provide portable HOST_LONG_BITS test
[qemu-kvm.git] / kvm-all.c
blobcae24bb87c1c1654eb73f437875ed9083803f59f
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 typedef struct KVMSlot
46 target_phys_addr_t start_addr;
47 ram_addr_t memory_size;
48 ram_addr_t phys_offset;
49 int slot;
50 int flags;
51 } KVMSlot;
53 typedef struct kvm_dirty_log KVMDirtyLog;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 int robust_singlestep;
68 int debugregs;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
74 int xsave, xcrs;
77 static KVMState *kvm_state;
79 static KVMSlot *kvm_alloc_slot(KVMState *s)
81 int i;
83 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
84 /* KVM private memory slots */
85 if (i >= 8 && i < 12)
86 continue;
87 if (s->slots[i].memory_size == 0)
88 return &s->slots[i];
91 fprintf(stderr, "%s: no free slot available\n", __func__);
92 abort();
95 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
96 target_phys_addr_t start_addr,
97 target_phys_addr_t end_addr)
99 int i;
101 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
102 KVMSlot *mem = &s->slots[i];
104 if (start_addr == mem->start_addr &&
105 end_addr == mem->start_addr + mem->memory_size) {
106 return mem;
110 return NULL;
114 * Find overlapping slot with lowest start address
116 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
117 target_phys_addr_t start_addr,
118 target_phys_addr_t end_addr)
120 KVMSlot *found = NULL;
121 int i;
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 KVMSlot *mem = &s->slots[i];
126 if (mem->memory_size == 0 ||
127 (found && found->start_addr < mem->start_addr)) {
128 continue;
131 if (end_addr > mem->start_addr &&
132 start_addr < mem->start_addr + mem->memory_size) {
133 found = mem;
137 return found;
140 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
141 target_phys_addr_t *phys_addr)
143 int i;
145 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
146 KVMSlot *mem = &s->slots[i];
148 if (ram_addr >= mem->phys_offset &&
149 ram_addr < mem->phys_offset + mem->memory_size) {
150 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
151 return 1;
155 return 0;
158 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
160 struct kvm_userspace_memory_region mem;
162 mem.slot = slot->slot;
163 mem.guest_phys_addr = slot->start_addr;
164 mem.memory_size = slot->memory_size;
165 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
166 mem.flags = slot->flags;
167 if (s->migration_log) {
168 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
170 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
173 static void kvm_reset_vcpu(void *opaque)
175 CPUState *env = opaque;
177 kvm_arch_reset_vcpu(env);
180 int kvm_irqchip_in_kernel(void)
182 return kvm_state->irqchip_in_kernel;
185 int kvm_pit_in_kernel(void)
187 return kvm_state->pit_in_kernel;
191 int kvm_init_vcpu(CPUState *env)
193 KVMState *s = kvm_state;
194 long mmap_size;
195 int ret;
197 DPRINTF("kvm_init_vcpu\n");
199 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
200 if (ret < 0) {
201 DPRINTF("kvm_create_vcpu failed\n");
202 goto err;
205 env->kvm_fd = ret;
206 env->kvm_state = s;
208 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
209 if (mmap_size < 0) {
210 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
211 goto err;
214 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
215 env->kvm_fd, 0);
216 if (env->kvm_run == MAP_FAILED) {
217 ret = -errno;
218 DPRINTF("mmap'ing vcpu state failed\n");
219 goto err;
222 #ifdef KVM_CAP_COALESCED_MMIO
223 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
224 s->coalesced_mmio_ring = (void *) env->kvm_run +
225 s->coalesced_mmio * PAGE_SIZE;
226 #endif
228 ret = kvm_arch_init_vcpu(env);
229 if (ret == 0) {
230 qemu_register_reset(kvm_reset_vcpu, env);
231 kvm_arch_reset_vcpu(env);
233 err:
234 return ret;
238 * dirty pages logging control
240 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
241 ram_addr_t size, int flags, int mask)
243 KVMState *s = kvm_state;
244 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
245 int old_flags;
247 if (mem == NULL) {
248 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
249 TARGET_FMT_plx "\n", __func__, phys_addr,
250 (target_phys_addr_t)(phys_addr + size - 1));
251 return -EINVAL;
254 old_flags = mem->flags;
256 flags = (mem->flags & ~mask) | flags;
