qemu-img create: Support multiple -o options
[qemu-kvm.git] / arch_init.c
blob80574a090c7519cc5a20df56b1a3278c86662f0a
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "exec/ram_addr.h"
52 #include "hw/acpi/acpi.h"
53 #include "qemu/host-utils.h"
55 #ifdef DEBUG_ARCH_INIT
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 #ifdef TARGET_SPARC
64 int graphic_width = 1024;
65 int graphic_height = 768;
66 int graphic_depth = 8;
67 #else
68 int graphic_width = 800;
69 int graphic_height = 600;
70 int graphic_depth = 32;
71 #endif
74 #if defined(TARGET_ALPHA)
75 #define QEMU_ARCH QEMU_ARCH_ALPHA
76 #elif defined(TARGET_ARM)
77 #define QEMU_ARCH QEMU_ARCH_ARM
78 #elif defined(TARGET_CRIS)
79 #define QEMU_ARCH QEMU_ARCH_CRIS
80 #elif defined(TARGET_I386)
81 #define QEMU_ARCH QEMU_ARCH_I386
82 #elif defined(TARGET_M68K)
83 #define QEMU_ARCH QEMU_ARCH_M68K
84 #elif defined(TARGET_LM32)
85 #define QEMU_ARCH QEMU_ARCH_LM32
86 #elif defined(TARGET_MICROBLAZE)
87 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
88 #elif defined(TARGET_MIPS)
89 #define QEMU_ARCH QEMU_ARCH_MIPS
90 #elif defined(TARGET_MOXIE)
91 #define QEMU_ARCH QEMU_ARCH_MOXIE
92 #elif defined(TARGET_OPENRISC)
93 #define QEMU_ARCH QEMU_ARCH_OPENRISC
94 #elif defined(TARGET_PPC)
95 #define QEMU_ARCH QEMU_ARCH_PPC
96 #elif defined(TARGET_S390X)
97 #define QEMU_ARCH QEMU_ARCH_S390X
98 #elif defined(TARGET_SH4)
99 #define QEMU_ARCH QEMU_ARCH_SH4
100 #elif defined(TARGET_SPARC)
101 #define QEMU_ARCH QEMU_ARCH_SPARC
102 #elif defined(TARGET_XTENSA)
103 #define QEMU_ARCH QEMU_ARCH_XTENSA
104 #elif defined(TARGET_UNICORE32)
105 #define QEMU_ARCH QEMU_ARCH_UNICORE32
106 #endif
108 const uint32_t arch_type = QEMU_ARCH;
109 static bool mig_throttle_on;
110 static int dirty_rate_high_cnt;
111 static void check_guest_throttling(void);
113 /***********************************************************/
114 /* ram save/restore */
116 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
117 #define RAM_SAVE_FLAG_COMPRESS 0x02
118 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
119 #define RAM_SAVE_FLAG_PAGE 0x08
120 #define RAM_SAVE_FLAG_EOS 0x10
121 #define RAM_SAVE_FLAG_CONTINUE 0x20
122 #define RAM_SAVE_FLAG_XBZRLE 0x40
123 /* 0x80 is reserved in migration.h start with 0x100 next */
126 static struct defconfig_file {
127 const char *filename;
128 /* Indicates it is an user config file (disabled by -no-user-config) */
129 bool userconfig;
130 } default_config_files[] = {
131 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
132 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
133 { NULL }, /* end of list */
137 int qemu_read_default_config_files(bool userconfig)
139 int ret;
140 struct defconfig_file *f;
142 for (f = default_config_files; f->filename; f++) {
143 if (!userconfig && f->userconfig) {
144 continue;
146 ret = qemu_read_config_file(f->filename);
147 if (ret < 0 && ret != -ENOENT) {
148 return ret;
152 return 0;
155 static inline bool is_zero_range(uint8_t *p, uint64_t size)
157 return buffer_find_nonzero_offset(p, size) == size;
160 /* struct contains XBZRLE cache and a static page
161 used by the compression */
162 static struct {
163 /* buffer used for XBZRLE encoding */
164 uint8_t *encoded_buf;
165 /* buffer for storing page content */
166 uint8_t *current_buf;
167 /* Cache for XBZRLE */
168 PageCache *cache;
169 } XBZRLE = {
170 .encoded_buf = NULL,
171 .current_buf = NULL,
172 .cache = NULL,
174 /* buffer used for XBZRLE decoding */
