Makefile: use $(qemu_confdir) instead of $(sysconfdir)/qemu
[qemu-kvm.git] / cpu-exec.c
blob0344cd5c59b13839fbb6df528b892db09da4599c
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
24 #include "qtest.h"
26 int tb_invalidated_flag;
28 //#define CONFIG_DEBUG_EXEC
30 bool qemu_cpu_has_work(CPUArchState *env)
32 return cpu_has_work(env);
35 void cpu_loop_exit(CPUArchState *env)
37 env->current_tb = NULL;
38 longjmp(env->jmp_env, 1);
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState *env, void *puc)
47 /* XXX: restore cpu registers saved in host registers */
49 env->exception_index = -1;
50 longjmp(env->jmp_env, 1);
52 #endif
54 /* Execute the code without caching the generated code. An interpreter
55 could be used if available. */
56 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
57 TranslationBlock *orig_tb)
59 tcg_target_ulong next_tb;
60 TranslationBlock *tb;
62 /* Should never happen.
63 We only end up here when an existing TB is too long. */
64 if (max_cycles > CF_COUNT_MASK)
65 max_cycles = CF_COUNT_MASK;
67 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
68 max_cycles);
69 env->current_tb = tb;
70 /* execute the generated code */
71 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
72 env->current_tb = NULL;
74 if ((next_tb & 3) == 2) {
75 /* Restore PC. This may happen if async event occurs before
76 the TB starts executing. */
77 cpu_pc_from_tb(env, tb);
79 tb_phys_invalidate(tb, -1);
80 tb_free(tb);
83 static TranslationBlock *tb_find_slow(CPUArchState *env,
84 target_ulong pc,
85 target_ulong cs_base,
86 uint64_t flags)
88 TranslationBlock *tb, **ptb1;
89 unsigned int h;
90 tb_page_addr_t phys_pc, phys_page1;
91 target_ulong virt_page2;
93 tb_invalidated_flag = 0;
95 /* find translated block using physical mappings */
96 phys_pc = get_page_addr_code(env, pc);
97 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 tb_page_addr_t phys_page2;
112 virt_page2 = (pc & TARGET_PAGE_MASK) +
113 TARGET_PAGE_SIZE;
114 phys_page2 = get_page_addr_code(env, virt_page2);
115 if (tb->page_addr[1] == phys_page2)
116 goto found;
117 } else {
118 goto found;
121 ptb1 = &tb->phys_hash_next;
123 not_found:
124 /* if no translated code available, then translate it now */
125 tb = tb_gen_code(env, pc, cs_base, flags, 0);
127 found:
128 /* Move the last found TB to the head of the list */
129 if (likely(*ptb1)) {
130 *ptb1 = tb->phys_hash_next;
131 tb->phys_hash_next = tb_phys_hash[h];
132 tb_phys_hash[h] = tb;
134 /* we add the TB in the virtual pc hash table */
135 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
136 return tb;
139 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
141 TranslationBlock *tb;
142 target_ulong cs_base, pc;
143 int flags;
145 /* we record a subset of the CPU state. It will
146 always be the same before a given translated block
147 is executed. */
148 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
149 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
150 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
151 tb->flags != flags)) {
152 tb = tb_find_slow(env, pc, cs_base, flags);
154 return tb;
157 static CPUDebugExcpHandler *debug_excp_handler;
159 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
161 CPUDebugExcpHandler *old_handler = debug_excp_handler;
163 debug_excp_handler = handler;
164 return old_handler;
167 static void cpu_handle_debug_exception(CPUArchState *env)
169 CPUWatchpoint *wp;
171 if (!env->watchpoint_hit) {
172 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
173 wp->flags &= ~BP_WATCHPOINT_HIT;
176 if (debug_excp_handler) {
177 debug_excp_handler(env);
181 /* main execution loop */
183 volatile sig_atomic_t exit_request;
185 int cpu_exec(CPUArchState *env)
187 int ret, interrupt_request;
188 TranslationBlock *tb;
189 uint8_t *tc_ptr;
190 tcg_target_ulong next_tb;
192 if (env->halted) {
193 if (!cpu_has_work(env)) {
194 return EXCP_HALTED;
197 env->halted = 0;
200 cpu_single_env = env;
202 if (unlikely(exit_request)) {
203 env->exit_request = 1;
206 #if defined(TARGET_I386)
207 /* put eflags in CPU temporary format */
208 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
209 DF = 1 - (2 * ((env->eflags >> 10) & 1));
210 CC_OP = CC_OP_EFLAGS;
211 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
212 #elif defined(TARGET_SPARC)
213 #elif defined(TARGET_M68K)
214 env->cc_op = CC_OP_FLAGS;
215 env->cc_dest = env->sr & 0xf;
216 env->cc_x = (env->sr >> 4) & 1;
