target-arm: Add vexpress class and machine types
[qemu-kvm.git] / hw / ppc / spapr_pci.c
blob21b95b342c71446c4c04ccf45e14ea91055407a3
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35 #include "qemu/error-report.h"
37 #include "hw/pci/pci_bus.h"
39 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
40 #define RTAS_QUERY_FN 0
41 #define RTAS_CHANGE_FN 1
42 #define RTAS_RESET_FN 2
43 #define RTAS_CHANGE_MSI_FN 3
44 #define RTAS_CHANGE_MSIX_FN 4
46 /* Interrupt types to return on RTAS_CHANGE_* */
47 #define RTAS_TYPE_MSI 1
48 #define RTAS_TYPE_MSIX 2
50 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
52 sPAPRPHBState *sphb;
54 QLIST_FOREACH(sphb, &spapr->phbs, list) {
55 if (sphb->buid != buid) {
56 continue;
58 return sphb;
61 return NULL;
64 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
65 uint32_t config_addr)
67 sPAPRPHBState *sphb = find_phb(spapr, buid);
68 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
69 int bus_num = (config_addr >> 16) & 0xFF;
70 int devfn = (config_addr >> 8) & 0xFF;
72 if (!phb) {
73 return NULL;
76 return pci_find_device(phb->bus, bus_num, devfn);
79 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
81 /* This handles the encoding of extended config space addresses */
82 return ((arg >> 20) & 0xf00) | (arg & 0xff);
85 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
86 uint32_t addr, uint32_t size,
87 target_ulong rets)
89 PCIDevice *pci_dev;
90 uint32_t val;
92 if ((size != 1) && (size != 2) && (size != 4)) {
93 /* access must be 1, 2 or 4 bytes */
94 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
95 return;
98 pci_dev = find_dev(spapr, buid, addr);
99 addr = rtas_pci_cfgaddr(addr);
101 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
102 /* Access must be to a valid device, within bounds and
103 * naturally aligned */
104 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
105 return;
108 val = pci_host_config_read_common(pci_dev, addr,
109 pci_config_size(pci_dev), size);
111 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
112 rtas_st(rets, 1, val);
115 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
116 uint32_t token, uint32_t nargs,
117 target_ulong args,
118 uint32_t nret, target_ulong rets)
120 uint64_t buid;
121 uint32_t size, addr;
123 if ((nargs != 4) || (nret != 2)) {
124 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
125 return;
128 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
129 size = rtas_ld(args, 3);
130 addr = rtas_ld(args, 0);
132 finish_read_pci_config(spapr, buid, addr, size, rets);
135 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
136 uint32_t token, uint32_t nargs,
137 target_ulong args,
138 uint32_t nret, target_ulong rets)
140 uint32_t size, addr;
142 if ((nargs != 2) || (nret != 2)) {
143 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
144 return;
147 size = rtas_ld(args, 1);
148 addr = rtas_ld(args, 0);
150 finish_read_pci_config(spapr, 0, addr, size, rets);
153 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
154 uint32_t addr, uint32_t size,
155 uint32_t val, target_ulong rets)
157 PCIDevice *pci_dev;
159 if ((size != 1) && (size != 2) && (size != 4)) {
160 /* access must be 1, 2 or 4 bytes */
161 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
162 return;
165 pci_dev = find_dev(spapr, buid, addr);
166 addr = rtas_pci_cfgaddr(addr);
168 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
169 /* Access must be to a valid device, within bounds and
170 * naturally aligned */
171 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
172 return;
175 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
176 val, size);
178 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
181 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
182 uint32_t token, uint32_t nargs,
183 target_ulong args,
184 uint32_t nret, target_ulong rets)
186 uint64_t buid;
187 uint32_t val, size, addr;
189 if ((nargs != 5) || (nret != 1)) {
190 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
191 return;
194 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
195 val = rtas_ld(args, 4);
196 size = rtas_ld(args, 3);
197 addr = rtas_ld(args, 0);
199 finish_write_pci_config(spapr, buid, addr, size, val, rets);
202 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
203 uint32_t token, uint32_t nargs,
204 target_ulong args,
205 uint32_t nret, target_ulong rets)
207 uint32_t val, size, addr;
209 if ((nargs != 3) || (nret != 1)) {
210 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
211 return;
215 val = rtas_ld(args, 2);
216 size = rtas_ld(args, 1);
217 addr = rtas_ld(args, 0);
219 finish_write_pci_config(spapr, 0, addr, size, val, rets);
223 * Set MSI/MSIX message data.