257 mem->flags = flags;
259 /* If nothing changed effectively, no need to issue ioctl */
260 if (s->migration_log) {
261 flags |= KVM_MEM_LOG_DIRTY_PAGES;
263 if (flags == old_flags) {
264 return 0;
267 return kvm_set_user_memory_region(s, mem);
270 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
272 return kvm_dirty_pages_log_change(phys_addr, size,
273 KVM_MEM_LOG_DIRTY_PAGES,
274 KVM_MEM_LOG_DIRTY_PAGES);
277 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
279 return kvm_dirty_pages_log_change(phys_addr, size,
281 KVM_MEM_LOG_DIRTY_PAGES);
284 static int kvm_set_migration_log(int enable)
286 KVMState *s = kvm_state;
287 KVMSlot *mem;
288 int i, err;
290 s->migration_log = enable;
292 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
293 mem = &s->slots[i];
295 if (!mem->memory_size) {
296 continue;
298 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
299 continue;
301 err = kvm_set_user_memory_region(s, mem);
302 if (err) {
303 return err;
306 return 0;
309 /* get kvm's dirty pages bitmap and update qemu's */
310 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
311 unsigned long *bitmap,
312 unsigned long offset,
313 unsigned long mem_size)
315 unsigned int i, j;
316 unsigned long page_number, addr, addr1, c;
317 ram_addr_t ram_addr;
318 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
319 HOST_LONG_BITS;
322 * bitmap-traveling is faster than memory-traveling (for addr...)
323 * especially when most of the memory is not dirty.
325 for (i = 0; i < len; i++) {
326 if (bitmap[i] != 0) {
327 c = leul_to_cpu(bitmap[i]);
328 do {
329 j = ffsl(c) - 1;
330 c &= ~(1ul << j);
331 page_number = i * HOST_LONG_BITS + j;
332 addr1 = page_number * TARGET_PAGE_SIZE;
333 addr = offset + addr1;
334 ram_addr = cpu_get_physical_page_desc(addr);
335 cpu_physical_memory_set_dirty(ram_addr);
336 } while (c != 0);
339 return 0;
342 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
345 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
346 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
347 * This means all bits are set to dirty.
349 * @start_add: start of logged region.
350 * @end_addr: end of logged region.
352 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
353 target_phys_addr_t end_addr)
355 KVMState *s = kvm_state;
356 unsigned long size, allocated_size = 0;
357 KVMDirtyLog d;
358 KVMSlot *mem;
359 int ret = 0;
361 d.dirty_bitmap = NULL;
362 while (start_addr < end_addr) {
363 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
364 if (mem == NULL) {
365 break;
368 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
369 if (!d.dirty_bitmap) {
370 d.dirty_bitmap = qemu_malloc(size);
371 } else if (size > allocated_size) {
372 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
374 allocated_size = size;
375 memset(d.dirty_bitmap, 0, allocated_size);
377 d.slot = mem->slot;
379 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
380 DPRINTF("ioctl failed %d\n", errno);
381 ret = -1;
382 break;
385 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
386 mem->start_addr, mem->memory_size);
387 start_addr = mem->start_addr + mem->memory_size;
389 qemu_free(d.dirty_bitmap);
391 return ret;
394 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
396 int ret = -ENOSYS;
397 #ifdef KVM_CAP_COALESCED_MMIO
398 KVMState *s = kvm_state;
400 if (s->coalesced_mmio) {
401 struct kvm_coalesced_mmio_zone zone;
403 zone.addr = start;
404 zone.size = size;
406 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
408 #endif
410 return ret;
413 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
415 int ret = -ENOSYS;
416 #ifdef KVM_CAP_COALESCED_MMIO
417 KVMState *s = kvm_state;
419 if (s->coalesced_mmio) {
420 struct kvm_coalesced_mmio_zone zone;
422 zone.addr = start;
423 zone.size = size;
425 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
427 #endif
429 return ret;
432 int kvm_check_extension(KVMState *s, unsigned int extension)
434 int ret;
436 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
437 if (ret < 0) {
438 ret = 0;
441 return ret;
444 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
445 ram_addr_t size,
446 ram_addr_t phys_offset)
448 KVMState *s = kvm_state;
449 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
450 KVMSlot *mem, old;
451 int err;
453 /* kvm works in page size chunks, but the function may be called
