fips: fix build on !Linux
[qemu-kvm.git] / cpus.c
blobb61f60eb9561700923dac11c812c6a6f0f0a26b8
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
40 #ifndef _WIN32
41 #include "compatfd.h"
42 #endif
44 #ifdef CONFIG_LINUX
46 #include <sys/prctl.h>
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
60 #endif /* CONFIG_LINUX */
62 static CPUArchState *next_cpu;
64 static bool cpu_thread_is_idle(CPUArchState *env)
66 if (env->stop || env->queued_work_first) {
67 return false;
69 if (env->stopped || !runstate_is_running()) {
70 return true;
72 if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
73 return false;
75 return true;
78 static bool all_cpu_threads_idle(void)
80 CPUArchState *env;
82 for (env = first_cpu; env != NULL; env = env->next_cpu) {
83 if (!cpu_thread_is_idle(env)) {
84 return false;
87 return true;
90 /***********************************************************/
91 /* guest cycle counter */
93 /* Conversion factor from emulated instructions to virtual clock ticks. */
94 static int icount_time_shift;
95 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
96 #define MAX_ICOUNT_SHIFT 10
97 /* Compensate for varying guest execution speed. */
98 static int64_t qemu_icount_bias;
99 static QEMUTimer *icount_rt_timer;
100 static QEMUTimer *icount_vm_timer;
101 static QEMUTimer *icount_warp_timer;
102 static int64_t vm_clock_warp_start;
103 static int64_t qemu_icount;
105 typedef struct TimersState {
106 int64_t cpu_ticks_prev;
107 int64_t cpu_ticks_offset;
108 int64_t cpu_clock_offset;
109 int32_t cpu_ticks_enabled;
110 int64_t dummy;
111 } TimersState;
113 TimersState timers_state;
115 /* Return the virtual CPU time, based on the instruction counter. */
116 int64_t cpu_get_icount(void)
118 int64_t icount;
119 CPUArchState *env = cpu_single_env;
121 icount = qemu_icount;
122 if (env) {
123 if (!can_do_io(env)) {
124 fprintf(stderr, "Bad clock read\n");
126 icount -= (env->icount_decr.u16.low + env->icount_extra);
128 return qemu_icount_bias + (icount << icount_time_shift);
131 /* return the host CPU cycle counter and handle stop/restart */
132 int64_t cpu_get_ticks(void)
134 if (use_icount) {
135 return cpu_get_icount();
137 if (!timers_state.cpu_ticks_enabled) {
138 return timers_state.cpu_ticks_offset;
139 } else {
140 int64_t ticks;
141 ticks = cpu_get_real_ticks();
142 if (timers_state.cpu_ticks_prev > ticks) {
143 /* Note: non increasing ticks may happen if the host uses
144 software suspend */
145 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
147 timers_state.cpu_ticks_prev = ticks;
148 return ticks + timers_state.cpu_ticks_offset;
152 /* return the host CPU monotonic timer and handle stop/restart */
153 int64_t cpu_get_clock(void)
155 int64_t ti;
156 if (!timers_state.cpu_ticks_enabled) {
157 return timers_state.cpu_clock_offset;
158 } else {
159 ti = get_clock();
160 return ti + timers_state.cpu_clock_offset;
164 /* enable cpu_get_ticks() */
165 void cpu_enable_ticks(void)
167 if (!timers_state.cpu_ticks_enabled) {
168 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
169 timers_state.cpu_clock_offset -= get_clock();
170 timers_state.cpu_ticks_enabled = 1;
174 /* disable cpu_get_ticks() : the clock is stopped. You must not call
175 cpu_get_ticks() after that. */
176 void cpu_disable_ticks(void)
178 if (timers_state.cpu_ticks_enabled) {
179 timers_state.cpu_ticks_offset = cpu_get_ticks();
180 timers_state.cpu_clock_offset = cpu_get_clock();
181 timers_state.cpu_ticks_enabled = 0;
185 /* Correlation between real and virtual time is always going to be
186 fairly approximate, so ignore small variation.
