(rma_size
);
248 mem_reg_property
[1] = cpu_to_be64(node0_size
- rma_size
);
250 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, rma_size
);
251 _FDT((fdt_begin_node(fdt
, mem_name
)));
252 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
253 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
254 sizeof(mem_reg_property
))));
255 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
256 sizeof(associativity
))));
257 _FDT((fdt_end_node(fdt
)));
260 /* RAM: Node 1 and beyond */
261 mem_start
= node0_size
;
262 for (i
= 1; i
< nb_numa_nodes
; i
++) {
263 mem_reg_property
[0] = cpu_to_be64(mem_start
);
264 mem_reg_property
[1] = cpu_to_be64(node_mem
[i
]);
265 associativity
[3] = associativity
[4] = cpu_to_be32(i
);
266 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, mem_start
);
267 _FDT((fdt_begin_node(fdt
, mem_name
)));
268 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
269 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
270 sizeof(mem_reg_property
))));
271 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
272 sizeof(associativity
))));
273 _FDT((fdt_end_node(fdt
)));
274 mem_start
+= node_mem
[i
];
278 _FDT((fdt_begin_node(fdt
, "cpus")));
280 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
281 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
283 modelname
= g_strdup(cpu_model
);
285 for (i
= 0; i
< strlen(modelname
); i
++) {
286 modelname
[i
] = toupper(modelname
[i
]);
289 /* This is needed during FDT finalization */
290 spapr
->cpu_model
= g_strdup(modelname
);
292 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
293 int index
= env
->cpu_index
;
294 uint32_t servers_prop
[smp_threads
];
295 uint32_t gservers_prop
[smp_threads
* 2];
297 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
298 0xffffffff, 0xffffffff};
299 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
300 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
302 if ((index
% smt
) != 0) {
306 if (asprintf(&nodename
, "%s@%x", modelname
, index
) < 0) {
307 fprintf(stderr
, "Allocation failure\n");
311 _FDT((fdt_begin_node(fdt
, nodename
)));
315 _FDT((fdt_property_cell(fdt
, "reg", index
)));
316 _FDT((fdt_property_string(fdt
, "device_type", "cpu")));
318 _FDT((fdt_property_cell(fdt
, "cpu-version", env
->spr
[SPR_PVR
])));
319 _FDT((fdt_property_cell(fdt
, "dcache-block-size",
320 env
->dcache_line_size
)));
321 _FDT((fdt_property_cell(fdt
, "icache-block-size",
322 env
->icache_line_size
)));
323 _FDT((fdt_property_cell(fdt
, "timebase-frequency", tbfreq
)));
324 _FDT((fdt_property_cell(fdt
, "clock-frequency", cpufreq
)));
325 _FDT((fdt_property_cell(fdt
, "ibm,slb-size", env
->slb_nr
)));
326 _FDT((fdt_property(fdt
, "ibm,pft-size",
327 pft_size_prop
, sizeof(pft_size_prop
))));
328 _FDT((fdt_property_string(fdt
, "status", "okay")));
329 _FDT((fdt_property(fdt
, "64-bit", NULL
, 0)));
331 /* Build interrupt servers and gservers properties */
332 for (i
= 0; i
< smp_threads
; i
++) {
333 servers_prop
[i
] = cpu_to_be32(index
+ i
);
334 /* Hack, direct the group queues back to cpu 0 */
335 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
336 gservers_prop
[i
*2 + 1] = 0;
338 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-server#s",
339 servers_prop
, sizeof(servers_prop
))));
340 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-gserver#s",
341 gservers_prop
, sizeof(gservers_prop
))));
343 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
344 _FDT((fdt_property(fdt
, "ibm,processor-segment-sizes",
345 segs
, sizeof(segs
))));
348 /* Advertise VMX/VSX (vector extensions) if available
349 * 0 / no property == no vector extensions
350 * 1 == VMX / Altivec available
351 * 2 == VSX available */
352 if (env
->insns_flags
& PPC_ALTIVEC
) {
353 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
355 _FDT((fdt_property_cell(fdt
, "ibm,vmx", vmx
)));
358 /* Advertise DFP (Decimal Floating Point) if available
359 * 0 / no property == no DFP
360 * 1 == DFP available */
361 if (env
->insns_flags2
& PPC2_DFP
) {
362 _FDT((fdt_property_cell(fdt
, "ibm,dfp", 1)));
365 _FDT((fdt_end_node(fdt
)));
370 _FDT((fdt_end_node(fdt
)));
373 _FDT((fdt_begin_node(fdt
, "rtas")));
375 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas_prop
,
376 sizeof(hypertas_prop
))));
378 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
379 refpoints
, sizeof(refpoints
))));
381 _FDT((fdt_end_node(fdt
)));
383 /* interrupt controller */
384 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
386 _FDT((fdt_property_string(fdt
, "device_type",
387 "PowerPC-External-Interrupt-Presentation")));
388 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
389 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