224 * This is required for msi_notify()/msix_notify() which
225 * will write at the addresses via spapr_msi_write().
227 * If hwaddr == 0, all entries will have .data == first_irq i.e.
228 * table will be reset.
230 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
231 unsigned first_irq, unsigned req_num)
233 unsigned i;
234 MSIMessage msg = { .address = addr, .data = first_irq };
236 if (!msix) {
237 msi_set_message(pdev, msg);
238 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
239 return;
242 for (i = 0; i < req_num; ++i) {
243 msix_set_message(pdev, i, msg);
244 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
245 if (addr) {
246 ++msg.data;
251 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
252 uint32_t token, uint32_t nargs,
253 target_ulong args, uint32_t nret,
254 target_ulong rets)
256 uint32_t config_addr = rtas_ld(args, 0);
257 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
258 unsigned int func = rtas_ld(args, 3);
259 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
260 unsigned int seq_num = rtas_ld(args, 5);
261 unsigned int ret_intr_type;
262 unsigned int irq, max_irqs = 0, num = 0;
263 sPAPRPHBState *phb = NULL;
264 PCIDevice *pdev = NULL;
265 spapr_pci_msi *msi;
266 int *config_addr_key;
268 switch (func) {
269 case RTAS_CHANGE_MSI_FN:
270 case RTAS_CHANGE_FN:
271 ret_intr_type = RTAS_TYPE_MSI;
272 break;
273 case RTAS_CHANGE_MSIX_FN:
274 ret_intr_type = RTAS_TYPE_MSIX;
275 break;
276 default:
277 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
278 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
279 return;
282 /* Fins sPAPRPHBState */
283 phb = find_phb(spapr, buid);
284 if (phb) {
285 pdev = find_dev(spapr, buid, config_addr);
287 if (!phb || !pdev) {
288 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
289 return;
292 /* Releasing MSIs */
293 if (!req_num) {
294 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
295 if (!msi) {
296 trace_spapr_pci_msi("Releasing wrong config", config_addr);
297 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
298 return;
301 xics_free(spapr->icp, msi->first_irq, msi->num);
302 if (msi_present(pdev)) {
303 spapr_msi_setmsg(pdev, 0, false, 0, num);
305 if (msix_present(pdev)) {
306 spapr_msi_setmsg(pdev, 0, true, 0, num);
308 g_hash_table_remove(phb->msi, &config_addr);
310 trace_spapr_pci_msi("Released MSIs", config_addr);
311 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
312 rtas_st(rets, 1, 0);
313 return;
316 /* Enabling MSI */
318 /* Check if the device supports as many IRQs as requested */
319 if (ret_intr_type == RTAS_TYPE_MSI) {
320 max_irqs = msi_nr_vectors_allocated(pdev);
321 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
322 max_irqs = pdev->msix_entries_nr;
324 if (!max_irqs) {
325 error_report("Requested interrupt type %d is not enabled for device %x",
326 ret_intr_type, config_addr);
327 rtas_st(rets, 0, -1); /* Hardware error */
328 return;
330 /* Correct the number if the guest asked for too many */
331 if (req_num > max_irqs) {
332 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
333 req_num = max_irqs;
334 irq = 0; /* to avoid misleading trace */
335 goto out;
338 /* Allocate MSIs */
339 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