175 static uint8_t *xbzrle_decoded_buf;
177 int64_t xbzrle_cache_resize(int64_t new_size)
179 if (new_size < TARGET_PAGE_SIZE) {
180 return -1;
183 if (XBZRLE.cache != NULL) {
184 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
185 TARGET_PAGE_SIZE;
187 return pow2floor(new_size);
190 /* accounting for migration statistics */
191 typedef struct AccountingInfo {
192 uint64_t dup_pages;
193 uint64_t skipped_pages;
194 uint64_t norm_pages;
195 uint64_t iterations;
196 uint64_t xbzrle_bytes;
197 uint64_t xbzrle_pages;
198 uint64_t xbzrle_cache_miss;
199 uint64_t xbzrle_overflows;
200 } AccountingInfo;
202 static AccountingInfo acct_info;
204 static void acct_clear(void)
206 memset(&acct_info, 0, sizeof(acct_info));
209 uint64_t dup_mig_bytes_transferred(void)
211 return acct_info.dup_pages * TARGET_PAGE_SIZE;
214 uint64_t dup_mig_pages_transferred(void)
216 return acct_info.dup_pages;
219 uint64_t skipped_mig_bytes_transferred(void)
221 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
224 uint64_t skipped_mig_pages_transferred(void)
226 return acct_info.skipped_pages;
229 uint64_t norm_mig_bytes_transferred(void)
231 return acct_info.norm_pages * TARGET_PAGE_SIZE;
234 uint64_t norm_mig_pages_transferred(void)
236 return acct_info.norm_pages;
239 uint64_t xbzrle_mig_bytes_transferred(void)
241 return acct_info.xbzrle_bytes;
244 uint64_t xbzrle_mig_pages_transferred(void)
246 return acct_info.xbzrle_pages;
249 uint64_t xbzrle_mig_pages_cache_miss(void)
251 return acct_info.xbzrle_cache_miss;
254 uint64_t xbzrle_mig_pages_overflow(void)
256 return acct_info.xbzrle_overflows;
259 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
260 int cont, int flag)
262 size_t size;
264 qemu_put_be64(f, offset | cont | flag);
265 size = 8;
267 if (!cont) {
268 qemu_put_byte(f, strlen(block->idstr));
269 qemu_put_buffer(f, (uint8_t *)block->idstr,
270 strlen(block->idstr));
271 size += 1 + strlen(block->idstr);
273 return size;
276 #define ENCODING_FLAG_XBZRLE 0x1
278 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
279 ram_addr_t current_addr, RAMBlock *block,
280 ram_addr_t offset, int cont, bool last_stage)
282 int encoded_len = 0, bytes_sent = -1;
283 uint8_t *prev_cached_page;
285 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
286 if (!last_stage) {
287 if (cache_insert(XBZRLE.cache, current_addr, current_data) == -1) {
288 return -1;
291 acct_info.xbzrle_cache_miss++;
292 return -1;
295 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
297 /* save current buffer into memory */
298 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
300 /* XBZRLE encoding (if there is no overflow) */
301 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
302 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
303 TARGET_PAGE_SIZE);
304 if (encoded_len == 0) {
305 DPRINTF("Skipping unmodified page\n");
306 return 0;
307 } else if (encoded_len == -1) {
308 DPRINTF("Overflow\n");
309 acct_info.xbzrle_overflows++;
310 /* update data in the cache */
311 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
312 return -1;
315 /* we need to update the data in the cache, in order to get the same data */
316 if (!last_stage) {
317 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
320 /* Send XBZRLE based compressed page */
321 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
322 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
323 qemu_put_be16(f, encoded_len);
324 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