217 #elif defined(TARGET_ALPHA)
218 #elif defined(TARGET_ARM)
219 #elif defined(TARGET_UNICORE32)
220 #elif defined(TARGET_PPC)
221 env->reserve_addr = -1;
222 #elif defined(TARGET_LM32)
223 #elif defined(TARGET_MICROBLAZE)
224 #elif defined(TARGET_MIPS)
225 #elif defined(TARGET_SH4)
226 #elif defined(TARGET_CRIS)
227 #elif defined(TARGET_S390X)
228 #elif defined(TARGET_XTENSA)
229 /* XXXXX */
230 #else
231 #error unsupported target CPU
232 #endif
233 env->exception_index = -1;
235 /* prepare setjmp context for exception handling */
236 for(;;) {
237 if (setjmp(env->jmp_env) == 0) {
238 /* if an exception is pending, we execute it here */
239 if (env->exception_index >= 0) {
240 if (env->exception_index >= EXCP_INTERRUPT) {
241 /* exit request from the cpu execution loop */
242 ret = env->exception_index;
243 if (ret == EXCP_DEBUG) {
244 cpu_handle_debug_exception(env);
246 break;
247 } else {
248 #if defined(CONFIG_USER_ONLY)
249 /* if user mode only, we simulate a fake exception
250 which will be handled outside the cpu execution
251 loop */
252 #if defined(TARGET_I386)
253 do_interrupt(env);
254 #endif
255 ret = env->exception_index;
256 break;
257 #else
258 do_interrupt(env);
259 env->exception_index = -1;
260 #endif
264 next_tb = 0; /* force lookup of first TB */
265 for(;;) {
266 interrupt_request = env->interrupt_request;
267 if (unlikely(interrupt_request)) {
268 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
269 /* Mask out external interrupts for this step. */
270 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
272 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
273 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
274 env->exception_index = EXCP_DEBUG;
275 cpu_loop_exit(env);
277 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
278 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
279 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
280 if (interrupt_request & CPU_INTERRUPT_HALT) {
281 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
282 env->halted = 1;
283 env->exception_index = EXCP_HLT;
284 cpu_loop_exit(env);
286 #endif
287 #if defined(TARGET_I386)
288 if (interrupt_request & CPU_INTERRUPT_INIT) {
289 svm_check_intercept(env, SVM_EXIT_INIT);
290 do_cpu_init(env);
291 env->exception_index = EXCP_HALTED;
292 cpu_loop_exit(env);
293 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
294 do_cpu_sipi(env);
295 } else if (env->hflags2 & HF2_GIF_MASK) {
296 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
297 !(env->hflags & HF_SMM_MASK)) {
298 svm_check_intercept(env, SVM_EXIT_SMI);
299 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
300 do_smm_enter(env);
301 next_tb = 0;
302 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
303 !(env->hflags2 & HF2_NMI_MASK)) {
304 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
305 env->hflags2 |= HF2_NMI_MASK;
306 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
307 next_tb = 0;
308 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
309 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
310 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
311 next_tb = 0;
312 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
313 (((env->hflags2 & HF2_VINTR_MASK) &&
314 (env->hflags2 & HF2_HIF_MASK)) ||
315 (!(env->hflags2 & HF2_VINTR_MASK) &&
316 (env->eflags & IF_MASK &&
317 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
318 int intno;
319 svm_check_intercept(env, SVM_EXIT_INTR);
320 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
321 intno = cpu_get_pic_interrupt(env);
322 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
323 do_interrupt_x86_hardirq(env, intno, 1);
324 /* ensure that no TB jump will be modified as
325 the program flow was changed */
326 next_tb = 0;
327 #if !defined(CONFIG_USER_ONLY)
328 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
329 (env->eflags & IF_MASK) &&
330 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
331 int intno;
332 /* FIXME: this should respect TPR */
333 svm_check_intercept(env, SVM_EXIT_VINTR);
334 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
335 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
336 do_interrupt_x86_hardirq(env, intno, 1);
337 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
338 next_tb = 0;
339 #endif
342 #elif defined(TARGET_PPC)
343 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
344 cpu_state_reset(env);