340 ret_intr_type == RTAS_TYPE_MSI);
341 if (!irq) {
342 error_report("Cannot allocate MSIs for device %x", config_addr);
343 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
344 return;
347 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
348 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
349 irq, req_num);
351 /* Add MSI device to cache */
352 msi = g_new(spapr_pci_msi, 1);
353 msi->first_irq = irq;
354 msi->num = req_num;
355 config_addr_key = g_new(int, 1);
356 *config_addr_key = config_addr;
357 g_hash_table_insert(phb->msi, config_addr_key, msi);
359 out:
360 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
361 rtas_st(rets, 1, req_num);
362 rtas_st(rets, 2, ++seq_num);
363 rtas_st(rets, 3, ret_intr_type);
365 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
368 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
369 sPAPREnvironment *spapr,
370 uint32_t token,
371 uint32_t nargs,
372 target_ulong args,
373 uint32_t nret,
374 target_ulong rets)
376 uint32_t config_addr = rtas_ld(args, 0);
377 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
378 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
379 sPAPRPHBState *phb = NULL;
380 PCIDevice *pdev = NULL;
381 spapr_pci_msi *msi;
383 /* Find sPAPRPHBState */
384 phb = find_phb(spapr, buid);
385 if (phb) {
386 pdev = find_dev(spapr, buid, config_addr);
388 if (!phb || !pdev) {
389 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
390 return;
393 /* Find device descriptor and start IRQ */
394 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
395 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
396 trace_spapr_pci_msi("Failed to return vector", config_addr);
397 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
398 return;
400 intr_src_num = msi->first_irq + ioa_intr_num;
401 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
402 intr_src_num);
404 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
405 rtas_st(rets, 1, intr_src_num);
406 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
409 static int pci_spapr_swizzle(int slot, int pin)
411 return (slot + pin) % PCI_NUM_PINS;
414 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
417 * Here we need to convert pci_dev + irq_num to some unique value
418 * which is less than number of IRQs on the specific bus (4). We
419 * use standard PCI swizzling, that is (slot number + pin number)
420 * % 4.
422 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
425 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
428 * Here we use the number returned by pci_spapr_map_irq to find a
429 * corresponding qemu_irq.
431 sPAPRPHBState *phb = opaque;
433 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
434 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
437 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
439 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
440 PCIINTxRoute route;
442 route.mode = PCI_INTX_ENABLED;
443 route.irq = sphb->lsi_table[pin].irq;
445 return route;
449 * MSI/MSIX memory region implementation.
450 * The handler handles both MSI and MSIX.
451 * For MSI-X, the vector number is encoded as a part of the address,
452 * data is set to 0.
453 * For MSI, the vector number is encoded in least bits in data.