325 bytes_sent += encoded_len + 1 + 2;
326 acct_info.xbzrle_pages++;
327 acct_info.xbzrle_bytes += bytes_sent;
329 return bytes_sent;
333 /* This is the last block that we have visited serching for dirty pages
335 static RAMBlock *last_seen_block;
336 /* This is the last block from where we have sent data */
337 static RAMBlock *last_sent_block;
338 static ram_addr_t last_offset;
339 static unsigned long *migration_bitmap;
340 static uint64_t migration_dirty_pages;
341 static uint32_t last_version;
342 static bool ram_bulk_stage;
344 static inline
345 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
346 ram_addr_t start)
348 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
349 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
350 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
351 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
353 unsigned long next;
355 if (ram_bulk_stage && nr > base) {
356 next = nr + 1;
357 } else {
358 next = find_next_bit(migration_bitmap, size, nr);
361 if (next < size) {
362 clear_bit(next, migration_bitmap);
363 migration_dirty_pages--;
365 return (next - base) << TARGET_PAGE_BITS;
368 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
370 bool ret;
371 int nr = addr >> TARGET_PAGE_BITS;
373 ret = test_and_set_bit(nr, migration_bitmap);
375 if (!ret) {
376 migration_dirty_pages++;
378 return ret;
381 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
383 ram_addr_t addr;
384 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
386 /* start address is aligned at the start of a word? */
387 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
388 int k;
389 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
390 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
392 for (k = page; k < page + nr; k++) {
393 if (src[k]) {
394 unsigned long new_dirty;
395 new_dirty = ~migration_bitmap[k];
396 migration_bitmap[k] |= src[k];
397 new_dirty &= src[k];
398 migration_dirty_pages += ctpopl(new_dirty);
399 src[k] = 0;
402 } else {
403 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
404 if (cpu_physical_memory_get_dirty(start + addr,
405 TARGET_PAGE_SIZE,
406 DIRTY_MEMORY_MIGRATION)) {
407 cpu_physical_memory_reset_dirty(start + addr,
408 TARGET_PAGE_SIZE,
409 DIRTY_MEMORY_MIGRATION);
410 migration_bitmap_set_dirty(start + addr);
417 /* Needs iothread lock! */
419 static void migration_bitmap_sync(void)
421 RAMBlock *block;
422 uint64_t num_dirty_pages_init = migration_dirty_pages;
423 MigrationState *s = migrate_get_current();
424 static int64_t start_time;
425 static int64_t bytes_xfer_prev;
426 static int64_t num_dirty_pages_period;
427 int64_t end_time;
428 int64_t bytes_xfer_now;
430 if (!bytes_xfer_prev) {
431 bytes_xfer_prev = ram_bytes_transferred();
434 if (!start_time) {
435 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
438 trace_migration_bitmap_sync_start();
439 address_space_sync_dirty_bitmap(&address_space_memory);
441 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
442 migration_bitmap_sync_range(block->mr->ram_addr, block->length);
444 trace_migration_bitmap_sync_end(migration_dirty_pages
445 - num_dirty_pages_init);
446 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
447 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
449 /* more than 1 second = 1000 millisecons */
450 if (end_time > start_time + 1000) {
451 if (migrate_auto_converge()) {
452 /* The following detection logic can be refined later. For now:
453 Check to see if the dirtied bytes is 50% more than the approx.
454 amount of bytes that just got transferred since the last time we
455 were in this routine. If that happens >N times (for now N==4)
456 we turn on the throttle down logic */
457 bytes_xfer_now = ram_bytes_transferred();
458 if (s->dirty_pages_rate &&
459 (num_dirty_pages_period * TARGET_PAGE_SIZE >
460 (bytes_xfer_now - bytes_xfer_prev)/2) &&
461 (dirty_rate_high_cnt++ > 4)) {
462 trace_migration_throttle();
463 mig_throttle_on = true;
464 dirty_rate_high_cnt = 0;
466 bytes_xfer_prev = bytes_xfer_now;
467 } else {
468 mig_throttle_on = false;
470 s->dirty_pages_rate = num_dirty_pages_period * 1000
471 / (end_time - start_time);
472 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
473 start_time = end_time;
474 num_dirty_pages_period = 0;
479 * ram_save_block: Writes a page of memory to the stream f
481 * Returns: The number of bytes written.
482 * 0 means no dirty pages
485 static int ram_save_block(QEMUFile *f, bool last_stage)
487 RAMBlock *block = last_seen_block;
488 ram_addr_t offset = last_offset;
489 bool complete_round = false;
490 int bytes_sent = 0;
491 MemoryRegion *mr;
492 ram_addr_t current_addr;
494 if (!block)
495 block = QTAILQ_FIRST(&ram_list.blocks);
497 while (true) {
498 mr = block->mr;
499 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
500 if (complete_round && block == last_seen_block &&
501 offset >= last_offset) {
502 break;
504 if (offset >= block->length) {
505 offset = 0;
506 block = QTAILQ_NEXT(block, next);
507 if (!block) {
508 block = QTAILQ_FIRST(&ram_list.blocks);
509 complete_round = true;
510 ram_bulk_stage = false;
512 } else {
513 int ret;
514 uint8_t *p;
515 int cont = (block == last_sent_block) ?
516 RAM_SAVE_FLAG_CONTINUE : 0;
518 p = memory_region_get_ram_ptr(mr) + offset;
520 /* In doubt sent page as normal */
521 bytes_sent = -1;
522 ret = ram_control_save_page(f, block->offset,
523 offset, TARGET_PAGE_SIZE, &bytes_sent);
525 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
526 if (ret != RAM_SAVE_CONTROL_DELAYED) {
527 if (bytes_sent > 0) {
528 acct_info.norm_pages++;
529 } else if (bytes_sent == 0) {
530 acct_info.dup_pages++;
533 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
534 acct_info.dup_pages++;
535 bytes_sent = save_block_hdr(f, block, offset, cont,
536 RAM_SAVE_FLAG_COMPRESS);
537 qemu_put_byte(f, 0);
538 bytes_sent++;
539 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
540 current_addr = block->offset + offset;
541 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
542 offset, cont, last_stage);
543 if (!last_stage) {
544 p = get_cached_data(XBZRLE.cache, current_addr);
548 /* XBZRLE overflow or normal page */
549 if (bytes_sent == -1) {
550 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
551 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
552 bytes_sent += TARGET_PAGE_SIZE;
553 acct_info.norm_pages++;
556 /* if page is unmodified, continue to the next */
557 if (bytes_sent > 0) {
558 last_sent_block = block;
559 break;
563 last_seen_block = block;
564 last_offset = offset;
566 return bytes_sent;
569 static uint64_t bytes_transferred;
571 void acct_update_position(QEMUFile *f, size_t size, bool zero)
573 uint64_t pages = size / TARGET_PAGE_SIZE;
574 if (zero) {
575 acct_info.dup_pages += pages;
576 } else {
577 acct_info.norm_pages += pages;
578 bytes_transferred += size;
579 qemu_update_position(f, size);
583 static ram_addr_t ram_save_remaining(void)
585 return migration_dirty_pages;
588 uint64_t ram_bytes_remaining(void)
590 return ram_save_remaining() * TARGET_PAGE_SIZE;
593 uint64_t ram_bytes_transferred(void)
595 return bytes_transferred;
598 uint64_t ram_bytes_total(void)
600 RAMBlock *block;
