check-qjson: add test for large JSON objects
[qemu-kvm.git] / target-alpha / cpu.h
blob5689760cefd3f336d3c11dc85afeefd19543af9f
1 /*
2 * Alpha emulation cpu definitions for qemu.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #if !defined (__CPU_ALPHA_H__)
21 #define __CPU_ALPHA_H__
23 #include "config.h"
24 #include "qemu-common.h"
26 #define TARGET_LONG_BITS 64
28 #define CPUArchState struct CPUAlphaState
30 #include "cpu-defs.h"
32 #include "softfloat.h"
34 #define TARGET_HAS_ICE 1
36 #define ELF_MACHINE EM_ALPHA
38 #define ICACHE_LINE_SIZE 32
39 #define DCACHE_LINE_SIZE 32
41 #define TARGET_PAGE_BITS 13
43 #ifdef CONFIG_USER_ONLY
44 /* ??? The kernel likes to give addresses in high memory. If the host has
45 more virtual address space than the guest, this can lead to impossible
46 allocations. Honor the long-standing assumption that only kernel addrs
47 are negative, but otherwise allow allocations anywhere. This could lead
48 to tricky emulation problems for programs doing tagged addressing, but
49 that's far fewer than encounter the impossible allocation problem. */
50 #define TARGET_PHYS_ADDR_SPACE_BITS 63
51 #define TARGET_VIRT_ADDR_SPACE_BITS 63
52 #else
53 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
54 #define TARGET_PHYS_ADDR_SPACE_BITS 44
55 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
56 #endif
58 /* Alpha major type */
59 enum {
60 ALPHA_EV3 = 1,
61 ALPHA_EV4 = 2,
62 ALPHA_SIM = 3,
63 ALPHA_LCA = 4,
64 ALPHA_EV5 = 5, /* 21164 */
65 ALPHA_EV45 = 6, /* 21064A */
66 ALPHA_EV56 = 7, /* 21164A */
69 /* EV4 minor type */
70 enum {
71 ALPHA_EV4_2 = 0,
72 ALPHA_EV4_3 = 1,
75 /* LCA minor type */
76 enum {
77 ALPHA_LCA_1 = 1, /* 21066 */
78 ALPHA_LCA_2 = 2, /* 20166 */
79 ALPHA_LCA_3 = 3, /* 21068 */
80 ALPHA_LCA_4 = 4, /* 21068 */
81 ALPHA_LCA_5 = 5, /* 21066A */
82 ALPHA_LCA_6 = 6, /* 21068A */
85 /* EV5 minor type */
86 enum {
87 ALPHA_EV5_1 = 1, /* Rev BA, CA */
88 ALPHA_EV5_2 = 2, /* Rev DA, EA */
89 ALPHA_EV5_3 = 3, /* Pass 3 */
90 ALPHA_EV5_4 = 4, /* Pass 3.2 */
91 ALPHA_EV5_5 = 5, /* Pass 4 */
94 /* EV45 minor type */
95 enum {
96 ALPHA_EV45_1 = 1, /* Pass 1 */
97 ALPHA_EV45_2 = 2, /* Pass 1.1 */
98 ALPHA_EV45_3 = 3, /* Pass 2 */
101 /* EV56 minor type */
102 enum {
103 ALPHA_EV56_1 = 1, /* Pass 1 */
104 ALPHA_EV56_2 = 2, /* Pass 2 */
107 enum {
108 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
109 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
110 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
111 IMPLVER_21364 = 3, /* EV7 & EV79 */
114 enum {
115 AMASK_BWX = 0x00000001,
116 AMASK_FIX = 0x00000002,
117 AMASK_CIX = 0x00000004,
118 AMASK_MVI = 0x00000100,
119 AMASK_TRAP = 0x00000200,
120 AMASK_PREFETCH = 0x00001000,
123 enum {
124 VAX_ROUND_NORMAL = 0,
125 VAX_ROUND_CHOPPED,
128 enum {
129 IEEE_ROUND_NORMAL = 0,
130 IEEE_ROUND_DYNAMIC,
131 IEEE_ROUND_PLUS,
132 IEEE_ROUND_MINUS,
133 IEEE_ROUND_CHOPPED,
136 /* IEEE floating-point operations encoding */
