2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
35 #include "qemu/error-report.h"
37 #include "hw/pci/pci_bus.h"
39 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
40 #define RTAS_QUERY_FN 0
41 #define RTAS_CHANGE_FN 1
42 #define RTAS_RESET_FN 2
43 #define RTAS_CHANGE_MSI_FN 3
44 #define RTAS_CHANGE_MSIX_FN 4
46 /* Interrupt types to return on RTAS_CHANGE_* */
47 #define RTAS_TYPE_MSI 1
48 #define RTAS_TYPE_MSIX 2
50 static sPAPRPHBState
*find_phb(sPAPREnvironment
*spapr
, uint64_t buid
)
54 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
55 if (sphb
->buid
!= buid
) {
64 static PCIDevice
*find_dev(sPAPREnvironment
*spapr
, uint64_t buid
,
67 sPAPRPHBState
*sphb
= find_phb(spapr
, buid
);
68 PCIHostState
*phb
= PCI_HOST_BRIDGE(sphb
);
69 int bus_num
= (config_addr
>> 16) & 0xFF;
70 int devfn
= (config_addr
>> 8) & 0xFF;
76 return pci_find_device(phb
->bus
, bus_num
, devfn
);
79 static uint32_t rtas_pci_cfgaddr(uint32_t arg
)
81 /* This handles the encoding of extended config space addresses */
82 return ((arg
>> 20) & 0xf00) | (arg
& 0xff);
85 static void finish_read_pci_config(sPAPREnvironment
*spapr
, uint64_t buid
,
86 uint32_t addr
, uint32_t size
,
92 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
93 /* access must be 1, 2 or 4 bytes */
94 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
98 pci_dev
= find_dev(spapr
, buid
, addr
);
99 addr
= rtas_pci_cfgaddr(addr
);
101 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
102 /* Access must be to a valid device, within bounds and
103 * naturally aligned */
104 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
108 val
= pci_host_config_read_common(pci_dev
, addr
,
109 pci_config_size(pci_dev
), size
);
111 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
112 rtas_st(rets
, 1, val
);
115 static void rtas_ibm_read_pci_config(PowerPCCPU
*cpu
, sPAPREnvironment
*spapr
,
116 uint32_t token
, uint32_t nargs
,
118 uint32_t nret
, target_ulong rets
)
123 if ((nargs
!= 4) || (nret
!= 2)) {
124 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
128 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
129 size
= rtas_ld(args
, 3);
130 addr
= rtas_ld(args
, 0);
132 finish_read_pci_config(spapr
, buid
, addr
, size
, rets
);
135 static void rtas_read_pci_config(PowerPCCPU
*cpu
, sPAPREnvironment
*spapr
,
136 uint32_t token
, uint32_t nargs
,
138 uint32_t nret
, target_ulong rets
)
142 if ((nargs
!= 2) || (nret
!= 2)) {
143 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
147 size
= rtas_ld(args
, 1);
148 addr
= rtas_ld(args
, 0);
150 finish_read_pci_config(spapr
, 0, addr
, size
, rets
);
153 static void finish_write_pci_config(sPAPREnvironment
*spapr
, uint64_t buid
,
154 uint32_t addr
, uint32_t size
,
155 uint32_t val
, target_ulong rets
)
159 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
160 /* access must be 1, 2 or 4 bytes */
161 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
165 pci_dev
= find_dev(spapr
, buid
, addr
);
166 addr
= rtas_pci_cfgaddr(addr
);
168 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
169 /* Access must be to a valid device, within bounds and
170 * naturally aligned */
171 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
175 pci_host_config_write_common(pci_dev
, addr
, pci_config_size(pci_dev
),
178 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
181 static void rtas_ibm_write_pci_config(PowerPCCPU
*cpu
, sPAPREnvironment
*spapr
,
182 uint32_t token
, uint32_t nargs
,
184 uint32_t nret
, target_ulong rets
)
187 uint32_t val
, size
, addr
;
189 if ((nargs
!= 5) || (nret
!= 1)) {
190 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
194 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
195 val
= rtas_ld(args
, 4);
196 size
= rtas_ld(args
, 3);
197 addr
= rtas_ld(args
, 0);
199 finish_write_pci_config(spapr
, buid
, addr
, size
, val
, rets
);
202 static void rtas_write_pci_config(PowerPCCPU
*cpu
, sPAPREnvironment
*spapr
,
203 uint32_t token
, uint32_t nargs
,
205 uint32_t nret
, target_ulong rets
)
207 uint32_t val
, size
, addr
;
209 if ((nargs
!= 3) || (nret
!= 1)) {
210 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
215 val
= rtas_ld(args
, 2);
216 size
= rtas_ld(args
, 1);
217 addr
= rtas_ld(args
, 0);
219 finish_write_pci_config(spapr
, 0, addr
, size
, val
, rets
);
223 * Set MSI/MSIX message data.