455 static void spapr_msi_write(void *opaque, hwaddr addr,
456 uint64_t data, unsigned size)
458 uint32_t irq = data;
460 trace_spapr_pci_msi_write(addr, data, irq);
462 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
465 static const MemoryRegionOps spapr_msi_ops = {
466 /* There is no .read as the read result is undefined by PCI spec */
467 .read = NULL,
468 .write = spapr_msi_write,
469 .endianness = DEVICE_LITTLE_ENDIAN
473 * PHB PCI device
475 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
477 sPAPRPHBState *phb = opaque;
479 return &phb->iommu_as;
482 static void spapr_phb_realize(DeviceState *dev, Error **errp)
484 SysBusDevice *s = SYS_BUS_DEVICE(dev);
485 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
486 PCIHostState *phb = PCI_HOST_BRIDGE(s);
487 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
488 char *namebuf;
489 int i;
490 PCIBus *bus;
491 uint64_t msi_window_size = 4096;
493 if (sphb->index != -1) {
494 hwaddr windows_base;
496 if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
497 || (sphb->mem_win_addr != -1)
498 || (sphb->io_win_addr != -1)) {
499 error_setg(errp, "Either \"index\" or other parameters must"
500 " be specified for PAPR PHB, not both");
501 return;
504 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
505 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
507 windows_base = SPAPR_PCI_WINDOW_BASE
508 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
509 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
510 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
513 if (sphb->buid == -1) {
514 error_setg(errp, "BUID not specified for PHB");
515 return;
518 if (sphb->dma_liobn == -1) {
519 error_setg(errp, "LIOBN not specified for PHB");
520 return;
523 if (sphb->mem_win_addr == -1) {
524 error_setg(errp, "Memory window address not specified for PHB");
525 return;
528 if (sphb->io_win_addr == -1) {
529 error_setg(errp, "IO window address not specified for PHB");
530 return;
533 if (find_phb(spapr, sphb->buid)) {
534 error_setg(errp, "PCI host bridges must have unique BUIDs");
535 return;
538 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
540 namebuf = alloca(strlen(sphb->dtbusname) + 32);
542 /* Initialize memory regions */
543 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
544 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
546 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
547 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
548 namebuf, &sphb->memspace,
549 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
550 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
551 &sphb->memwindow);
553 /* Initialize IO regions */
554 sprintf(namebuf, "%s.io", sphb->dtbusname);
555 memory_region_init(&sphb->iospace, OBJECT(sphb),
556 namebuf, SPAPR_PCI_IO_WIN_SIZE);
558 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
559 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
560 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
561 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
562 &sphb->iowindow);
564 bus = pci_register_bus(dev, NULL,
565 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
566 &sphb->memspace, &sphb->iospace,
567 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
568 phb->bus = bus;
571 * Initialize PHB address space.
572 * By default there will be at least one subregion for default
573 * 32bit DMA window.
574 * Later the guest might want to create another DMA window
575 * which will become another memory subregion.
577 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
579 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
580 namebuf, UINT64_MAX);
581 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
582 sphb->dtbusname);
585 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
586 * we need to allocate some memory to catch those writes coming
587 * from msi_notify()/msix_notify().
588 * As MSIMessage:addr is going to be the same and MSIMessage:data
589 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
590 * be used.
592 * For KVM we want to ensure that this memory is a full page so that
593 * our memory slot is of page size granularity.
595 #ifdef CONFIG_KVM
596 if (kvm_enabled()) {
597 msi_window_size = getpagesize();
599 #endif
601 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
602 "msi", msi_window_size);
603 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
604 &sphb->msiwindow);
606 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
608 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
610 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
612 /* Initialize the LSI table */
613 for (i = 0; i < PCI_NUM_PINS; i++) {
614 uint32_t irq;
616 irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
617 if (!irq) {
618 error_setg(errp, "spapr_allocate_lsi failed");
619 return;
622 sphb->lsi_table[i].irq = irq;
625 if (!info->finish_realize) {
626 error_setg(errp, "finish_realize not defined");
627 return;