137 /* Trap mode */
138 enum {
139 FP_TRAP_I = 0x0,
140 FP_TRAP_U = 0x1,
141 FP_TRAP_S = 0x4,
142 FP_TRAP_SU = 0x5,
143 FP_TRAP_SUI = 0x7,
146 /* Rounding mode */
147 enum {
148 FP_ROUND_CHOPPED = 0x0,
149 FP_ROUND_MINUS = 0x1,
150 FP_ROUND_NORMAL = 0x2,
151 FP_ROUND_DYNAMIC = 0x3,
154 /* FPCR bits */
155 #define FPCR_SUM (1ULL << 63)
156 #define FPCR_INED (1ULL << 62)
157 #define FPCR_UNFD (1ULL << 61)
158 #define FPCR_UNDZ (1ULL << 60)
159 #define FPCR_DYN_SHIFT 58
160 #define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT)
163 #define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT)
164 #define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT)
165 #define FPCR_IOV (1ULL << 57)
166 #define FPCR_INE (1ULL << 56)
167 #define FPCR_UNF (1ULL << 55)
168 #define FPCR_OVF (1ULL << 54)
169 #define FPCR_DZE (1ULL << 53)
170 #define FPCR_INV (1ULL << 52)
171 #define FPCR_OVFD (1ULL << 51)
172 #define FPCR_DZED (1ULL << 50)
173 #define FPCR_INVD (1ULL << 49)
174 #define FPCR_DNZ (1ULL << 48)
175 #define FPCR_DNOD (1ULL << 47)
176 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
177 | FPCR_OVF | FPCR_DZE | FPCR_INV)
179 /* The silly software trap enables implemented by the kernel emulation.
180 These are more or less architecturally required, since the real hardware
181 has read-as-zero bits in the FPCR when the features aren't implemented.
182 For the purposes of QEMU, we pretend the FPCR can hold everything. */
183 #define SWCR_TRAP_ENABLE_INV (1ULL << 1)
184 #define SWCR_TRAP_ENABLE_DZE (1ULL << 2)
185 #define SWCR_TRAP_ENABLE_OVF (1ULL << 3)
186 #define SWCR_TRAP_ENABLE_UNF (1ULL << 4)
187 #define SWCR_TRAP_ENABLE_INE (1ULL << 5)
188 #define SWCR_TRAP_ENABLE_DNO (1ULL << 6)
189 #define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1))
191 #define SWCR_MAP_DMZ (1ULL << 12)
192 #define SWCR_MAP_UMZ (1ULL << 13)
193 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
195 #define SWCR_STATUS_INV (1ULL << 17)
196 #define SWCR_STATUS_DZE (1ULL << 18)
197 #define SWCR_STATUS_OVF (1ULL << 19)
198 #define SWCR_STATUS_UNF (1ULL << 20)
199 #define SWCR_STATUS_INE (1ULL << 21)
200 #define SWCR_STATUS_DNO (1ULL << 22)
201 #define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17))
203 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
205 /* MMU modes definitions */
207 /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
208 The Unix PALcode only exposes the kernel and user modes; presumably
209 executive and supervisor are used by VMS.
211 PALcode itself uses physical mode for code and kernel mode for data;
212 there are PALmode instructions that can access data via physical mode
213 or via an os-installed "alternate mode", which is one of the 4 above.
215 QEMU does not currently properly distinguish between code/data when
216 looking up addresses. To avoid having to address this issue, our
217 emulated PALcode will cheat and use the KSEG mapping for its code+data
218 rather than physical addresses.
