block: Merge BlockBackend and BlockDriverState name spaces
[qemu-kvm.git] / qtest.c
blob4b85995de00f36e8fec5d7249d6868b5279d26f3
1 /*
2 * Test Server
4 * Copyright IBM, Corp. 2011
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "sysemu/qtest.h"
15 #include "hw/qdev.h"
16 #include "sysemu/char.h"
17 #include "exec/ioport.h"
18 #include "exec/memory.h"
19 #include "hw/irq.h"
20 #include "sysemu/accel.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/cpus.h"
23 #include "qemu/config-file.h"
24 #include "qemu/option.h"
25 #include "qemu/error-report.h"
27 #define MAX_IRQ 256
29 bool qtest_allowed;
31 static DeviceState *irq_intercept_dev;
32 static FILE *qtest_log_fp;
33 static CharDriverState *qtest_chr;
34 static GString *inbuf;
35 static int irq_levels[MAX_IRQ];
36 static qemu_timeval start_time;
37 static bool qtest_opened;
39 #define FMT_timeval "%ld.%06ld"
41 /**
42 * QTest Protocol
44 * Line based protocol, request/response based. Server can send async messages
45 * so clients should always handle many async messages before the response
46 * comes in.
48 * Valid requests
50 * Clock management:
52 * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands
53 * let you adjust the value of the clock (monotonically). All the commands
54 * return the current value of the clock in nanoseconds.
56 * > clock_step
57 * < OK VALUE
59 * Advance the clock to the next deadline. Useful when waiting for
60 * asynchronous events.
62 * > clock_step NS
63 * < OK VALUE
65 * Advance the clock by NS nanoseconds.
67 * > clock_set NS
68 * < OK VALUE
70 * Advance the clock to NS nanoseconds (do nothing if it's already past).
72 * PIO and memory access:
74 * > outb ADDR VALUE
75 * < OK
77 * > outw ADDR VALUE
78 * < OK
80 * > outl ADDR VALUE
81 * < OK
83 * > inb ADDR
84 * < OK VALUE
86 * > inw ADDR
87 * < OK VALUE
89 * > inl ADDR
90 * < OK VALUE
92 * > writeb ADDR VALUE
93 * < OK
95 * > writew ADDR VALUE
96 * < OK
98 * > writel ADDR VALUE
99 * < OK
101 * > writeq ADDR VALUE
102 * < OK
104 * > readb ADDR
105 * < OK VALUE
107 * > readw ADDR
108 * < OK VALUE
110 * > readl ADDR
111 * < OK VALUE
113 * > readq ADDR
114 * < OK VALUE
116 * > read ADDR SIZE
117 * < OK DATA
119 * > write ADDR SIZE DATA
120 * < OK
122 * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0.
124 * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller
125 * than the expected size, the value will be zero filled at the end of the data
126 * sequence.
128 * IRQ management:
130 * > irq_intercept_in QOM-PATH
131 * < OK
133 * > irq_intercept_out QOM-PATH
134 * < OK
136 * Attach to the gpio-in (resp. gpio-out) pins exported by the device at
137 * QOM-PATH. When the pin is triggered, one of the following async messages
138 * will be printed to the qtest stream:
140 * IRQ raise NUM
141 * IRQ lower NUM
143 * where NUM is an IRQ number. For the PC, interrupts can be intercepted
144 * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
145 * NUM=0 even though it is remapped to GSI 2).
148 static int hex2nib(char ch)
150 if (ch >= '0' && ch <= '9') {
151 return ch - '0';
152 } else if (ch >= 'a' && ch <= 'f') {
153 return 10 + (ch - 'a');
154 } else if (ch >= 'A' && ch <= 'F') {
155 return 10 + (ch - 'A');
156 } else {
157 return -1;
161 static void qtest_get_time(qemu_timeval *tv)
163 qemu_gettimeofday(tv);
164 tv->tv_sec -= start_time.tv_sec;
165 tv->tv_usec -= start_time.tv_usec;
166 if (tv->tv_usec < 0) {
167 tv->tv_usec += 1000000;
168 tv->tv_sec -= 1;
172 static void qtest_send_prefix(CharDriverState *chr)
174 qemu_timeval tv;
176 if (!qtest_log_fp || !qtest_opened) {
177 return;
180 qtest_get_time(&tv);
181 fprintf(qtest_log_fp, "[S +" FMT_timeval "] ",
182 (long) tv.tv_sec, (long) tv.tv_usec);
185 static void GCC_FMT_ATTR(2, 3) qtest_send(CharDriverState *chr,
186 const char *fmt, ...)