630 info->finish_realize(sphb, errp);
632 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
635 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
637 sPAPRTCETable *tcet;
639 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
641 SPAPR_TCE_PAGE_SHIFT,
642 0x40000000 >> SPAPR_TCE_PAGE_SHIFT, false);
643 if (!tcet) {
644 error_setg(errp, "Unable to create TCE table for %s",
645 sphb->dtbusname);
646 return ;
649 /* Register default 32bit DMA window */
650 memory_region_add_subregion(&sphb->iommu_root, 0,
651 spapr_tce_get_iommu(tcet));
654 static int spapr_phb_children_reset(Object *child, void *opaque)
656 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
658 if (dev) {
659 device_reset(dev);
662 return 0;
665 static void spapr_phb_reset(DeviceState *qdev)
667 /* Reset the IOMMU state */
668 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
671 static Property spapr_phb_properties[] = {
672 DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
673 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
674 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
675 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
676 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
677 SPAPR_PCI_MMIO_WIN_SIZE),
678 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
679 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
680 SPAPR_PCI_IO_WIN_SIZE),
681 DEFINE_PROP_END_OF_LIST(),
684 static const VMStateDescription vmstate_spapr_pci_lsi = {
685 .name = "spapr_pci/lsi",
686 .version_id = 1,
687 .minimum_version_id = 1,
688 .fields = (VMStateField[]) {
689 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
691 VMSTATE_END_OF_LIST()
695 static const VMStateDescription vmstate_spapr_pci_msi = {
696 .name = "spapr_pci/msi",
697 .version_id = 1,
698 .minimum_version_id = 1,
699 .fields = (VMStateField []) {
700 VMSTATE_UINT32(key, spapr_pci_msi_mig),
701 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
702 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
703 VMSTATE_END_OF_LIST()
707 static void spapr_pci_fill_msi_devs(gpointer key, gpointer value,
708 gpointer opaque)
710 sPAPRPHBState *sphb = opaque;
712 sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key;
713 sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value;
714 sphb->msi_devs_num++;
717 static void spapr_pci_pre_save(void *opaque)
719 sPAPRPHBState *sphb = opaque;
720 int msi_devs_num;
722 if (sphb->msi_devs) {
723 g_free(sphb->msi_devs);
724 sphb->msi_devs = NULL;
726 sphb->msi_devs_num = 0;
727 msi_devs_num = g_hash_table_size(sphb->msi);
728 if (!msi_devs_num) {
729 return;
731 sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig));
733 g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb);
734 assert(sphb->msi_devs_num == msi_devs_num);
737 static int spapr_pci_post_load(void *opaque, int version_id)
739 sPAPRPHBState *sphb = opaque;
740 gpointer key, value;
741 int i;
743 for (i = 0; i < sphb->msi_devs_num; ++i) {
744 key = g_memdup(&sphb->msi_devs[i].key,
745 sizeof(sphb->msi_devs[i].key));
746 value = g_memdup(&sphb->msi_devs[i].value,
747 sizeof(sphb->msi_devs[i].value));
748 g_hash_table_insert(sphb->msi, key, value);
750 if (sphb->msi_devs) {
751 g_free(sphb->msi_devs);
752 sphb->msi_devs = NULL;
754 sphb->msi_devs_num = 0;
756 return 0;
759 static const VMStateDescription vmstate_spapr_pci = {
760 .name = "spapr_pci",
761 .version_id = 2,
762 .minimum_version_id = 2,
763 .pre_save = spapr_pci_pre_save,
764 .post_load = spapr_pci_post_load,
765 .fields = (VMStateField[]) {
766 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
767 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
768 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
769 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
770 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
771 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
772 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
773 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
774 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
775 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
776 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
777 VMSTATE_END_OF_LIST()
781 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
782 PCIBus *rootbus)
784 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
786 return sphb->dtbusname;
789 static void spapr_phb_class_init(ObjectClass *klass, void *data)
791 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
792 DeviceClass *dc = DEVICE_CLASS(klass);
793 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
795 hc->root_bus_path = spapr_phb_root_bus_path;
796 dc->realize = spapr_phb_realize;
797 dc->props = spapr_phb_properties;
798 dc->reset = spapr_phb_reset;
799 dc->vmsd = &vmstate_spapr_pci;
800 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
801 dc->cannot_instantiate_with_device_add_yet = false;
802 spc->finish_realize = spapr_phb_finish_realize;
805 static const TypeInfo spapr_phb_info = {