454 with sub-page size and unaligned start address. */
455 size = TARGET_PAGE_ALIGN(size);
456 start_addr = TARGET_PAGE_ALIGN(start_addr);
458 /* KVM does not support read-only slots */
459 phys_offset &= ~IO_MEM_ROM;
461 while (1) {
462 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
463 if (!mem) {
464 break;
467 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
468 (start_addr + size <= mem->start_addr + mem->memory_size) &&
469 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
470 /* The new slot fits into the existing one and comes with
471 * identical parameters - nothing to be done. */
472 return;
475 old = *mem;
477 /* unregister the overlapping slot */
478 mem->memory_size = 0;
479 err = kvm_set_user_memory_region(s, mem);
480 if (err) {
481 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
482 __func__, strerror(-err));
483 abort();
486 /* Workaround for older KVM versions: we can't join slots, even not by
487 * unregistering the previous ones and then registering the larger
488 * slot. We have to maintain the existing fragmentation. Sigh.
490 * This workaround assumes that the new slot starts at the same
491 * address as the first existing one. If not or if some overlapping
492 * slot comes around later, we will fail (not seen in practice so far)
493 * - and actually require a recent KVM version. */
494 if (s->broken_set_mem_region &&
495 old.start_addr == start_addr && old.memory_size < size &&
496 flags < IO_MEM_UNASSIGNED) {
497 mem = kvm_alloc_slot(s);
498 mem->memory_size = old.memory_size;
499 mem->start_addr = old.start_addr;
500 mem->phys_offset = old.phys_offset;
501 mem->flags = 0;
503 err = kvm_set_user_memory_region(s, mem);
504 if (err) {
505 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
506 strerror(-err));
507 abort();
510 start_addr += old.memory_size;
511 phys_offset += old.memory_size;
512 size -= old.memory_size;
513 continue;
516 /* register prefix slot */
517 if (old.start_addr < start_addr) {
518 mem = kvm_alloc_slot(s);
519 mem->memory_size = start_addr - old.start_addr;
520 mem->start_addr = old.start_addr;
521 mem->phys_offset = old.phys_offset;
522 mem->flags = 0;
524 err = kvm_set_user_memory_region(s, mem);
525 if (err) {
526 fprintf(stderr, "%s: error registering prefix slot: %s\n",
527 __func__, strerror(-err));
528 abort();
532 /* register suffix slot */
533 if (old.start_addr + old.memory_size > start_addr + size) {
534 ram_addr_t size_delta;
536 mem = kvm_alloc_slot(s);
537 mem->start_addr = start_addr + size;
538 size_delta = mem->start_addr - old.start_addr;
539 mem->memory_size = old.memory_size - size_delta;
540 mem->phys_offset = old.phys_offset + size_delta;
541 mem->flags = 0;
543 err = kvm_set_user_memory_region(s, mem);
544 if (err) {
545 fprintf(stderr, "%s: error registering suffix slot: %s\n",
546 __func__, strerror(-err));
547 abort();
552 /* in case the KVM bug workaround already "consumed" the new slot */
553 if (!size)
554 return;
556 /* KVM does not need to know about this memory */
557 if (flags >= IO_MEM_UNASSIGNED)
558 return;
560 mem = kvm_alloc_slot(s);
561 mem->memory_size = size;
562 mem->start_addr = start_addr;
563 mem->phys_offset = phys_offset;
564 mem->flags = 0;
566 err = kvm_set_user_memory_region(s, mem);
567 if (err) {
568 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
569 strerror(-err));
570 abort();
574 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
575 target_phys_addr_t start_addr,
576 ram_addr_t size,
577 ram_addr_t phys_offset)
579 kvm_set_phys_mem(start_addr, size, phys_offset);
582 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
583 target_phys_addr_t start_addr,
584 target_phys_addr_t end_addr)
586 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
589 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
590 int enable)
592 return kvm_set_migration_log(enable);
595 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
596 .set_memory = kvm_client_set_memory,
597 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
598 .migration_log = kvm_client_migration_log,
601 int kvm_init(int smp_cpus)
603 static const char upgrade_note[] =
604 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
605 "(see http://sourceforge.net/projects/kvm).\n";
606 KVMState *s;
607 int ret;
608 int i;
610 s = qemu_mallocz(sizeof(KVMState));