346 if (interrupt_request & CPU_INTERRUPT_HARD) {
347 ppc_hw_interrupt(env);
348 if (env->pending_interrupts == 0)
349 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
350 next_tb = 0;
352 #elif defined(TARGET_LM32)
353 if ((interrupt_request & CPU_INTERRUPT_HARD)
354 && (env->ie & IE_IE)) {
355 env->exception_index = EXCP_IRQ;
356 do_interrupt(env);
357 next_tb = 0;
359 #elif defined(TARGET_MICROBLAZE)
360 if ((interrupt_request & CPU_INTERRUPT_HARD)
361 && (env->sregs[SR_MSR] & MSR_IE)
362 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
363 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
364 env->exception_index = EXCP_IRQ;
365 do_interrupt(env);
366 next_tb = 0;
368 #elif defined(TARGET_MIPS)
369 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
370 cpu_mips_hw_interrupts_pending(env)) {
371 /* Raise it */
372 env->exception_index = EXCP_EXT_INTERRUPT;
373 env->error_code = 0;
374 do_interrupt(env);
375 next_tb = 0;
377 #elif defined(TARGET_SPARC)
378 if (interrupt_request & CPU_INTERRUPT_HARD) {
379 if (cpu_interrupts_enabled(env) &&
380 env->interrupt_index > 0) {
381 int pil = env->interrupt_index & 0xf;
382 int type = env->interrupt_index & 0xf0;
384 if (((type == TT_EXTINT) &&
385 cpu_pil_allowed(env, pil)) ||
386 type != TT_EXTINT) {
387 env->exception_index = env->interrupt_index;
388 do_interrupt(env);
389 next_tb = 0;
393 #elif defined(TARGET_ARM)
394 if (interrupt_request & CPU_INTERRUPT_FIQ
395 && !(env->uncached_cpsr & CPSR_F)) {
396 env->exception_index = EXCP_FIQ;
397 do_interrupt(env);
398 next_tb = 0;
400 /* ARMv7-M interrupt return works by loading a magic value
401 into the PC. On real hardware the load causes the
402 return to occur. The qemu implementation performs the
403 jump normally, then does the exception return when the
404 CPU tries to execute code at the magic address.
405 This will cause the magic PC value to be pushed to
406 the stack if an interrupt occurred at the wrong time.
407 We avoid this by disabling interrupts when
408 pc contains a magic address. */
409 if (interrupt_request & CPU_INTERRUPT_HARD
410 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
411 || !(env->uncached_cpsr & CPSR_I))) {
412 env->exception_index = EXCP_IRQ;
413 do_interrupt(env);
414 next_tb = 0;
416 #elif defined(TARGET_UNICORE32)
417 if (interrupt_request & CPU_INTERRUPT_HARD
418 && !(env->uncached_asr & ASR_I)) {
419 do_interrupt(env);
420 next_tb = 0;
422 #elif defined(TARGET_SH4)
423 if (interrupt_request & CPU_INTERRUPT_HARD) {
424 do_interrupt(env);
425 next_tb = 0;
427 #elif defined(TARGET_ALPHA)
429 int idx = -1;
430 /* ??? This hard-codes the OSF/1 interrupt levels. */
431 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
432 case 0 ... 3:
433 if (interrupt_request & CPU_INTERRUPT_HARD) {
434 idx = EXCP_DEV_INTERRUPT;
436 /* FALLTHRU */
437 case 4:
438 if (interrupt_request & CPU_INTERRUPT_TIMER) {
439 idx = EXCP_CLK_INTERRUPT;
441 /* FALLTHRU */
442 case 5:
443 if (interrupt_request & CPU_INTERRUPT_SMP) {
444 idx = EXCP_SMP_INTERRUPT;
446 /* FALLTHRU */
447 case 6:
448 if (interrupt_request & CPU_INTERRUPT_MCHK) {
449 idx = EXCP_MCHK;
452 if (idx >= 0) {
453 env->exception_index = idx;
454 env->error_code = 0;
455 do_interrupt(env);
456 next_tb = 0;
459 #elif defined(TARGET_CRIS)
460 if (interrupt_request & CPU_INTERRUPT_HARD
461 && (env->pregs[PR_CCS] & I_FLAG)
462 && !env->locked_irq) {
463 env->exception_index = EXCP_IRQ;
464 do_interrupt(env);
465 next_tb = 0;
467 if (interrupt_request & CPU_INTERRUPT_NMI
468 && (env->pregs[PR_CCS] & M_FLAG)) {
469 env->exception_index = EXCP_NMI;
470 do_interrupt(env);
471 next_tb = 0;
473 #elif defined(TARGET_M68K)
474 if (interrupt_request & CPU_INTERRUPT_HARD
475 && ((env->sr & SR_I) >> SR_I_SHIFT)
476 < env->pending_level) {
477 /* Real hardware gets the interrupt vector via an
478 IACK cycle at this point. Current emulated
479 hardware doesn't rely on this, so we
480 provide/save the vector when the interrupt is
481 first signalled. */
482 env->exception_index = env->pending_vector;
483 do_interrupt_m68k_hardirq(env);
484 next_tb = 0;
486 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
487 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
488 (env->psw.mask & PSW_MASK_EXT)) {
489 do_interrupt(env);
490 next_tb = 0;
492 #elif defined(TARGET_XTENSA)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
494 env->exception_index = EXC_IRQ;