188 va_list ap;
189 char buffer[1024];
190 size_t len;
192 va_start(ap, fmt);
193 len = vsnprintf(buffer, sizeof(buffer), fmt, ap);
194 va_end(ap);
196 qemu_chr_fe_write_all(chr, (uint8_t *)buffer, len);
197 if (qtest_log_fp && qtest_opened) {
198 fprintf(qtest_log_fp, "%s", buffer);
202 static void qtest_irq_handler(void *opaque, int n, int level)
204 qemu_irq *old_irqs = opaque;
205 qemu_set_irq(old_irqs[n], level);
207 if (irq_levels[n] != level) {
208 CharDriverState *chr = qtest_chr;
209 irq_levels[n] = level;
210 qtest_send_prefix(chr);
211 qtest_send(chr, "IRQ %s %d\n",
212 level ? "raise" : "lower", n);
216 static void qtest_process_command(CharDriverState *chr, gchar **words)
218 const gchar *command;
220 g_assert(words);
222 command = words[0];
224 if (qtest_log_fp) {
225 qemu_timeval tv;
226 int i;
228 qtest_get_time(&tv);
229 fprintf(qtest_log_fp, "[R +" FMT_timeval "]",
230 (long) tv.tv_sec, (long) tv.tv_usec);
231 for (i = 0; words[i]; i++) {
232 fprintf(qtest_log_fp, " %s", words[i]);
234 fprintf(qtest_log_fp, "\n");
237 g_assert(command);
238 if (strcmp(words[0], "irq_intercept_out") == 0
239 || strcmp(words[0], "irq_intercept_in") == 0) {
240 DeviceState *dev;
241 NamedGPIOList *ngl;
243 g_assert(words[1]);
244 dev = DEVICE(object_resolve_path(words[1], NULL));
245 if (!dev) {
246 qtest_send_prefix(chr);
247 qtest_send(chr, "FAIL Unknown device\n");
248 return;
251 if (irq_intercept_dev) {
252 qtest_send_prefix(chr);
253 if (irq_intercept_dev != dev) {
254 qtest_send(chr, "FAIL IRQ intercept already enabled\n");
255 } else {
256 qtest_send(chr, "OK\n");
258 return;
261 QLIST_FOREACH(ngl, &dev->gpios, node) {
262 /* We don't support intercept of named GPIOs yet */
263 if (ngl->name) {
264 continue;
266 if (words[0][14] == 'o') {
267 qemu_irq_intercept_out(&ngl->out, qtest_irq_handler,
268 ngl->num_out);
269 } else {
270 qemu_irq_intercept_in(ngl->in, qtest_irq_handler,
271 ngl->num_in);
274 irq_intercept_dev = dev;
275 qtest_send_prefix(chr);
276 qtest_send(chr, "OK\n");
278 } else if (strcmp(words[0], "outb") == 0 ||
279 strcmp(words[0], "outw") == 0 ||
280 strcmp(words[0], "outl") == 0) {
281 uint16_t addr;
282 uint32_t value;
284 g_assert(words[1] && words[2]);
285 addr = strtoul(words[1], NULL, 0);
286 value = strtoul(words[2], NULL, 0);
288 if (words[0][3] == 'b') {
289 cpu_outb(addr, value);
290 } else if (words[0][3] == 'w') {
291 cpu_outw(addr, value);
292 } else if (words[0][3] == 'l') {
293 cpu_outl(addr, value);
295 qtest_send_prefix(chr);
296 qtest_send(chr, "OK\n");
297 } else if (strcmp(words[0], "inb") == 0 ||
298 strcmp(words[0], "inw") == 0 ||
299 strcmp(words[0], "inl") == 0) {
300 uint16_t addr;
301 uint32_t value = -1U;
303 g_assert(words[1]);
304 addr = strtoul(words[1], NULL, 0);
306 if (words[0][2] == 'b') {
307 value = cpu_inb(addr);
308 } else if (words[0][2] == 'w') {
309 value = cpu_inw(addr);
310 } else if (words[0][2] == 'l') {
311 value = cpu_inl(addr);
313 qtest_send_prefix(chr);
314 qtest_send(chr, "OK 0x%04x\n", value);
315 } else if (strcmp(words[0], "writeb") == 0 ||
316 strcmp(words[0], "writew") == 0 ||
317 strcmp(words[0], "writel") == 0 ||
318 strcmp(words[0], "writeq") == 0) {
319 uint64_t addr;
320 uint64_t value;
322 g_assert(words[1] && words[2]);