612 #ifdef KVM_CAP_SET_GUEST_DEBUG
613 QTAILQ_INIT(&s->kvm_sw_breakpoints);
614 #endif
615 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
616 s->slots[i].slot = i;
618 s->vmfd = -1;
619 s->fd = qemu_open("/dev/kvm", O_RDWR);
620 if (s->fd == -1) {
621 fprintf(stderr, "Could not access KVM kernel module: %m\n");
622 ret = -errno;
623 goto err;
626 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
627 if (ret < KVM_API_VERSION) {
628 if (ret > 0)
629 ret = -EINVAL;
630 fprintf(stderr, "kvm version too old\n");
631 goto err;
634 if (ret > KVM_API_VERSION) {
635 ret = -EINVAL;
636 fprintf(stderr, "kvm version not supported\n");
637 goto err;
640 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
641 if (s->vmfd < 0) {
642 #ifdef TARGET_S390X
643 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
644 "your host kernel command line\n");
645 #endif
646 goto err;
649 /* initially, KVM allocated its own memory and we had to jump through
650 * hooks to make phys_ram_base point to this. Modern versions of KVM
651 * just use a user allocated buffer so we can use regular pages
652 * unmodified. Make sure we have a sufficiently modern version of KVM.
654 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
655 ret = -EINVAL;
656 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
657 upgrade_note);
658 goto err;
661 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
662 * destroyed properly. Since we rely on this capability, refuse to work
663 * with any kernel without this capability. */
664 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
665 ret = -EINVAL;
667 fprintf(stderr,
668 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
669 upgrade_note);
670 goto err;
673 s->coalesced_mmio = 0;
674 #ifdef KVM_CAP_COALESCED_MMIO
675 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
676 s->coalesced_mmio_ring = NULL;
677 #endif
679 s->broken_set_mem_region = 1;
680 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
681 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
682 if (ret > 0) {
683 s->broken_set_mem_region = 0;
685 #endif
687 s->vcpu_events = 0;
688 #ifdef KVM_CAP_VCPU_EVENTS
689 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
690 #endif
692 s->robust_singlestep = 0;
693 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
694 s->robust_singlestep =
695 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
696 #endif
698 s->debugregs = 0;
699 #ifdef KVM_CAP_DEBUGREGS
700 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
701 #endif
703 s->xsave = 0;
704 #ifdef KVM_CAP_XSAVE
705 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
706 #endif
708 s->xcrs = 0;
709 #ifdef KVM_CAP_XCRS
710 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
711 #endif
713 ret = kvm_arch_init(s, smp_cpus);
714 if (ret < 0)
715 goto err;
717 kvm_state = s;
718 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
720 return 0;
722 err:
723 if (s) {
724 if (s->vmfd != -1)
725 close(s->vmfd);
726 if (s->fd != -1)
727 close(s->fd);
729 qemu_free(s);
731 return ret;
734 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
735 uint32_t count)
737 int i;
738 uint8_t *ptr = data;
740 for (i = 0; i < count; i++) {
741 if (direction == KVM_EXIT_IO_IN) {
742 switch (size) {
743 case 1:
744 stb_p(ptr, cpu_inb(port));
745 break;
746 case 2:
747 stw_p(ptr, cpu_inw(port));
748 break;
749 case 4:
750 stl_p(ptr, cpu_inl(port));
751 break;
753 } else {
754 switch (size) {
755 case 1:
756 cpu_outb(port, ldub_p(ptr));
757 break;
758 case 2:
759 cpu_outw(port, lduw_p(ptr));
760 break;
761 case 4:
762 cpu_outl(port, ldl_p(ptr));
763 break;
767 ptr += size;
770 return 1;
773 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
774 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
777 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
778 int i;
780 fprintf(stderr, "KVM internal error. Suberror: %d\n",
781 run->internal.suberror);
783 for (i = 0; i < run->internal.ndata; ++i) {
784 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
785 i, (uint64_t)run->internal.data[i]);
788 cpu_dump_state(env, stderr, fprintf, 0);
789 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
790 fprintf(stderr, "emulation failure\n");
791 if (!kvm_arch_stop_on_emulation_error(env))
792 return;
794 /* FIXME: Should trigger a qmp message to let management know
795 * something went wrong.