390 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
391 interrupt_server_ranges_prop
,
392 sizeof(interrupt_server_ranges_prop
))));
393 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
394 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
395 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
397 _FDT((fdt_end_node(fdt
)));
400 _FDT((fdt_begin_node(fdt
, "vdevice")));
402 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
403 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
404 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
405 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
406 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
407 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
409 _FDT((fdt_end_node(fdt
)));
411 _FDT((fdt_end_node(fdt
))); /* close root node */
412 _FDT((fdt_finish(fdt
)));
417 static void spapr_finalize_fdt(sPAPREnvironment
*spapr
,
418 target_phys_addr_t fdt_addr
,
419 target_phys_addr_t rtas_addr
,
420 target_phys_addr_t rtas_size
)
426 fdt
= g_malloc(FDT_MAX_SIZE
);
428 /* open out the base tree into a temp buffer for the final tweaks */
429 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
431 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
433 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
437 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
438 ret
= spapr_populate_pci_devices(phb
, PHANDLE_XICP
, fdt
);
442 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
447 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
449 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
452 /* Advertise NUMA via ibm,associativity */
453 if (nb_numa_nodes
> 1) {
454 ret
= spapr_set_associativity(fdt
, spapr
);
456 fprintf(stderr
, "Couldn't set up NUMA device tree properties\n");
460 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
462 _FDT((fdt_pack(fdt
)));
464 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
465 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
466 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
470 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
475 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
477 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
480 static void emulate_spapr_hypercall(CPUPPCState
*env
)
482 env
->gpr
[3] = spapr_hypercall(env
, env
->gpr
[3], &env
->gpr
[4]);
485 static void spapr_reset(void *opaque
)
487 sPAPREnvironment
*spapr
= (sPAPREnvironment
*)opaque
;
489 fprintf(stderr
, "sPAPR reset\n");
491 /* flush out the hash table */
492 memset(spapr
->htab
, 0, spapr
->htab_size
);
495 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
498 /* Set up the entry state */
499 first_cpu
->gpr
[3] = spapr
->fdt_addr
;
500 first_cpu
->gpr
[5] = 0;
501 first_cpu
->halted
= 0;
502 first_cpu
->nip
= spapr
->entry_point
;
506 static void spapr_cpu_reset(void *opaque
)
508 PowerPCCPU
*cpu
= opaque
;
513 /* pSeries LPAR / sPAPR hardware init */
514 static void ppc_spapr_init(ram_addr_t ram_size
,
515 const char *boot_device
,
516 const char *kernel_filename
,
517 const char *kernel_cmdline
,
518 const char *initrd_filename
,
519 const char *cpu_model
)
524 MemoryRegion
*sysmem
= get_system_memory();
525 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
526 target_phys_addr_t rma_alloc_size
, rma_size
;
527 uint32_t initrd_base
= 0;
528 long kernel_size
= 0, initrd_size
= 0;
529 long load_limit
, rtas_limit
, fw_size
;
530 long pteg_shift
= 17;
533 spapr
= g_malloc0(sizeof(*spapr
));
534 QLIST_INIT(&spapr
->phbs
);
536 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
538 /* Allocate RMA if necessary */
539 rma_alloc_size
= kvmppc_alloc_rma("ppc_spapr.rma", sysmem
);
541 if (rma_alloc_size
== -1) {
542 hw_error("qemu: Unable to create RMA\n");
545 if (rma_alloc_size
&& (rma_alloc_size
< ram_size
)) {
546 rma_size
= rma_alloc_size
;
551 /* We place the device tree and RTAS just below either the top of the RMA,
552 * or just below 2GB, whichever is lowere, so that it can be
553 * processed with 32-bit real mode code if necessary */
554 rtas_limit
= MIN(rma_size
, 0x80000000);
555 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
556 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
557 load_limit
= spapr
->fdt_addr
- FW_OVERHEAD
;
560 if (cpu_model
== NULL
) {
561 cpu_model
= kvm_enabled() ? "host" : "POWER7";
563 for (i
= 0; i
< smp_cpus
; i
++) {
564 cpu
= cpu_ppc_init(cpu_model
);
566 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
571 /* Set time-base frequency to 512 MHz */
572 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
573 qemu_register_reset(spapr_cpu_reset
, cpu
);
575 env
->hreset_vector
= 0x60;
576 env
->hreset_excp_prefix