323 addr = strtoull(words[1], NULL, 0);
324 value = strtoull(words[2], NULL, 0);
326 if (words[0][5] == 'b') {
327 uint8_t data = value;
328 cpu_physical_memory_write(addr, &data, 1);
329 } else if (words[0][5] == 'w') {
330 uint16_t data = value;
331 tswap16s(&data);
332 cpu_physical_memory_write(addr, &data, 2);
333 } else if (words[0][5] == 'l') {
334 uint32_t data = value;
335 tswap32s(&data);
336 cpu_physical_memory_write(addr, &data, 4);
337 } else if (words[0][5] == 'q') {
338 uint64_t data = value;
339 tswap64s(&data);
340 cpu_physical_memory_write(addr, &data, 8);
342 qtest_send_prefix(chr);
343 qtest_send(chr, "OK\n");
344 } else if (strcmp(words[0], "readb") == 0 ||
345 strcmp(words[0], "readw") == 0 ||
346 strcmp(words[0], "readl") == 0 ||
347 strcmp(words[0], "readq") == 0) {
348 uint64_t addr;
349 uint64_t value = UINT64_C(-1);
351 g_assert(words[1]);
352 addr = strtoull(words[1], NULL, 0);
354 if (words[0][4] == 'b') {
355 uint8_t data;
356 cpu_physical_memory_read(addr, &data, 1);
357 value = data;
358 } else if (words[0][4] == 'w') {
359 uint16_t data;
360 cpu_physical_memory_read(addr, &data, 2);
361 value = tswap16(data);
362 } else if (words[0][4] == 'l') {
363 uint32_t data;
364 cpu_physical_memory_read(addr, &data, 4);
365 value = tswap32(data);
366 } else if (words[0][4] == 'q') {
367 cpu_physical_memory_read(addr, &value, 8);
368 tswap64s(&value);
370 qtest_send_prefix(chr);
371 qtest_send(chr, "OK 0x%016" PRIx64 "\n", value);
372 } else if (strcmp(words[0], "read") == 0) {
373 uint64_t addr, len, i;
374 uint8_t *data;
376 g_assert(words[1] && words[2]);
377 addr = strtoull(words[1], NULL, 0);
378 len = strtoull(words[2], NULL, 0);
380 data = g_malloc(len);
381 cpu_physical_memory_read(addr, data, len);
383 qtest_send_prefix(chr);
384 qtest_send(chr, "OK 0x");
385 for (i = 0; i < len; i++) {
386 qtest_send(chr, "%02x", data[i]);
388 qtest_send(chr, "\n");
390 g_free(data);
391 } else if (strcmp(words[0], "write") == 0) {
392 uint64_t addr, len, i;
393 uint8_t *data;
394 size_t data_len;
396 g_assert(words[1] && words[2] && words[3]);
397 addr = strtoull(words[1], NULL, 0);
398 len = strtoull(words[2], NULL, 0);
400 data_len = strlen(words[3]);
401 if (data_len < 3) {
402 qtest_send(chr, "ERR invalid argument size\n");
403 return;
406 data = g_malloc(len);
407 for (i = 0; i < len; i++) {
408 if ((i * 2 + 4) <= data_len) {
409 data[i] = hex2nib(words[3][i * 2 + 2]) << 4;
410 data[i] |= hex2nib(words[3][i * 2 + 3]);
411 } else {
412 data[i] = 0;
415 cpu_physical_memory_write(addr, data, len);
416 g_free(data);
418 qtest_send_prefix(chr);
419 qtest_send(chr, "OK\n");
420 } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) {
421 int64_t ns;
423 if (words[1]) {
424 ns = strtoll(words[1], NULL, 0);
425 } else {
426 ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
428 qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns);
429 qtest_send_prefix(chr);
430 qtest_send(chr, "OK %"PRIi64"\n", (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
431 } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) {
432 int64_t ns;
434 g_assert(words[1]);
435 ns = strtoll(words[1], NULL, 0);
436 qtest_clock_warp(ns);
437 qtest_send_prefix(chr);
438 qtest_send(chr, "OK %"PRIi64"\n", (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