495 do_interrupt(env);
496 next_tb = 0;
498 #endif
499 /* Don't use the cached interrupt_request value,
500 do_interrupt may have updated the EXITTB flag. */
501 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
502 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
503 /* ensure that no TB jump will be modified as
504 the program flow was changed */
505 next_tb = 0;
508 if (unlikely(env->exit_request)) {
509 env->exit_request = 0;
510 env->exception_index = EXCP_INTERRUPT;
511 cpu_loop_exit(env);
513 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
514 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
515 /* restore flags in standard format */
516 #if defined(TARGET_I386)
517 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
518 | (DF & DF_MASK);
519 log_cpu_state(env, X86_DUMP_CCOP);
520 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
521 #elif defined(TARGET_M68K)
522 cpu_m68k_flush_flags(env, env->cc_op);
523 env->cc_op = CC_OP_FLAGS;
524 env->sr = (env->sr & 0xffe0)
525 | env->cc_dest | (env->cc_x << 4);
526 log_cpu_state(env, 0);
527 #else
528 log_cpu_state(env, 0);
529 #endif
531 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
532 spin_lock(&tb_lock);
533 tb = tb_find_fast(env);
534 /* Note: we do it here to avoid a gcc bug on Mac OS X when
535 doing it in tb_find_slow */
536 if (tb_invalidated_flag) {
537 /* as some TB could have been invalidated because
538 of memory exceptions while generating the code, we
539 must recompute the hash index here */
540 next_tb = 0;
541 tb_invalidated_flag = 0;
543 #ifdef CONFIG_DEBUG_EXEC
544 qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
545 tb->tc_ptr, tb->pc,
546 lookup_symbol(tb->pc));
547 #endif
548 /* see if we can patch the calling TB. When the TB
549 spans two pages, we cannot safely do a direct
550 jump. */
551 if (next_tb != 0 && tb->page_addr[1] == -1) {
552 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
554 spin_unlock(&tb_lock);
556 /* cpu_interrupt might be called while translating the
557 TB, but before it is linked into a potentially
558 infinite loop and becomes env->current_tb. Avoid
559 starting execution if there is a pending interrupt. */
560 env->current_tb = tb;
561 barrier();
562 if (likely(!env->exit_request)) {
563 tc_ptr = tb->tc_ptr;
564 /* execute the generated code */
565 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
566 if ((next_tb & 3) == 2) {
567 /* Instruction counter expired. */
568 int insns_left;
569 tb = (TranslationBlock *)(next_tb & ~3);
570 /* Restore PC. */
571 cpu_pc_from_tb(env, tb);
572 insns_left = env->icount_decr.u32;
573 if (env->icount_extra && insns_left >= 0) {
574 /* Refill decrementer and continue execution. */
575 env->icount_extra += insns_left;
576 if (env->icount_extra > 0xffff) {
577 insns_left = 0xffff;
578 } else {
579 insns_left = env->icount_extra;
581 env->icount_extra -= insns_left;
582 env->icount_decr.u16.low = insns_left;
583 } else {
584 if (insns_left > 0) {
585 /* Execute remaining instructions. */
586 cpu_exec_nocache(env, insns_left, tb);
588 env->exception_index = EXCP_INTERRUPT;
589 next_tb = 0;
590 cpu_loop_exit(env);
594 env->current_tb = NULL;
595 /* reset soft MMU for next block (it can currently
596 only be set by a memory fault) */
597 } /* for(;;) */
598 } else {
599 /* Reload env after longjmp - the compiler may have smashed all
600 * local variables as longjmp is marked 'noreturn'. */
601 env = cpu_single_env;
603 } /* for(;;) */
606 #if defined(TARGET_I386)
607 /* restore flags in standard format */
608 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
609 | (DF & DF_MASK);
610 #elif defined(TARGET_ARM)
611 /* XXX: Save/restore host fpu exception state?. */
612 #elif defined(TARGET_UNICORE32)
613 #elif defined(TARGET_SPARC)
614 #elif defined(TARGET_PPC)
615 #elif defined(TARGET_LM32)
616 #elif defined(TARGET_M68K)
617 cpu_m68k_flush_flags(env, env->cc_op);
618 env->cc_op = CC_OP_FLAGS;
619 env->sr = (env->sr & 0xffe0)
620 | env->cc_dest | (env->cc_x << 4);
621 #elif defined(TARGET_MICROBLAZE)
622 #elif defined(TARGET_MIPS)
623 #elif defined(TARGET_SH4)
624 #elif defined(TARGET_ALPHA)
625 #elif defined(TARGET_CRIS)
626 #elif defined(TARGET_S390X)
627 #elif defined(TARGET_XTENSA)
628 /* XXXXX */
629 #else
630 #error unsupported target CPU
631 #endif
633 /* fail safe : never use cpu_single_env outside cpu_exec() */
634 cpu_single_env = NULL;
635 return ret;