224 * This is required for msi_notify()/msix_notify() which
225 * will write at the addresses via spapr_msi_write().
227 * If hwaddr == 0, all entries will have .data == first_irq i.e.
228 * table will be reset.
230 static void spapr_msi_setmsg(PCIDevice
*pdev
, hwaddr addr
, bool msix
,
231 unsigned first_irq
, unsigned req_num
)
234 MSIMessage msg
= { .address
= addr
, .data
= first_irq
};
237 msi_set_message(pdev
, msg
);
238 trace_spapr_pci_msi_setup(pdev
->name
, 0, msg
.address
);
242 for (i
= 0; i
< req_num
; ++i
) {
243 msix_set_message(pdev
, i
, msg
);
244 trace_spapr_pci_msi_setup(pdev
->name
, i
, msg
.address
);
251 static void rtas_ibm_change_msi(PowerPCCPU
*cpu
, sPAPREnvironment
*spapr
,
252 uint32_t token
, uint32_t nargs
,
253 target_ulong args
, uint32_t nret
,
256 uint32_t config_addr
= rtas_ld(args
, 0);
257 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
258 unsigned int func
= rtas_ld(args
, 3);
259 unsigned int req_num
= rtas_ld(args
, 4); /* 0 == remove all */
260 unsigned int seq_num
= rtas_ld(args
, 5);
261 unsigned int ret_intr_type
;
262 unsigned int irq
, max_irqs
= 0, num
= 0;
263 sPAPRPHBState
*phb
= NULL
;
264 PCIDevice
*pdev
= NULL
;
266 int *config_addr_key
;
269 case RTAS_CHANGE_MSI_FN
:
271 ret_intr_type
= RTAS_TYPE_MSI
;
273 case RTAS_CHANGE_MSIX_FN
:
274 ret_intr_type
= RTAS_TYPE_MSIX
;
277 error_report("rtas_ibm_change_msi(%u) is not implemented", func
);
278 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
282 /* Fins sPAPRPHBState */
283 phb
= find_phb(spapr
, buid
);
285 pdev
= find_dev(spapr
, buid
, config_addr
);
288 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
294 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
296 trace_spapr_pci_msi("Releasing wrong config", config_addr
);
297 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
301 xics_free(spapr
->icp
, msi
->first_irq
, msi
->num
);
302 if (msi_present(pdev
)) {
303 spapr_msi_setmsg(pdev
, 0, false, 0, num
);
305 if (msix_present(pdev
)) {
306 spapr_msi_setmsg(pdev
, 0, true, 0, num
);
308 g_hash_table_remove(phb
->msi
, &config_addr
);
310 trace_spapr_pci_msi("Released MSIs", config_addr
);
311 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
318 /* Check if the device supports as many IRQs as requested */
319 if (ret_intr_type
== RTAS_TYPE_MSI
) {
320 max_irqs
= msi_nr_vectors_allocated(pdev
);
321 } else if (ret_intr_type
== RTAS_TYPE_MSIX
) {
322 max_irqs
= pdev
->msix_entries_nr
;
325 error_report("Requested interrupt type %d is not enabled for device %x",
326 ret_intr_type
, config_addr
);
327 rtas_st(rets
, 0, -1); /* Hardware error */
330 /* Correct the number if the guest asked for too many */
331 if (req_num
> max_irqs
) {
332 trace_spapr_pci_msi_retry(config_addr
, req_num
, max_irqs
);
334 irq
= 0; /* to avoid misleading trace */
339 irq
= xics_alloc_block(spapr
->icp
, 0, req_num
, false,
340 ret_intr_type
== RTAS_TYPE_MSI
);
342 error_report("Cannot allocate MSIs for device %x", config_addr
);