187 When the guest is idle real and virtual time will be aligned in
188 the IO wait loop. */
189 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
191 static void icount_adjust(void)
193 int64_t cur_time;
194 int64_t cur_icount;
195 int64_t delta;
196 static int64_t last_delta;
197 /* If the VM is not running, then do nothing. */
198 if (!runstate_is_running()) {
199 return;
201 cur_time = cpu_get_clock();
202 cur_icount = qemu_get_clock_ns(vm_clock);
203 delta = cur_icount - cur_time;
204 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
205 if (delta > 0
206 && last_delta + ICOUNT_WOBBLE < delta * 2
207 && icount_time_shift > 0) {
208 /* The guest is getting too far ahead. Slow time down. */
209 icount_time_shift--;
211 if (delta < 0
212 && last_delta - ICOUNT_WOBBLE > delta * 2
213 && icount_time_shift < MAX_ICOUNT_SHIFT) {
214 /* The guest is getting too far behind. Speed time up. */
215 icount_time_shift++;
217 last_delta = delta;
218 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
221 static void icount_adjust_rt(void *opaque)
223 qemu_mod_timer(icount_rt_timer,
224 qemu_get_clock_ms(rt_clock) + 1000);
225 icount_adjust();
228 static void icount_adjust_vm(void *opaque)
230 qemu_mod_timer(icount_vm_timer,
231 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
232 icount_adjust();
235 static int64_t qemu_icount_round(int64_t count)
237 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
240 static void icount_warp_rt(void *opaque)
242 if (vm_clock_warp_start == -1) {
243 return;
246 if (runstate_is_running()) {
247 int64_t clock = qemu_get_clock_ns(rt_clock);
248 int64_t warp_delta = clock - vm_clock_warp_start;
249 if (use_icount == 1) {
250 qemu_icount_bias += warp_delta;
251 } else {
253 * In adaptive mode, do not let the vm_clock run too
254 * far ahead of real time.
256 int64_t cur_time = cpu_get_clock();
257 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
258 int64_t delta = cur_time - cur_icount;
259 qemu_icount_bias += MIN(warp_delta, delta);
261 if (qemu_clock_expired(vm_clock)) {
262 qemu_notify_event();
265 vm_clock_warp_start = -1;
268 void qtest_clock_warp(int64_t dest)
270 int64_t clock = qemu_get_clock_ns(vm_clock);
271 assert(qtest_enabled());
272 while (clock < dest) {
273 int64_t deadline = qemu_clock_deadline(vm_clock);
274 int64_t warp = MIN(dest - clock, deadline);
275 qemu_icount_bias += warp;
276 qemu_run_timers(vm_clock);
277 clock = qemu_get_clock_ns(vm_clock);
279 qemu_notify_event();
282 void qemu_clock_warp(QEMUClock *clock)
284 int64_t deadline;
287 * There are too many global variables to make the "warp" behavior
288 * applicable to other clocks. But a clock argument removes the
289 * need for if statements all over the place.
291 if (clock != vm_clock || !use_icount) {
292 return;
296 * If the CPUs have been sleeping, advance the vm_clock timer now. This
297 * ensures that the deadline for the timer is computed correctly below.
298 * This also makes sure that the insn counter is synchronized before the
299 * CPU starts running, in case the CPU is woken by an event other than
300 * the earliest vm_clock timer.
302 icount_warp_rt(NULL);
303 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
304 qemu_del_timer(icount_warp_timer);
305 return;
308 if (qtest_enabled()) {
309 /* When testing, qtest commands advance icount. */
310 return;
313 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
314 deadline = qemu_clock_deadline(vm_clock);
315 if (deadline > 0) {
317 * Ensure the vm_clock proceeds even when the virtual CPU goes to
318 * sleep. Otherwise, the CPU might be waiting for a future timer
319 * interrupt to wake it up, but the interrupt never comes because
320 * the vCPU isn't running any insns and thus doesn't advance the
321 * vm_clock.
323 * An extreme solution for this problem would be to never let VCPUs
324 * sleep in icount mode if there is a pending vm_clock timer; rather
325 * time could just advance to the next vm_clock event. Instead, we
326 * do stop VCPUs and only advance vm_clock after some "real" time,
327 * (related to the time left until the next event) has passed. This
328 * rt_clock timer will do this. This avoids that the warps are too
329 * visible externally---for example, you will not be sending network
330 * packets continuously instead of every 100ms.
332 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
333 } else {
334 qemu_notify_event();
338 static const VMStateDescription vmstate_timers = {
339 .name = "timer",
340 .version_id = 2,
341 .minimum_version_id = 1,
342 .minimum_version_id_old = 1,
343 .fields = (VMStateField[]) {
344 VMSTATE_INT64(cpu_ticks_offset, TimersState),
345 VMSTATE_INT64(dummy, TimersState),
346 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
347 VMSTATE_END_OF_LIST()
351 void configure_icount(const char *option)
353 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
354 if (!option) {
355 return;
358 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
359 if (strcmp(option, "auto") != 0) {
360 icount_time_shift = strtol(option, NULL, 0);
361 use_icount = 1;
362 return;
365 use_icount = 2;
367 /* 125MIPS seems a reasonable initial guess at the guest speed.
368 It will be corrected fairly quickly anyway. */
369 icount_time_shift = 3;
371 /* Have both realtime and virtual time triggers for speed adjustment.
372 The realtime trigger catches emulated time passing too slowly,
373 the virtual time trigger catches emulated time passing too fast.