601 uint64_t total = 0;
603 QTAILQ_FOREACH(block, &ram_list.blocks, next)
604 total += block->length;
606 return total;
609 void free_xbzrle_decoded_buf(void)
611 g_free(xbzrle_decoded_buf);
612 xbzrle_decoded_buf = NULL;
615 static void migration_end(void)
617 if (migration_bitmap) {
618 memory_global_dirty_log_stop();
619 g_free(migration_bitmap);
620 migration_bitmap = NULL;
623 if (XBZRLE.cache) {
624 cache_fini(XBZRLE.cache);
625 g_free(XBZRLE.cache);
626 g_free(XBZRLE.encoded_buf);
627 g_free(XBZRLE.current_buf);
628 XBZRLE.cache = NULL;
629 XBZRLE.encoded_buf = NULL;
630 XBZRLE.current_buf = NULL;
634 static void ram_migration_cancel(void *opaque)
636 migration_end();
639 static void reset_ram_globals(void)
641 last_seen_block = NULL;
642 last_sent_block = NULL;
643 last_offset = 0;
644 last_version = ram_list.version;
645 ram_bulk_stage = true;
648 #define MAX_WAIT 50 /* ms, half buffered_file limit */
650 static int ram_save_setup(QEMUFile *f, void *opaque)
652 RAMBlock *block;
653 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
655 migration_bitmap = bitmap_new(ram_pages);
656 bitmap_set(migration_bitmap, 0, ram_pages);
657 migration_dirty_pages = ram_pages;
658 mig_throttle_on = false;
659 dirty_rate_high_cnt = 0;
661 if (migrate_use_xbzrle()) {
662 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
663 TARGET_PAGE_SIZE,
664 TARGET_PAGE_SIZE);
665 if (!XBZRLE.cache) {
666 DPRINTF("Error creating cache\n");
667 return -1;
670 /* We prefer not to abort if there is no memory */
671 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
672 if (!XBZRLE.encoded_buf) {
673 DPRINTF("Error allocating encoded_buf\n");
674 return -1;
677 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
678 if (!XBZRLE.current_buf) {
679 DPRINTF("Error allocating current_buf\n");
680 g_free(XBZRLE.encoded_buf);
681 XBZRLE.encoded_buf = NULL;
682 return -1;
685 acct_clear();
688 qemu_mutex_lock_iothread();
689 qemu_mutex_lock_ramlist();
690 bytes_transferred = 0;
691 reset_ram_globals();
693 memory_global_dirty_log_start();
694 migration_bitmap_sync();
695 qemu_mutex_unlock_iothread();
697 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
699 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
700 qemu_put_byte(f, strlen(block->idstr));
701 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
702 qemu_put_be64(f, block->length);
705 qemu_mutex_unlock_ramlist();
707 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
708 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
710 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
712 return 0;
715 static int ram_save_iterate(QEMUFile *f, void *opaque)
717 int ret;
718 int i;
719 int64_t t0;
720 int total_sent = 0;
722 qemu_mutex_lock_ramlist();
724 if (ram_list.version != last_version) {
725 reset_ram_globals();
728 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
730 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
731 i = 0;
732 while ((ret = qemu_file_rate_limit(f)) == 0) {
733 int bytes_sent;
735 bytes_sent = ram_save_block(f, false);
736 /* no more blocks to sent */
737 if (bytes_sent == 0) {
738 break;
740 total_sent += bytes_sent;
741 acct_info.iterations++;
742 check_guest_throttling();
743 /* we want to check in the 1st loop, just in case it was the 1st time
744 and we had to sync the dirty bitmap.
745 qemu_get_clock_ns() is a bit expensive, so we only check each some
746 iterations
748 if ((i & 63) == 0) {
749 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
750 if (t1 > MAX_WAIT) {
751 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
752 t1, i);
753 break;
756 i++;
759 qemu_mutex_unlock_ramlist();
762 * Must occur before EOS (or any QEMUFile operation)
763 * because of RDMA protocol.