343 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
347 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
348 spapr_msi_setmsg(pdev
, SPAPR_PCI_MSI_WINDOW
, ret_intr_type
== RTAS_TYPE_MSIX
,
351 /* Add MSI device to cache */
352 msi
= g_new(spapr_pci_msi
, 1);
353 msi
->first_irq
= irq
;
355 config_addr_key
= g_new(int, 1);
356 *config_addr_key
= config_addr
;
357 g_hash_table_insert(phb
->msi
, config_addr_key
, msi
);
360 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
361 rtas_st(rets
, 1, req_num
);
362 rtas_st(rets
, 2, ++seq_num
);
363 rtas_st(rets
, 3, ret_intr_type
);
365 trace_spapr_pci_rtas_ibm_change_msi(config_addr
, func
, req_num
, irq
);
368 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU
*cpu
,
369 sPAPREnvironment
*spapr
,
376 uint32_t config_addr
= rtas_ld(args
, 0);
377 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
378 unsigned int intr_src_num
= -1, ioa_intr_num
= rtas_ld(args
, 3);
379 sPAPRPHBState
*phb
= NULL
;
380 PCIDevice
*pdev
= NULL
;
383 /* Find sPAPRPHBState */
384 phb
= find_phb(spapr
, buid
);
386 pdev
= find_dev(spapr
, buid
, config_addr
);
389 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
393 /* Find device descriptor and start IRQ */
394 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
395 if (!msi
|| !msi
->first_irq
|| !msi
->num
|| (ioa_intr_num
>= msi
->num
)) {
396 trace_spapr_pci_msi("Failed to return vector", config_addr
);
397 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
400 intr_src_num
= msi
->first_irq
+ ioa_intr_num
;
401 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num
,
404 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
405 rtas_st(rets
, 1, intr_src_num
);
406 rtas_st(rets
, 2, 1);/* 0 == level; 1 == edge */
409 static int pci_spapr_swizzle(int slot
, int pin
)
411 return (slot
+ pin
) % PCI_NUM_PINS
;
414 static int pci_spapr_map_irq(PCIDevice
*pci_dev
, int irq_num
)
417 * Here we need to convert pci_dev + irq_num to some unique value
418 * which is less than number of IRQs on the specific bus (4). We
419 * use standard PCI swizzling, that is (slot number + pin number)
422 return pci_spapr_swizzle(PCI_SLOT(pci_dev
->devfn
), irq_num
);
425 static void pci_spapr_set_irq(void *opaque
, int irq_num
, int level
)
428 * Here we use the number returned by pci_spapr_map_irq to find a
429 * corresponding qemu_irq.
431 sPAPRPHBState
*phb
= opaque
;
433 trace_spapr_pci_lsi_set(phb
->dtbusname
, irq_num
, phb
->lsi_table
[irq_num
].irq
);
434 qemu_set_irq(spapr_phb_lsi_qirq(phb
, irq_num
), level
);
437 static PCIINTxRoute
spapr_route_intx_pin_to_irq(void *opaque
, int pin
)
439 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(opaque
);
442 route
.mode
= PCI_INTX_ENABLED
;
443 route
.irq
= sphb
->lsi_table
[pin
].irq
;
449 * MSI/MSIX memory region implementation.
450 * The handler handles both MSI and MSIX.
451 * For MSI-X, the vector number is encoded as a part of the address,
453 * For MSI, the vector number is encoded in least bits in data.