797 vm_stop(0);
799 #endif
801 void kvm_flush_coalesced_mmio_buffer(void)
803 #ifdef KVM_CAP_COALESCED_MMIO
804 KVMState *s = kvm_state;
805 if (s->coalesced_mmio_ring) {
806 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
807 while (ring->first != ring->last) {
808 struct kvm_coalesced_mmio *ent;
810 ent = &ring->coalesced_mmio[ring->first];
812 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
813 smp_wmb();
814 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
817 #endif
820 static void do_kvm_cpu_synchronize_state(void *_env)
822 CPUState *env = _env;
824 if (!env->kvm_vcpu_dirty) {
825 kvm_arch_get_registers(env);
826 env->kvm_vcpu_dirty = 1;
830 void kvm_cpu_synchronize_state(CPUState *env)
832 if (!env->kvm_vcpu_dirty)
833 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
836 void kvm_cpu_synchronize_post_reset(CPUState *env)
838 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
839 env->kvm_vcpu_dirty = 0;
842 void kvm_cpu_synchronize_post_init(CPUState *env)
844 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
845 env->kvm_vcpu_dirty = 0;
848 int kvm_cpu_exec(CPUState *env)
850 struct kvm_run *run = env->kvm_run;
851 int ret;
853 DPRINTF("kvm_cpu_exec()\n");
855 do {
856 #ifndef CONFIG_IOTHREAD
857 if (env->exit_request) {
858 DPRINTF("interrupt exit requested\n");
859 ret = 0;
860 break;
862 #endif
864 if (kvm_arch_process_irqchip_events(env)) {
865 ret = 0;
866 break;
869 if (env->kvm_vcpu_dirty) {
870 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
871 env->kvm_vcpu_dirty = 0;
874 kvm_arch_pre_run(env, run);
875 cpu_single_env = NULL;
876 qemu_mutex_unlock_iothread();
877 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
878 qemu_mutex_lock_iothread();
879 cpu_single_env = env;
880 kvm_arch_post_run(env, run);
882 if (ret == -EINTR || ret == -EAGAIN) {
883 cpu_exit(env);
884 DPRINTF("io window exit\n");
885 ret = 0;
886 break;
889 if (ret < 0) {
890 DPRINTF("kvm run failed %s\n", strerror(-ret));
891 abort();
894 kvm_flush_coalesced_mmio_buffer();
896 ret = 0; /* exit loop */
897 switch (run->exit_reason) {
898 case KVM_EXIT_IO:
899 DPRINTF("handle_io\n");
900 ret = kvm_handle_io(run->io.port,
901 (uint8_t *)run + run->io.data_offset,
902 run->io.direction,
903 run->io.size,
904 run->io.count);
905 break;
906 case KVM_EXIT_MMIO:
907 DPRINTF("handle_mmio\n");
908 cpu_physical_memory_rw(run->mmio.phys_addr,
909 run->mmio.data,
910 run->mmio.len,
911 run->mmio.is_write);
912 ret = 1;
913 break;
914 case KVM_EXIT_IRQ_WINDOW_OPEN:
915 DPRINTF("irq_window_open\n");
916 break;
917 case KVM_EXIT_SHUTDOWN:
918 DPRINTF("shutdown\n");
919 qemu_system_reset_request();
920 ret = 1;
921 break;
922 case KVM_EXIT_UNKNOWN:
923 DPRINTF("kvm_exit_unknown\n");
924 break;
925 case KVM_EXIT_FAIL_ENTRY:
926 DPRINTF("kvm_exit_fail_entry\n");
927 break;
928 case KVM_EXIT_EXCEPTION:
929 DPRINTF("kvm_exit_exception\n");
930 break;
931 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
932 case KVM_EXIT_INTERNAL_ERROR:
933 kvm_handle_internal_error(env, run);
934 break;
935 #endif
936 case KVM_EXIT_DEBUG:
937 DPRINTF("kvm_exit_debug\n");
938 #ifdef KVM_CAP_SET_GUEST_DEBUG
939 if (kvm_arch_debug(&run->debug.arch)) {
940 env->exception_index = EXCP_DEBUG;
941 return 0;
943 /* re-enter, this exception was guest-internal */
944 ret = 1;
945 #endif /* KVM_CAP_SET_GUEST_DEBUG */
946 break;
947 default:
948 DPRINTF("kvm_arch_handle_exit\n");
949 ret = kvm_arch_handle_exit(env, run);
950 break;
952 } while (ret > 0);