765 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
767 bytes_transferred += total_sent;
770 * Do not count these 8 bytes into total_sent, so that we can
771 * return 0 if no page had been dirtied.
773 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
774 bytes_transferred += 8;
776 ret = qemu_file_get_error(f);
777 if (ret < 0) {
778 return ret;
781 return total_sent;
784 static int ram_save_complete(QEMUFile *f, void *opaque)
786 qemu_mutex_lock_ramlist();
787 migration_bitmap_sync();
789 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
791 /* try transferring iterative blocks of memory */
793 /* flush all remaining blocks regardless of rate limiting */
794 while (true) {
795 int bytes_sent;
797 bytes_sent = ram_save_block(f, true);
798 /* no more blocks to sent */
799 if (bytes_sent == 0) {
800 break;
802 bytes_transferred += bytes_sent;
805 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
806 migration_end();
808 qemu_mutex_unlock_ramlist();
809 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
811 return 0;
814 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
816 uint64_t remaining_size;
818 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
820 if (remaining_size < max_size) {
821 qemu_mutex_lock_iothread();
822 migration_bitmap_sync();
823 qemu_mutex_unlock_iothread();
824 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
826 return remaining_size;
829 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
831 int ret, rc = 0;
832 unsigned int xh_len;
833 int xh_flags;
835 if (!xbzrle_decoded_buf) {
836 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
839 /* extract RLE header */
840 xh_flags = qemu_get_byte(f);
841 xh_len = qemu_get_be16(f);
843 if (xh_flags != ENCODING_FLAG_XBZRLE) {
844 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
845 return -1;
848 if (xh_len > TARGET_PAGE_SIZE) {
849 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
850 return -1;
852 /* load data and decode */
853 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
855 /* decode RLE */
856 ret = xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
857 TARGET_PAGE_SIZE);
858 if (ret == -1) {
859 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
860 rc = -1;
861 } else if (ret > TARGET_PAGE_SIZE) {
862 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
863 ret, TARGET_PAGE_SIZE);
864 abort();
867 return rc;
870 static inline void *host_from_stream_offset(QEMUFile *f,
871 ram_addr_t offset,
872 int flags)
874 static RAMBlock *block = NULL;
875 char id[256];
876 uint8_t len;
878 if (flags & RAM_SAVE_FLAG_CONTINUE) {
879 if (!block) {
880 fprintf(stderr, "Ack, bad migration stream!\n");
881 return NULL;
884 return memory_region_get_ram_ptr(block->mr) + offset;
887 len = qemu_get_byte(f);
888 qemu_get_buffer(f, (uint8_t *)id, len);
889 id[len] = 0;
891 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
892 if (!strncmp(id, block->idstr, sizeof(id)))
893 return memory_region_get_ram_ptr(block->mr) + offset;
896 fprintf(stderr, "Can't find block %s!\n", id);
897 return NULL;
901 * If a page (or a whole RDMA chunk) has been
902 * determined to be zero, then zap it.