455 static void spapr_msi_write(void *opaque
, hwaddr addr
,
456 uint64_t data
, unsigned size
)
460 trace_spapr_pci_msi_write(addr
, data
, irq
);
462 qemu_irq_pulse(xics_get_qirq(spapr
->icp
, irq
));
465 static const MemoryRegionOps spapr_msi_ops
= {
466 /* There is no .read as the read result is undefined by PCI spec */
468 .write
= spapr_msi_write
,
469 .endianness
= DEVICE_LITTLE_ENDIAN
475 static AddressSpace
*spapr_pci_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
477 sPAPRPHBState
*phb
= opaque
;
479 return &phb
->iommu_as
;
482 static void spapr_phb_realize(DeviceState
*dev
, Error
**errp
)
484 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
485 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(s
);
486 PCIHostState
*phb
= PCI_HOST_BRIDGE(s
);
487 sPAPRPHBClass
*info
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s
);
491 uint64_t msi_window_size
= 4096;
493 if (sphb
->index
!= -1) {
496 if ((sphb
->buid
!= -1) || (sphb
->dma_liobn
!= -1)
497 || (sphb
->mem_win_addr
!= -1)
498 || (sphb
->io_win_addr
!= -1)) {
499 error_setg(errp
, "Either \"index\" or other parameters must"
500 " be specified for PAPR PHB, not both");
504 sphb
->buid
= SPAPR_PCI_BASE_BUID
+ sphb
->index
;
505 sphb
->dma_liobn
= SPAPR_PCI_BASE_LIOBN
+ sphb
->index
;
507 windows_base
= SPAPR_PCI_WINDOW_BASE
508 + sphb
->index
* SPAPR_PCI_WINDOW_SPACING
;
509 sphb
->mem_win_addr
= windows_base
+ SPAPR_PCI_MMIO_WIN_OFF
;
510 sphb
->io_win_addr
= windows_base
+ SPAPR_PCI_IO_WIN_OFF
;
513 if (sphb
->buid
== -1) {
514 error_setg(errp
, "BUID not specified for PHB");
518 if (sphb
->dma_liobn
== -1) {
519 error_setg(errp
, "LIOBN not specified for PHB");
523 if (sphb
->mem_win_addr
== -1) {
524 error_setg(errp
, "Memory window address not specified for PHB");
528 if (sphb
->io_win_addr
== -1) {
529 error_setg(errp
, "IO window address not specified for PHB");
533 if (find_phb(spapr
, sphb
->buid
)) {
534 error_setg(errp
, "PCI host bridges must have unique BUIDs");
538 sphb
->dtbusname
= g_strdup_printf("pci@%" PRIx64
, sphb
->buid
);
540 namebuf
= alloca(strlen(sphb
->dtbusname
) + 32);
542 /* Initialize memory regions */
543 sprintf(namebuf
, "%s.mmio", sphb
->dtbusname
);
544 memory_region_init(&sphb
->memspace
, OBJECT(sphb
), namebuf
, UINT64_MAX
);
546 sprintf(namebuf
, "%s.mmio-alias", sphb
->dtbusname
);
547 memory_region_init_alias(&sphb
->memwindow
, OBJECT(sphb
),
548 namebuf
, &sphb
->memspace
,
549 SPAPR_PCI_MEM_WIN_BUS_OFFSET
, sphb
->mem_win_size
);
550 memory_region_add_subregion(get_system_memory(), sphb
->mem_win_addr
,
553 /* Initialize IO regions */
554 sprintf(namebuf
, "%s.io", sphb
->dtbusname
);
555 memory_region_init(&sphb
->iospace
, OBJECT(sphb
),
556 namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
558 sprintf(namebuf
, "%s.io-alias", sphb
->dtbusname
);
559 memory_region_init_alias(&sphb
->iowindow
, OBJECT(sphb
), namebuf
,
560 &sphb
->iospace
, 0, SPAPR_PCI_IO_WIN_SIZE
);
561 memory_region_add_subregion(get_system_memory(), sphb
->io_win_addr
,
564 bus
= pci_register_bus(dev
, NULL
,
565 pci_spapr_set_irq
, pci_spapr_map_irq
, sphb
,
566 &sphb
->memspace
, &sphb
->iospace
,
567 PCI_DEVFN(0, 0), PCI_NUM_PINS
, TYPE_PCI_BUS
);
571 * Initialize PHB address space.
572 * By default there will be at least one subregion for default
574 * Later the guest might want to create another DMA window
575 * which will become another memory subregion.
577 sprintf(namebuf
, "%s.iommu-root", sphb
->dtbusname
);
579 memory_region_init(&sphb
->iommu_root
, OBJECT(sphb
),
580 namebuf
, UINT64_MAX
);
581 address_space_init(&sphb
->iommu_as
, &sphb
->iommu_root
,
585 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
586 * we need to allocate some memory to catch those writes coming
587 * from msi_notify()/msix_notify().
588 * As MSIMessage:addr is going to be the same and MSIMessage:data
589 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
592 * For KVM we want to ensure that this memory is a full page so that
593 * our memory slot is of page size granularity.