220 Moreover, we're only emulating Unix PALcode, and not attempting VMS.
222 All of which allows us to drop all but kernel and user modes.
223 Elide the unused MMU modes to save space. */
225 #define NB_MMU_MODES 2
227 #define MMU_MODE0_SUFFIX _kernel
228 #define MMU_MODE1_SUFFIX _user
229 #define MMU_KERNEL_IDX 0
230 #define MMU_USER_IDX 1
232 typedef struct CPUAlphaState CPUAlphaState;
234 struct CPUAlphaState {
235 uint64_t ir[31];
236 float64 fir[31];
237 uint64_t pc;
238 uint64_t unique;
239 uint64_t lock_addr;
240 uint64_t lock_st_addr;
241 uint64_t lock_value;
242 float_status fp_status;
243 /* The following fields make up the FPCR, but in FP_STATUS format. */
244 uint8_t fpcr_exc_status;
245 uint8_t fpcr_exc_mask;
246 uint8_t fpcr_dyn_round;
247 uint8_t fpcr_flush_to_zero;
248 uint8_t fpcr_dnod;
249 uint8_t fpcr_undz;
251 /* The Internal Processor Registers. Some of these we assume always
252 exist for use in user-mode. */
253 uint8_t ps;
254 uint8_t intr_flag;
255 uint8_t pal_mode;
256 uint8_t fen;
258 uint32_t pcc_ofs;
260 /* These pass data from the exception logic in the translator and
261 helpers to the OS entry point. This is used for both system
262 emulation and user-mode. */
263 uint64_t trap_arg0;
264 uint64_t trap_arg1;
265 uint64_t trap_arg2;
267 #if !defined(CONFIG_USER_ONLY)
268 /* The internal data required by our emulation of the Unix PALcode. */
269 uint64_t exc_addr;
270 uint64_t palbr;
271 uint64_t ptbr;
272 uint64_t vptptr;
273 uint64_t sysval;
274 uint64_t usp;
275 uint64_t shadow[8];
276 uint64_t scratch[24];
277 #endif
279 /* This alarm doesn't exist in real hardware; we wish it did. */
280 struct QEMUTimer *alarm_timer;
281 uint64_t alarm_expire;
283 #if TARGET_LONG_BITS > HOST_LONG_BITS
284 /* temporary fixed-point registers
285 * used to emulate 64 bits target on 32 bits hosts
287 target_ulong t0, t1;
288 #endif
290 /* Those resources are used only in QEMU core */
291 CPU_COMMON
293 int error_code;
295 uint32_t features;
296 uint32_t amask;
297 int implver;
300 #define cpu_init cpu_alpha_init
301 #define cpu_exec cpu_alpha_exec
302 #define cpu_gen_code cpu_alpha_gen_code
303 #define cpu_signal_handler cpu_alpha_signal_handler
305 #include "cpu-all.h"
306 #include "cpu-qom.h"
308 enum {
309 FEATURE_ASN = 0x00000001,
310 FEATURE_SPS = 0x00000002,
311 FEATURE_VIRBND = 0x00000004,
312 FEATURE_TBCHK = 0x00000008,
315 enum {
316 EXCP_RESET,
317 EXCP_MCHK,
318 EXCP_SMP_INTERRUPT,
319 EXCP_CLK_INTERRUPT,
320 EXCP_DEV_INTERRUPT,
321 EXCP_MMFAULT,
322 EXCP_UNALIGN,
323 EXCP_OPCDEC,
324 EXCP_ARITH,
325 EXCP_FEN,
326 EXCP_CALL_PAL,
327 /* For Usermode emulation. */
328 EXCP_STL_C,
329 EXCP_STQ_C,
332 /* Alpha-specific interrupt pending bits. */
333 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
334 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
335 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
337 /* OSF/1 Page table bits. */
338 enum {
339 PTE_VALID = 0x0001,
340 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
341 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
342 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
343 PTE_ASM = 0x0010,
344 PTE_KRE = 0x0100,
345 PTE_URE = 0x0200,
346 PTE_KWE = 0x1000,
347 PTE_UWE = 0x2000
350 /* Hardware interrupt (entInt) constants. */
351 enum {
352 INT_K_IP,
353 INT_K_CLK,
354 INT_K_MCHK,
355 INT_K_DEV,
356 INT_K_PERF,
359 /* Memory management (entMM) constants. */
360 enum {
361 MM_K_TNV,
362 MM_K_ACV,
363 MM_K_FOR,
364 MM_K_FOE,
365 MM_K_FOW
368 /* Arithmetic exception (entArith) constants. */
369 enum {
370 EXC_M_SWC = 1, /* Software completion */
371 EXC_M_INV = 2, /* Invalid operation */
372 EXC_M_DZE = 4, /* Division by zero */
373 EXC_M_FOV = 8, /* Overflow */
374 EXC_M_UNF = 16, /* Underflow */
375 EXC_M_INE = 32, /* Inexact result */
376 EXC_M_IOV = 64 /* Integer Overflow */
379 /* Processor status constants. */
380 enum {
381 /* Low 3 bits are interrupt mask level. */
382 PS_INT_MASK = 7,
384 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