954 if (env->exit_request) {
955 env->exit_request = 0;
956 env->exception_index = EXCP_INTERRUPT;
959 return ret;
962 int kvm_ioctl(KVMState *s, int type, ...)
964 int ret;
965 void *arg;
966 va_list ap;
968 va_start(ap, type);
969 arg = va_arg(ap, void *);
970 va_end(ap);
972 ret = ioctl(s->fd, type, arg);
973 if (ret == -1)
974 ret = -errno;
976 return ret;
979 int kvm_vm_ioctl(KVMState *s, int type, ...)
981 int ret;
982 void *arg;
983 va_list ap;
985 va_start(ap, type);
986 arg = va_arg(ap, void *);
987 va_end(ap);
989 ret = ioctl(s->vmfd, type, arg);
990 if (ret == -1)
991 ret = -errno;
993 return ret;
996 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
998 int ret;
999 void *arg;
1000 va_list ap;
1002 va_start(ap, type);
1003 arg = va_arg(ap, void *);
1004 va_end(ap);
1006 ret = ioctl(env->kvm_fd, type, arg);
1007 if (ret == -1)
1008 ret = -errno;
1010 return ret;
1013 int kvm_has_sync_mmu(void)
1015 #ifdef KVM_CAP_SYNC_MMU
1016 KVMState *s = kvm_state;
1018 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1019 #else
1020 return 0;
1021 #endif
1024 int kvm_has_vcpu_events(void)
1026 return kvm_state->vcpu_events;
1029 int kvm_has_robust_singlestep(void)
1031 return kvm_state->robust_singlestep;
1034 int kvm_has_debugregs(void)
1036 return kvm_state->debugregs;
1039 int kvm_has_xsave(void)
1041 return kvm_state->xsave;
1044 int kvm_has_xcrs(void)
1046 return kvm_state->xcrs;
1049 void kvm_setup_guest_memory(void *start, size_t size)
1051 if (!kvm_has_sync_mmu()) {
1052 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1054 if (ret) {
1055 perror("qemu_madvise");
1056 fprintf(stderr,
1057 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1058 exit(1);
1063 #ifdef KVM_CAP_SET_GUEST_DEBUG
1064 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1065 target_ulong pc)
1067 struct kvm_sw_breakpoint *bp;
1069 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1070 if (bp->pc == pc)
1071 return bp;
1073 return NULL;
1076 int kvm_sw_breakpoints_active(CPUState *env)
1078 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1081 struct kvm_set_guest_debug_data {
1082 struct kvm_guest_debug dbg;
1083 CPUState *env;
1084 int err;
1087 static void kvm_invoke_set_guest_debug(void *data)
1089 struct kvm_set_guest_debug_data *dbg_data = data;
1090 CPUState *env = dbg_data->env;
1092 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1095 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1097 struct kvm_set_guest_debug_data data;
1099 data.dbg.control = reinject_trap;
1101 if (env->singlestep_enabled) {
1102 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1104 kvm_arch_update_guest_debug(env, &data.dbg);
1105 data.env = env;
1107 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1108 return data.err;
1111 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1112 target_ulong len, int type)
1114 struct kvm_sw_breakpoint *bp;
1115 CPUState *env;
1116 int err;
1118 if (type == GDB_BREAKPOINT_SW) {
1119 bp = kvm_find_sw_breakpoint(current_env, addr);
1120 if (bp) {
1121 bp->use_count++;
1122 return 0;
1125 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1126 if (!bp)
1127 return -ENOMEM;
1129 bp->pc = addr;
1130 bp->use_count = 1;
1131 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1132 if (err) {
1133 free(bp);
1134 return err;
1137 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1138 bp, entry);
1139 } else {
1140 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1141 if (err)
1142 return err;