597 msi_window_size
= getpagesize();
601 memory_region_init_io(&sphb
->msiwindow
, NULL
, &spapr_msi_ops
, spapr
,
602 "msi", msi_window_size
);
603 memory_region_add_subregion(&sphb
->iommu_root
, SPAPR_PCI_MSI_WINDOW
,
606 pci_setup_iommu(bus
, spapr_pci_dma_iommu
, sphb
);
608 pci_bus_set_route_irq_fn(bus
, spapr_route_intx_pin_to_irq
);
610 QLIST_INSERT_HEAD(&spapr
->phbs
, sphb
, list
);
612 /* Initialize the LSI table */
613 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
616 irq
= xics_alloc_block(spapr
->icp
, 0, 1, true, false);
618 error_setg(errp
, "spapr_allocate_lsi failed");
622 sphb
->lsi_table
[i
].irq
= irq
;
625 if (!info
->finish_realize
) {
626 error_setg(errp
, "finish_realize not defined");
630 info
->finish_realize(sphb
, errp
);
632 sphb
->msi
= g_hash_table_new_full(g_int_hash
, g_int_equal
, g_free
, g_free
);
635 static void spapr_phb_finish_realize(sPAPRPHBState
*sphb
, Error
**errp
)
639 tcet
= spapr_tce_new_table(DEVICE(sphb
), sphb
->dma_liobn
,
641 SPAPR_TCE_PAGE_SHIFT
,
642 0x40000000 >> SPAPR_TCE_PAGE_SHIFT
, false);
644 error_setg(errp
, "Unable to create TCE table for %s",
649 /* Register default 32bit DMA window */
650 memory_region_add_subregion(&sphb
->iommu_root
, 0,
651 spapr_tce_get_iommu(tcet
));
654 static int spapr_phb_children_reset(Object
*child
, void *opaque
)
656 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(child
, TYPE_DEVICE
);
665 static void spapr_phb_reset(DeviceState
*qdev
)
667 /* Reset the IOMMU state */
668 object_child_foreach(OBJECT(qdev
), spapr_phb_children_reset
, NULL
);
671 static Property spapr_phb_properties
[] = {
672 DEFINE_PROP_INT32("index", sPAPRPHBState
, index
, -1),
673 DEFINE_PROP_UINT64("buid", sPAPRPHBState
, buid
, -1),
674 DEFINE_PROP_UINT32("liobn", sPAPRPHBState
, dma_liobn
, -1),
675 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState
, mem_win_addr
, -1),
676 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState
, mem_win_size
,
677 SPAPR_PCI_MMIO_WIN_SIZE
),
678 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState
, io_win_addr
, -1),
679 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState
, io_win_size
,
680 SPAPR_PCI_IO_WIN_SIZE
),
681 DEFINE_PROP_END_OF_LIST(),
684 static const VMStateDescription vmstate_spapr_pci_lsi
= {
685 .name
= "spapr_pci/lsi",
687 .minimum_version_id
= 1,
688 .fields
= (VMStateField
[]) {
689 VMSTATE_UINT32_EQUAL(irq
, struct spapr_pci_lsi
),
691 VMSTATE_END_OF_LIST()
695 static const VMStateDescription vmstate_spapr_pci_msi
= {
696 .name
= "spapr_pci/msi",
698 .minimum_version_id
= 1,
699 .fields
= (VMStateField
[]) {
700 VMSTATE_UINT32(key
, spapr_pci_msi_mig
),
701 VMSTATE_UINT32(value
.first_irq
, spapr_pci_msi_mig
),
702 VMSTATE_UINT32(value
.num
, spapr_pci_msi_mig
),
703 VMSTATE_END_OF_LIST()
707 static void spapr_pci_fill_msi_devs(gpointer key
, gpointer value
,
710 sPAPRPHBState
*sphb
= opaque
;
712 sphb
->msi_devs
[sphb
->msi_devs_num
].key
= *(uint32_t *)key
;
713 sphb
->msi_devs
[sphb
->msi_devs_num
].value
= *(spapr_pci_msi
*)value
;
714 sphb
->msi_devs_num
++;
717 static void spapr_pci_pre_save(void *opaque
)
719 sPAPRPHBState
*sphb
= opaque
;
722 if (sphb
->msi_devs
) {
723 g_free(sphb
->msi_devs
);
724 sphb
->msi_devs
= NULL
;
726 sphb
->msi_devs_num
= 0;
727 msi_devs_num
= g_hash_table_size(sphb
->msi
);
731 sphb
->msi_devs
= g_malloc(msi_devs_num
* sizeof(spapr_pci_msi_mig
));
733 g_hash_table_foreach(sphb
->msi
, spapr_pci_fill_msi_devs
, sphb
);
734 assert(sphb
->msi_devs_num
== msi_devs_num
);