= 0;
577 env
->gpr
[3] = env
->cpu_index
;
581 spapr
->ram_limit
= ram_size
;
582 if (spapr
->ram_limit
> rma_alloc_size
) {
583 ram_addr_t nonrma_base
= rma_alloc_size
;
584 ram_addr_t nonrma_size
= spapr
->ram_limit
- rma_alloc_size
;
586 memory_region_init_ram(ram
, "ppc_spapr.ram", nonrma_size
);
587 vmstate_register_ram_global(ram
);
588 memory_region_add_subregion(sysmem
, nonrma_base
, ram
);
591 /* allocate hash page table. For now we always make this 16mb,
592 * later we should probably make it scale to the size of guest
594 spapr
->htab_size
= 1ULL << (pteg_shift
+ 7);
595 spapr
->htab
= qemu_memalign(spapr
->htab_size
, spapr
->htab_size
);
597 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
598 env
->external_htab
= spapr
->htab
;
600 env
->htab_mask
= spapr
->htab_size
- 1;
602 /* Tell KVM that we're in PAPR mode */
603 env
->spr
[SPR_SDR1
] = (unsigned long)spapr
->htab
|
604 ((pteg_shift
+ 7) - 18);
605 env
->spr
[SPR_HIOR
] = 0;
608 kvmppc_set_papr(env
);
612 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
613 spapr
->rtas_size
= load_image_targphys(filename
, spapr
->rtas_addr
,
614 rtas_limit
- spapr
->rtas_addr
);
615 if (spapr
->rtas_size
< 0) {
616 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
619 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
620 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
621 spapr
->rtas_size
, RTAS_MAX_SIZE
);
627 /* Set up Interrupt Controller */
628 spapr
->icp
= xics_system_init(XICS_IRQS
);
629 spapr
->next_irq
= 16;
632 spapr
->vio_bus
= spapr_vio_bus_init();
634 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
636 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
641 spapr_create_phb(spapr
, "pci", SPAPR_PCI_BUID
,
642 SPAPR_PCI_MEM_WIN_ADDR
,
643 SPAPR_PCI_MEM_WIN_SIZE
,
644 SPAPR_PCI_IO_WIN_ADDR
);
646 for (i
= 0; i
< nb_nics
; i
++) {
647 NICInfo
*nd
= &nd_table
[i
];
650 nd
->model
= g_strdup("ibmveth");
653 if (strcmp(nd
->model
, "ibmveth") == 0) {
654 spapr_vlan_create(spapr
->vio_bus
, nd
);
656 pci_nic_init_nofail(&nd_table
[i
], nd
->model
, NULL
);
660 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
661 spapr_vscsi_create(spapr
->vio_bus
);
664 if (rma_size
< (MIN_RMA_SLOF
<< 20)) {
665 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
666 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
670 fprintf(stderr
, "sPAPR memory map:\n");
671 fprintf(stderr
, "RTAS : 0x%08lx..%08lx\n",
672 (unsigned long)spapr
->rtas_addr
,
673 (unsigned long)(spapr
->rtas_addr
+ spapr
->rtas_size
- 1));
674 fprintf(stderr
, "FDT : 0x%08lx..%08lx\n",
675 (unsigned long)spapr
->fdt_addr
,
676 (unsigned long)(spapr
->fdt_addr
+ FDT_MAX_SIZE
- 1));
678 if (kernel_filename
) {
679 uint64_t lowaddr
= 0;
681 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
682 NULL
, &lowaddr
, NULL
, 1, ELF_MACHINE
, 0);
683 if (kernel_size
< 0) {
684 kernel_size
= load_image_targphys(kernel_filename
,
686 load_limit
- KERNEL_LOAD_ADDR
);
688 if (kernel_size
< 0) {
689 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
693 fprintf(stderr
, "Kernel : 0x%08x..%08lx\n",
694 KERNEL_LOAD_ADDR
, KERNEL_LOAD_ADDR
+ kernel_size
- 1);
697 if (initrd_filename
) {
698 /* Try to locate the initrd in the gap between the kernel
699 * and the firmware. Add a bit of space just in case
701 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
702 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
703 load_limit
- initrd_base
);
704 if (initrd_size
< 0) {
705 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
709 fprintf(stderr
, "Ramdisk : 0x%08lx..%08lx\n",
710 (long)initrd_base
, (long)(initrd_base
+ initrd_size
- 1));
717 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, FW_FILE_NAME
);
718 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
720 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
724 fprintf(stderr
, "Firmware load : 0x%08x..%08lx\n",
726 fprintf(stderr
, "Firmware runtime : 0x%08lx..%08lx\n",
727 load_limit
, (unsigned long)spapr
->fdt_addr
);
729 spapr
->entry_point
= 0x100;
731 /* SLOF will startup the secondary CPUs using RTAS */
732 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
736 /* Prepare the device tree */
737 spapr
->fdt_skel
= spapr_create_fdt_skel(cpu_model
, rma_size
,
738 initrd_base
, initrd_size
,
740 boot_device
, kernel_cmdline
,
742 assert(spapr
->fdt_skel
!= NULL
);
744 qemu_register_reset(spapr_reset
, spapr
);
747 static QEMUMachine spapr_machine
= {
749 .desc
= "pSeries Logical Partition (PAPR compliant)",
750 .init
= ppc_spapr_init
,
751 .max_cpus
= MAX_CPUS
,
756 static void spapr_machine_init(void)
758 qemu_register_machine(&spapr_machine
);
761 machine_init(spapr_machine_init
);