1145 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1146 err = kvm_update_guest_debug(env, 0);
1147 if (err)
1148 return err;
1150 return 0;
1153 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1154 target_ulong len, int type)
1156 struct kvm_sw_breakpoint *bp;
1157 CPUState *env;
1158 int err;
1160 if (type == GDB_BREAKPOINT_SW) {
1161 bp = kvm_find_sw_breakpoint(current_env, addr);
1162 if (!bp)
1163 return -ENOENT;
1165 if (bp->use_count > 1) {
1166 bp->use_count--;
1167 return 0;
1170 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1171 if (err)
1172 return err;
1174 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1175 qemu_free(bp);
1176 } else {
1177 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1178 if (err)
1179 return err;
1182 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1183 err = kvm_update_guest_debug(env, 0);
1184 if (err)
1185 return err;
1187 return 0;
1190 void kvm_remove_all_breakpoints(CPUState *current_env)
1192 struct kvm_sw_breakpoint *bp, *next;
1193 KVMState *s = current_env->kvm_state;
1194 CPUState *env;
1196 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1197 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1198 /* Try harder to find a CPU that currently sees the breakpoint. */
1199 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1200 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1201 break;
1205 kvm_arch_remove_all_hw_breakpoints();
1207 for (env = first_cpu; env != NULL; env = env->next_cpu)
1208 kvm_update_guest_debug(env, 0);
1211 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1213 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1215 return -EINVAL;
1218 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1219 target_ulong len, int type)
1221 return -EINVAL;
1224 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1225 target_ulong len, int type)
1227 return -EINVAL;
1230 void kvm_remove_all_breakpoints(CPUState *current_env)
1233 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1235 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1237 struct kvm_signal_mask *sigmask;
1238 int r;
1240 if (!sigset)
1241 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1243 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1245 sigmask->len = 8;
1246 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1247 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1248 free(sigmask);
1250 return r;
1253 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1255 #ifdef KVM_IOEVENTFD
1256 int ret;
1257 struct kvm_ioeventfd iofd;
1259 iofd.datamatch = val;
1260 iofd.addr = addr;
1261 iofd.len = 4;
1262 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1263 iofd.fd = fd;
1265 if (!kvm_enabled()) {
1266 return -ENOSYS;
1269 if (!assign) {
1270 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1273 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1275 if (ret < 0) {
1276 return -errno;
1279 return 0;
1280 #else
1281 return -ENOSYS;
1282 #endif
1285 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1287 #ifdef KVM_IOEVENTFD
1288 struct kvm_ioeventfd kick = {
1289 .datamatch = val,
1290 .addr = addr,
1291 .len = 2,
1292 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1293 .fd = fd,
1295 int r;
1296 if (!kvm_enabled())
1297 return -ENOSYS;
1298 if (!assign)
1299 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1300 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1301 if (r < 0)
1302 return r;
1303 return 0;
1304 #else
1305 return -ENOSYS;
1306 #endif