737 static int spapr_pci_post_load(void *opaque
, int version_id
)
739 sPAPRPHBState
*sphb
= opaque
;
743 for (i
= 0; i
< sphb
->msi_devs_num
; ++i
) {
744 key
= g_memdup(&sphb
->msi_devs
[i
].key
,
745 sizeof(sphb
->msi_devs
[i
].key
));
746 value
= g_memdup(&sphb
->msi_devs
[i
].value
,
747 sizeof(sphb
->msi_devs
[i
].value
));
748 g_hash_table_insert(sphb
->msi
, key
, value
);
750 if (sphb
->msi_devs
) {
751 g_free(sphb
->msi_devs
);
752 sphb
->msi_devs
= NULL
;
754 sphb
->msi_devs_num
= 0;
759 static const VMStateDescription vmstate_spapr_pci
= {
762 .minimum_version_id
= 2,
763 .pre_save
= spapr_pci_pre_save
,
764 .post_load
= spapr_pci_post_load
,
765 .fields
= (VMStateField
[]) {
766 VMSTATE_UINT64_EQUAL(buid
, sPAPRPHBState
),
767 VMSTATE_UINT32_EQUAL(dma_liobn
, sPAPRPHBState
),
768 VMSTATE_UINT64_EQUAL(mem_win_addr
, sPAPRPHBState
),
769 VMSTATE_UINT64_EQUAL(mem_win_size
, sPAPRPHBState
),
770 VMSTATE_UINT64_EQUAL(io_win_addr
, sPAPRPHBState
),
771 VMSTATE_UINT64_EQUAL(io_win_size
, sPAPRPHBState
),
772 VMSTATE_STRUCT_ARRAY(lsi_table
, sPAPRPHBState
, PCI_NUM_PINS
, 0,
773 vmstate_spapr_pci_lsi
, struct spapr_pci_lsi
),
774 VMSTATE_INT32(msi_devs_num
, sPAPRPHBState
),
775 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs
, sPAPRPHBState
, msi_devs_num
, 0,
776 vmstate_spapr_pci_msi
, spapr_pci_msi_mig
),
777 VMSTATE_END_OF_LIST()
781 static const char *spapr_phb_root_bus_path(PCIHostState
*host_bridge
,
784 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(host_bridge
);
786 return sphb
->dtbusname
;
789 static void spapr_phb_class_init(ObjectClass
*klass
, void *data
)
791 PCIHostBridgeClass
*hc
= PCI_HOST_BRIDGE_CLASS(klass
);
792 DeviceClass
*dc
= DEVICE_CLASS(klass
);
793 sPAPRPHBClass
*spc
= SPAPR_PCI_HOST_BRIDGE_CLASS(klass
);
795 hc
->root_bus_path
= spapr_phb_root_bus_path
;
796 dc
->realize
= spapr_phb_realize
;
797 dc
->props
= spapr_phb_properties
;
798 dc
->reset
= spapr_phb_reset
;
799 dc
->vmsd
= &vmstate_spapr_pci
;
800 set_bit(DEVICE_CATEGORY_BRIDGE
, dc
->categories
);
801 dc
->cannot_instantiate_with_device_add_yet
= false;
802 spc
->finish_realize
= spapr_phb_finish_realize
;
805 static const TypeInfo spapr_phb_info
= {
806 .name
= TYPE_SPAPR_PCI_HOST_BRIDGE
,
807 .parent
= TYPE_PCI_HOST_BRIDGE
,
808 .instance_size
= sizeof(sPAPRPHBState
),
809 .class_init
= spapr_phb_class_init
,
810 .class_size
= sizeof(sPAPRPHBClass
),
813 PCIHostState
*spapr_create_phb(sPAPREnvironment
*spapr
, int index
)
817 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
818 qdev_prop_set_uint32(dev
, "index", index
);
819 qdev_init_nofail(dev
);
821 return PCI_HOST_BRIDGE(dev
);
824 /* Macros to operate with address in OF binding to PCI */
825 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
826 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
827 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
828 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
829 #define b_ss(x) b_x((x), 24, 2) /* the space code */
830 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
831 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
832 #define b_fff(x) b_x((x), 8, 3) /* function number */
833 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
835 typedef struct sPAPRTCEDT
{
840 static int spapr_phb_children_dt(Object
*child
, void *opaque
)
842 sPAPRTCEDT
*p
= opaque
;
845 tcet
= (sPAPRTCETable
*) object_dynamic_cast(child
, TYPE_SPAPR_TCE_TABLE
);
850 spapr_dma_dt(p
->fdt
, p
->node_off
, "ibm,dma-window",
851 tcet
->liobn
, tcet
->bus_offset
,
852 tcet
->nb_table
<< tcet