385 The Unix PALcode only uses bit 4. */
386 PS_USER_MODE = 8
389 static inline int cpu_mmu_index(CPUAlphaState *env)
391 if (env->pal_mode) {
392 return MMU_KERNEL_IDX;
393 } else if (env->ps & PS_USER_MODE) {
394 return MMU_USER_IDX;
395 } else {
396 return MMU_KERNEL_IDX;
400 enum {
401 IR_V0 = 0,
402 IR_T0 = 1,
403 IR_T1 = 2,
404 IR_T2 = 3,
405 IR_T3 = 4,
406 IR_T4 = 5,
407 IR_T5 = 6,
408 IR_T6 = 7,
409 IR_T7 = 8,
410 IR_S0 = 9,
411 IR_S1 = 10,
412 IR_S2 = 11,
413 IR_S3 = 12,
414 IR_S4 = 13,
415 IR_S5 = 14,
416 IR_S6 = 15,
417 IR_FP = IR_S6,
418 IR_A0 = 16,
419 IR_A1 = 17,
420 IR_A2 = 18,
421 IR_A3 = 19,
422 IR_A4 = 20,
423 IR_A5 = 21,
424 IR_T8 = 22,
425 IR_T9 = 23,
426 IR_T10 = 24,
427 IR_T11 = 25,
428 IR_RA = 26,
429 IR_T12 = 27,
430 IR_PV = IR_T12,
431 IR_AT = 28,
432 IR_GP = 29,
433 IR_SP = 30,
434 IR_ZERO = 31,
437 CPUAlphaState * cpu_alpha_init (const char *cpu_model);
438 int cpu_alpha_exec(CPUAlphaState *s);
439 /* you can call this signal handler from your SIGBUS and SIGSEGV
440 signal handlers to inform the virtual CPU of exceptions. non zero
441 is returned if the signal was handled by the virtual CPU. */
442 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
443 void *puc);
444 int cpu_alpha_handle_mmu_fault (CPUAlphaState *env, uint64_t address, int rw,
445 int mmu_idx);
446 #define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
447 void do_interrupt (CPUAlphaState *env);
448 void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
449 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
450 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
452 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
453 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
454 #ifndef CONFIG_USER_ONLY
455 void swap_shadow_regs(CPUAlphaState *env);
456 QEMU_NORETURN void cpu_unassigned_access(CPUAlphaState *env1,
457 target_phys_addr_t addr, int is_write,
458 int is_exec, int unused, int size);
459 #endif
461 /* Bits in TB->FLAGS that control how translation is processed. */
462 enum {
463 TB_FLAGS_PAL_MODE = 1,
464 TB_FLAGS_FEN = 2,
465 TB_FLAGS_USER_MODE = 8,
467 TB_FLAGS_AMASK_SHIFT = 4,
468 TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
469 TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
470 TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
471 TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
472 TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
473 TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
476 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
477 target_ulong *cs_base, int *pflags)
479 int flags = 0;
481 *pc = env->pc;
482 *cs_base = 0;
484 if (env->pal_mode) {
485 flags = TB_FLAGS_PAL_MODE;
486 } else {
487 flags = env->ps & PS_USER_MODE;
489 if (env->fen) {
490 flags |= TB_FLAGS_FEN;
492 flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
494 *pflags = flags;
497 #if defined(CONFIG_USER_ONLY)
498 static inline void cpu_clone_regs(CPUAlphaState *env, target_ulong newsp)
500 if (newsp) {
501 env->ir[IR_SP] = newsp;
503 env->ir[IR_V0] = 0;
504 env->ir[IR_A3] = 0;
507 static inline void cpu_set_tls(CPUAlphaState *env, target_ulong newtls)
509 env->unique = newtls;
511 #endif
513 static inline bool cpu_has_work(CPUAlphaState *env)
515 /* Here we are checking to see if the CPU should wake up from HALT.
516 We will have gotten into this state only for WTINT from PALmode. */
517 /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
518 asleep even if (some) interrupts have been asserted. For now,
519 assume that if a CPU really wants to stay asleep, it will mask
520 interrupts at the chipset level, which will prevent these bits
521 from being set in the first place. */
522 return env->interrupt_request & (CPU_INTERRUPT_HARD
523 | CPU_INTERRUPT_TIMER
524 | CPU_INTERRUPT_SMP
525 | CPU_INTERRUPT_MCHK);
528 #include "exec-all.h"
530 static inline void cpu_pc_from_tb(CPUAlphaState *env, TranslationBlock *tb)
532 env->pc = tb->pc;
535 #endif /* !defined (__CPU_ALPHA_H__) */