904 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
906 if (ch != 0 || !is_zero_range(host, size)) {
907 memset(host, ch, size);
911 static int ram_load(QEMUFile *f, void *opaque, int version_id)
913 ram_addr_t addr;
914 int flags, ret = 0;
915 int error;
916 static uint64_t seq_iter;
918 seq_iter++;
920 if (version_id < 4 || version_id > 4) {
921 return -EINVAL;
924 do {
925 addr = qemu_get_be64(f);
927 flags = addr & ~TARGET_PAGE_MASK;
928 addr &= TARGET_PAGE_MASK;
930 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
931 if (version_id == 4) {
932 /* Synchronize RAM block list */
933 char id[256];
934 ram_addr_t length;
935 ram_addr_t total_ram_bytes = addr;
937 while (total_ram_bytes) {
938 RAMBlock *block;
939 uint8_t len;
941 len = qemu_get_byte(f);
942 qemu_get_buffer(f, (uint8_t *)id, len);
943 id[len] = 0;
944 length = qemu_get_be64(f);
946 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
947 if (!strncmp(id, block->idstr, sizeof(id))) {
948 if (block->length != length) {
949 fprintf(stderr,
950 "Length mismatch: %s: " RAM_ADDR_FMT
951 " in != " RAM_ADDR_FMT "\n", id, length,
952 block->length);
953 ret = -EINVAL;
954 goto done;
956 break;
960 if (!block) {
961 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
962 "accept migration\n", id);
963 ret = -EINVAL;
964 goto done;
967 total_ram_bytes -= length;
972 if (flags & RAM_SAVE_FLAG_COMPRESS) {
973 void *host;
974 uint8_t ch;
976 host = host_from_stream_offset(f, addr, flags);
977 if (!host) {
978 return -EINVAL;
981 ch = qemu_get_byte(f);
982 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
983 } else if (flags & RAM_SAVE_FLAG_PAGE) {
984 void *host;
986 host = host_from_stream_offset(f, addr, flags);
987 if (!host) {
988 return -EINVAL;
991 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
992 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
993 void *host = host_from_stream_offset(f, addr, flags);
994 if (!host) {
995 return -EINVAL;
998 if (load_xbzrle(f, addr, host) < 0) {
999 ret = -EINVAL;
1000 goto done;
1002 } else if (flags & RAM_SAVE_FLAG_HOOK) {
1003 ram_control_load_hook(f, flags);
1005 error = qemu_file_get_error(f);
1006 if (error) {
1007 ret = error;
1008 goto done;
1010 } while (!(flags & RAM_SAVE_FLAG_EOS));
1012 done:
1013 DPRINTF("Completed load of VM with exit code %d seq iteration "
1014 "%" PRIu64 "\n", ret, seq_iter);
1015 return ret;
1018 SaveVMHandlers savevm_ram_handlers = {
1019 .save_live_setup = ram_save_setup,
1020 .save_live_iterate = ram_save_iterate,
1021 .save_live_complete = ram_save_complete,
1022 .save_live_pending = ram_save_pending,
1023 .load_state = ram_load,
1024 .cancel = ram_migration_cancel,
1027 struct soundhw {
1028 const char *name;
1029 const char *descr;
1030 int enabled;
1031 int isa;
1032 union {
1033 int (*init_isa) (ISABus *bus);
1034 int (*init_pci) (PCIBus *bus);
1035 } init;
1038 static struct soundhw soundhw[9];
1039 static int soundhw_count;
1041 void isa_register_soundhw(const char *name, const char *descr,
1042 int (*init_isa)(ISABus *bus))
1044 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1045 soundhw[soundhw_count].name = name;
1046 soundhw[soundhw_count].descr = descr;
1047 soundhw[soundhw_count].isa = 1;
1048 soundhw[soundhw_count].init.init_isa = init_isa;
1049 soundhw_count++;
1052 void pci_register_soundhw(const char *name, const char *descr,
1053 int (*init_pci)(PCIBus *bus))
1055 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1056 soundhw[soundhw_count].name = name;
1057 soundhw[soundhw_count].descr = descr;
1058 soundhw[soundhw_count].isa = 0;
1059 soundhw[soundhw_count].init.init_pci = init_pci;
1060 soundhw_count++;
1063 void select_soundhw(const char *optarg)
1065 struct soundhw *c;
1067 if (is_help_option(optarg)) {
1068 show_valid_cards:
1070 if (soundhw_count) {
1071 printf("Valid sound card names (comma separated):\n");
1072 for (c = soundhw; c->name; ++c) {