->page_shift
);
853 /* Stop after the first window */
858 int spapr_populate_pci_dt(sPAPRPHBState
*phb
,
859 uint32_t xics_phandle
,
864 uint32_t bus_range
[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
870 } QEMU_PACKED ranges
[] = {
872 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
873 cpu_to_be64(phb
->io_win_addr
),
874 cpu_to_be64(memory_region_size(&phb
->iospace
)),
877 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET
),
878 cpu_to_be64(phb
->mem_win_addr
),
879 cpu_to_be64(memory_region_size(&phb
->memwindow
)),
882 uint64_t bus_reg
[] = { cpu_to_be64(phb
->buid
), 0 };
883 uint32_t interrupt_map_mask
[] = {
884 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
885 uint32_t interrupt_map
[PCI_SLOT_MAX
* PCI_NUM_PINS
][7];
887 /* Start populating the FDT */
888 sprintf(nodename
, "pci@%" PRIx64
, phb
->buid
);
889 bus_off
= fdt_add_subnode(fdt
, 0, nodename
);
902 /* Write PHB properties */
903 _FDT(fdt_setprop_string(fdt
, bus_off
, "device_type", "pci"));
904 _FDT(fdt_setprop_string(fdt
, bus_off
, "compatible", "IBM,Logical_PHB"));
905 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#address-cells", 0x3));
906 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#size-cells", 0x2));
907 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#interrupt-cells", 0x1));
908 _FDT(fdt_setprop(fdt
, bus_off
, "used-by-rtas", NULL
, 0));
909 _FDT(fdt_setprop(fdt
, bus_off
, "bus-range", &bus_range
, sizeof(bus_range
)));
910 _FDT(fdt_setprop(fdt
, bus_off
, "ranges", &ranges
, sizeof(ranges
)));
911 _FDT(fdt_setprop(fdt
, bus_off
, "reg", &bus_reg
, sizeof(bus_reg
)));
912 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pci-config-space-type", 0x1));
913 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pe-total-#msi", XICS_IRQS
));
915 /* Build the interrupt-map, this must matches what is done
916 * in pci_spapr_map_irq
918 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map-mask",
919 &interrupt_map_mask
, sizeof(interrupt_map_mask
)));
920 for (i
= 0; i
< PCI_SLOT_MAX
; i
++) {
921 for (j
= 0; j
< PCI_NUM_PINS
; j
++) {
922 uint32_t *irqmap
= interrupt_map
[i
*PCI_NUM_PINS
+ j
];
923 int lsi_num
= pci_spapr_swizzle(i
, j
);
925 irqmap
[0] = cpu_to_be32(b_ddddd(i
)|b_fff(0));
928 irqmap
[3] = cpu_to_be32(j
+1);
929 irqmap
[4] = cpu_to_be32(xics_phandle
);
930 irqmap
[5] = cpu_to_be32(phb
->lsi_table
[lsi_num
].irq
);
931 irqmap
[6] = cpu_to_be32(0x8);
934 /* Write interrupt map */
935 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map", &interrupt_map
,
936 sizeof(interrupt_map
)));
938 object_child_foreach(OBJECT(phb
), spapr_phb_children_dt
,
939 &((sPAPRTCEDT
){ .fdt
= fdt
, .node_off
= bus_off
}));
944 void spapr_pci_rtas_init(void)
946 spapr_rtas_register(RTAS_READ_PCI_CONFIG
, "read-pci-config",
947 rtas_read_pci_config
);
948 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG
, "write-pci-config",
949 rtas_write_pci_config
);
950 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG
, "ibm,read-pci-config",
951 rtas_ibm_read_pci_config
);
952 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG
, "ibm,write-pci-config",
953 rtas_ibm_write_pci_config
);
955 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER
,
956 "ibm,query-interrupt-source-number",
957 rtas_ibm_query_interrupt_source_number
);
958 spapr_rtas_register(RTAS_IBM_CHANGE_MSI
, "ibm,change-msi",
959 rtas_ibm_change_msi
);
963 static void spapr_pci_register_types(void)
965 type_register_static(&spapr_phb_info
);
968 type_init(spapr_pci_register_types
)