439 } else {
440 qtest_send_prefix(chr);
441 qtest_send(chr, "FAIL Unknown command `%s'\n", words[0]);
445 static void qtest_process_inbuf(CharDriverState *chr, GString *inbuf)
447 char *end;
449 while ((end = strchr(inbuf->str, '\n')) != NULL) {
450 size_t offset;
451 GString *cmd;
452 gchar **words;
454 offset = end - inbuf->str;
456 cmd = g_string_new_len(inbuf->str, offset);
457 g_string_erase(inbuf, 0, offset + 1);
459 words = g_strsplit(cmd->str, " ", 0);
460 qtest_process_command(chr, words);
461 g_strfreev(words);
463 g_string_free(cmd, TRUE);
467 static void qtest_read(void *opaque, const uint8_t *buf, int size)
469 CharDriverState *chr = opaque;
471 g_string_append_len(inbuf, (const gchar *)buf, size);
472 qtest_process_inbuf(chr, inbuf);
475 static int qtest_can_read(void *opaque)
477 return 1024;
480 static void qtest_event(void *opaque, int event)
482 int i;
484 switch (event) {
485 case CHR_EVENT_OPENED:
487 * We used to call qemu_system_reset() here, hoping we could
488 * use the same process for multiple tests that way. Never
489 * used. Injects an extra reset even when it's not used, and
490 * that can mess up tests, e.g. -boot once.
492 for (i = 0; i < ARRAY_SIZE(irq_levels); i++) {
493 irq_levels[i] = 0;
495 qemu_gettimeofday(&start_time);
496 qtest_opened = true;
497 if (qtest_log_fp) {
498 fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n",
499 (long) start_time.tv_sec, (long) start_time.tv_usec);
501 break;
502 case CHR_EVENT_CLOSED:
503 qtest_opened = false;
504 if (qtest_log_fp) {
505 qemu_timeval tv;
506 qtest_get_time(&tv);
507 fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n",
508 (long) tv.tv_sec, (long) tv.tv_usec);
510 break;
511 default:
512 break;
516 static void configure_qtest_icount(const char *options)
518 QemuOpts *opts = qemu_opts_parse(qemu_find_opts("icount"), options, 1);
519 configure_icount(opts, &error_abort);
520 qemu_opts_del(opts);
523 static int qtest_init_accel(MachineState *ms)
525 configure_qtest_icount("0");
526 return 0;
529 void qtest_init(const char *qtest_chrdev, const char *qtest_log, Error **errp)
531 CharDriverState *chr;
533 chr = qemu_chr_new("qtest", qtest_chrdev, NULL);
535 if (chr == NULL) {
536 error_setg(errp, "Failed to initialize device for qtest: \"%s\"",
537 qtest_chrdev);
538 return;
541 qemu_chr_add_handlers(chr, qtest_can_read, qtest_read, qtest_event, chr);
542 qemu_chr_fe_set_echo(chr, true);
544 inbuf = g_string_new("");
546 if (qtest_log) {
547 if (strcmp(qtest_log, "none") != 0) {
548 qtest_log_fp = fopen(qtest_log, "w+");
550 } else {
551 qtest_log_fp = stderr;
554 qtest_chr = chr;
557 bool qtest_driver(void)
559 return qtest_chr;
562 static void qtest_accel_class_init(ObjectClass *oc, void *data)
564 AccelClass *ac = ACCEL_CLASS(oc);
565 ac->name = "QTest";
566 ac->available = qtest_available;
567 ac->init_machine = qtest_init_accel;
568 ac->allowed = &qtest_allowed;
571 #define TYPE_QTEST_ACCEL ACCEL_CLASS_NAME("qtest")
573 static const TypeInfo qtest_accel_type = {
574 .name = TYPE_QTEST_ACCEL,
575 .parent = TYPE_ACCEL,
576 .class_init = qtest_accel_class_init,
579 static void qtest_type_init(void)
581 type_register_static(&qtest_accel_type);
584 type_init(qtest_type_init);