806 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
807 .parent = TYPE_PCI_HOST_BRIDGE,
808 .instance_size = sizeof(sPAPRPHBState),
809 .class_init = spapr_phb_class_init,
810 .class_size = sizeof(sPAPRPHBClass),
813 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
815 DeviceState *dev;
817 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
818 qdev_prop_set_uint32(dev, "index", index);
819 qdev_init_nofail(dev);
821 return PCI_HOST_BRIDGE(dev);
824 /* Macros to operate with address in OF binding to PCI */
825 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
826 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
827 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
828 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
829 #define b_ss(x) b_x((x), 24, 2) /* the space code */
830 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
831 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
832 #define b_fff(x) b_x((x), 8, 3) /* function number */
833 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
835 typedef struct sPAPRTCEDT {
836 void *fdt;
837 int node_off;
838 } sPAPRTCEDT;
840 static int spapr_phb_children_dt(Object *child, void *opaque)
842 sPAPRTCEDT *p = opaque;
843 sPAPRTCETable *tcet;
845 tcet = (sPAPRTCETable *) object_dynamic_cast(child, TYPE_SPAPR_TCE_TABLE);
846 if (!tcet) {
847 return 0;
850 spapr_dma_dt(p->fdt, p->node_off, "ibm,dma-window",
851 tcet->liobn, tcet->bus_offset,
852 tcet->nb_table << tcet->page_shift);
853 /* Stop after the first window */
855 return 1;
858 int spapr_populate_pci_dt(sPAPRPHBState *phb,
859 uint32_t xics_phandle,
860 void *fdt)
862 int bus_off, i, j;
863 char nodename[256];
864 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
865 struct {
866 uint32_t hi;
867 uint64_t child;
868 uint64_t parent;
869 uint64_t size;
870 } QEMU_PACKED ranges[] = {
872 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
873 cpu_to_be64(phb->io_win_addr),
874 cpu_to_be64(memory_region_size(&phb->iospace)),
877 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
878 cpu_to_be64(phb->mem_win_addr),
879 cpu_to_be64(memory_region_size(&phb->memwindow)),
882 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
883 uint32_t interrupt_map_mask[] = {
884 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
885 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
887 /* Start populating the FDT */
888 sprintf(nodename, "pci@%" PRIx64, phb->buid);
889 bus_off = fdt_add_subnode(fdt, 0, nodename);
890 if (bus_off < 0) {
891 return bus_off;
894 #define _FDT(exp) \
895 do { \
896 int ret = (exp); \
897 if (ret < 0) { \
898 return ret; \
900 } while (0)
902 /* Write PHB properties */
903 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
904 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
905 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
906 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
907 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
908 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
909 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
910 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
911 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
912 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
913 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
915 /* Build the interrupt-map, this must matches what is done
916 * in pci_spapr_map_irq
918 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
919 &interrupt_map_mask, sizeof(interrupt_map_mask)));
920 for (i = 0; i < PCI_SLOT_MAX; i++) {
921 for (j = 0; j < PCI_NUM_PINS; j++) {
922 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
923 int lsi_num = pci_spapr_swizzle(i, j);
925 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
926 irqmap[1] = 0;
927 irqmap[2] = 0;
928 irqmap[3] = cpu_to_be32(j+1);
929 irqmap[4] = cpu_to_be32(xics_phandle);
930 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
931 irqmap[6] = cpu_to_be32(0x8);
934 /* Write interrupt map */
935 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
936 sizeof(interrupt_map)));
938 object_child_foreach(OBJECT(phb), spapr_phb_children_dt,
939 &((sPAPRTCEDT){ .fdt = fdt, .node_off = bus_off }));
941 return 0;
944 void spapr_pci_rtas_init(void)
946 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
947 rtas_read_pci_config);
948 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
949 rtas_write_pci_config);
950 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
951 rtas_ibm_read_pci_config);
952 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
953 rtas_ibm_write_pci_config);
954 if (msi_supported) {
955 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
956 "ibm,query-interrupt-source-number",
957 rtas_ibm_query_interrupt_source_number);
958 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
959 rtas_ibm_change_msi);
963 static void spapr_pci_register_types(void)
965 type_register_static(&spapr_phb_info);
968 type_init(spapr_pci_register_types)