1073 printf ("%-11s %s\n", c->name, c->descr);
1075 printf("\n-soundhw all will enable all of the above\n");
1076 } else {
1077 printf("Machine has no user-selectable audio hardware "
1078 "(it may or may not have always-present audio hardware).\n");
1080 exit(!is_help_option(optarg));
1082 else {
1083 size_t l;
1084 const char *p;
1085 char *e;
1086 int bad_card = 0;
1088 if (!strcmp(optarg, "all")) {
1089 for (c = soundhw; c->name; ++c) {
1090 c->enabled = 1;
1092 return;
1095 p = optarg;
1096 while (*p) {
1097 e = strchr(p, ',');
1098 l = !e ? strlen(p) : (size_t) (e - p);
1100 for (c = soundhw; c->name; ++c) {
1101 if (!strncmp(c->name, p, l) && !c->name[l]) {
1102 c->enabled = 1;
1103 break;
1107 if (!c->name) {
1108 if (l > 80) {
1109 fprintf(stderr,
1110 "Unknown sound card name (too big to show)\n");
1112 else {
1113 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1114 (int) l, p);
1116 bad_card = 1;
1118 p += l + (e != NULL);
1121 if (bad_card) {
1122 goto show_valid_cards;
1127 void audio_init(void)
1129 struct soundhw *c;
1130 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1131 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1133 for (c = soundhw; c->name; ++c) {
1134 if (c->enabled) {
1135 if (c->isa) {
1136 if (!isa_bus) {
1137 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1138 exit(1);
1140 c->init.init_isa(isa_bus);
1141 } else {
1142 if (!pci_bus) {
1143 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1144 exit(1);
1146 c->init.init_pci(pci_bus);
1152 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1154 int ret;
1156 if (strlen(str) != 36) {
1157 return -1;
1160 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1161 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1162 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1163 &uuid[15]);
1165 if (ret != 16) {
1166 return -1;
1168 return 0;
1171 void do_acpitable_option(const QemuOpts *opts)
1173 #ifdef TARGET_I386
1174 Error *err = NULL;
1176 acpi_table_add(opts, &err);
1177 if (err) {
1178 error_report("Wrong acpi table provided: %s",
1179 error_get_pretty(err));
1180 error_free(err);
1181 exit(1);
1183 #endif
1186 void do_smbios_option(QemuOpts *opts)
1188 #ifdef TARGET_I386
1189 smbios_entry_add(opts);
1190 #endif
1193 void cpudef_init(void)
1195 #if defined(cpudef_setup)
1196 cpudef_setup(); /* parse cpu definitions in target config file */
1197 #endif
1200 int tcg_available(void)
1202 return 1;
1205 int kvm_available(void)
1207 #ifdef CONFIG_KVM
1208 return 1;
1209 #else
1210 return 0;
1211 #endif
1214 int xen_available(void)
1216 #ifdef CONFIG_XEN
1217 return 1;
1218 #else
1219 return 0;
1220 #endif
1224 TargetInfo *qmp_query_target(Error **errp)
1226 TargetInfo *info = g_malloc0(sizeof(*info));
1228 info->arch = g_strdup(TARGET_NAME);
1230 return info;
1233 /* Stub function that's gets run on the vcpu when its brought out of the
1234 VM to run inside qemu via async_run_on_cpu()*/
1235 static void mig_sleep_cpu(void *opq)
1237 qemu_mutex_unlock_iothread();
1238 g_usleep(30*1000);
1239 qemu_mutex_lock_iothread();
1242 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1243 much time in the VM. The migration thread will try to catchup.
1244 Workload will experience a performance drop.
1246 static void mig_throttle_guest_down(void)
1248 CPUState *cpu;
1250 qemu_mutex_lock_iothread();
1251 CPU_FOREACH(cpu) {
1252 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1254 qemu_mutex_unlock_iothread();
1257 static void check_guest_throttling(void)
1259 static int64_t t0;
1260 int64_t t1;
1262 if (!mig_throttle_on) {
1263 return;
1266 if (!t0) {
1267 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1268 return;
1271 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1273 /* If it has been more than 40 ms since the last time the guest
1274 * was throttled then do it again.
1276 if (40 < (t1-t0)/1000000) {
1277 mig_throttle_guest_down();
1278 t0 = t1;