374 Realtime triggers occur even when idle, so use them less frequently
375 than VM triggers. */
376 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
377 qemu_mod_timer(icount_rt_timer,
378 qemu_get_clock_ms(rt_clock) + 1000);
379 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
380 qemu_mod_timer(icount_vm_timer,
381 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
384 /***********************************************************/
385 void hw_error(const char *fmt, ...)
387 va_list ap;
388 CPUArchState *env;
390 va_start(ap, fmt);
391 fprintf(stderr, "qemu: hardware error: ");
392 vfprintf(stderr, fmt, ap);
393 fprintf(stderr, "\n");
394 for(env = first_cpu; env != NULL; env = env->next_cpu) {
395 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
396 #ifdef TARGET_I386
397 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
398 #else
399 cpu_dump_state(env, stderr, fprintf, 0);
400 #endif
402 va_end(ap);
403 abort();
406 void cpu_synchronize_all_states(void)
408 CPUArchState *cpu;
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
415 void cpu_synchronize_all_post_reset(void)
417 CPUArchState *cpu;
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
424 void cpu_synchronize_all_post_init(void)
426 CPUArchState *cpu;
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
433 int cpu_is_stopped(CPUArchState *env)
435 return !runstate_is_running() || env->stopped;
438 static void do_vm_stop(RunState state)
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
451 static int cpu_can_run(CPUArchState *env)
453 if (env->stop) {
454 return 0;
456 if (env->stopped || !runstate_is_running()) {
457 return 0;
459 return 1;
462 static void cpu_handle_guest_debug(CPUArchState *env)
464 gdb_set_stop_cpu(env);
465 qemu_system_debug_request();
466 env->stopped = 1;
469 static void cpu_signal(int sig)
471 if (cpu_single_env) {
472 cpu_exit(cpu_single_env);
474 exit_request = 1;
477 #ifdef CONFIG_LINUX
478 static void sigbus_reraise(void)
480 sigset_t set;
481 struct sigaction action;
483 memset(&action, 0, sizeof(action));
484 action.sa_handler = SIG_DFL;
485 if (!sigaction(SIGBUS, &action, NULL)) {
486 raise(SIGBUS);
487 sigemptyset(&set);
488 sigaddset(&set, SIGBUS);
489 sigprocmask(SIG_UNBLOCK, &set, NULL);
491 perror("Failed to re-raise SIGBUS!\n");
492 abort();
495 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496 void *ctx)
498 if (kvm_on_sigbus(siginfo->ssi_code,
499 (void *)(intptr_t)siginfo->ssi_addr)) {
500 sigbus_reraise();
504 static void qemu_init_sigbus(void)
506 struct sigaction action;
508 memset(&action, 0, sizeof(action));
509 action.sa_flags = SA_SIGINFO;
510 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511 sigaction(SIGBUS, &action, NULL);
513 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
516 static void qemu_kvm_eat_signals(CPUArchState *env)
518 struct timespec ts = { 0, 0 };
519 siginfo_t siginfo;
520 sigset_t waitset;
521 sigset_t chkset;
522 int r;
524 sigemptyset(&waitset);
525 sigaddset(&waitset, SIG_IPI);
526 sigaddset(&waitset, SIGBUS);
528 do {
529 r = sigtimedwait(&waitset, &siginfo, &ts);
530 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531 perror("sigtimedwait");
532 exit(1);
535 switch (r) {
536 case SIGBUS:
537 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538 sigbus_reraise();
540 break;
541 default:
542 break;
545 r = sigpending(&chkset);
546 if (r == -1) {
547 perror("sigpending");
548 exit(1);
550 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
553 #else /* !CONFIG_LINUX */
555 static void qemu_init_sigbus(void)
559 static void qemu_kvm_eat_signals(CPUArchState *env)
562 #endif /* !CONFIG_LINUX */
564 #ifndef _WIN32
565 static void dummy_signal(int sig)
569 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
571 int r;
572 sigset_t set;
573 struct sigaction sigact;
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = dummy_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
579 pthread_sigmask(SIG_BLOCK, NULL, &set);
580 sigdelset(&set, SIG_IPI);
581 sigdelset(&set, SIGBUS);
582 r = kvm_set_signal_mask(env, &set);
583 if (r) {
584 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585 exit(1);
589 static void qemu_tcg_init_cpu_signals(void)
591 sigset_t set;
592 struct sigaction sigact;
594 memset(&sigact, 0, sizeof(sigact));
595 sigact.sa_handler = cpu_signal;
596 sigaction(SIG_IPI, &sigact, NULL);
598 sigemptyset(&set);
599 sigaddset(&set, SIG_IPI);
600 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
603 #else /* _WIN32 */
604 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
606 abort();
609 static void qemu_tcg_init_cpu_signals(void)
612 #endif /* _WIN32 */
614 QemuMutex qemu_global_mutex;
615 static QemuCond qemu_io_proceeded_cond;
616 static bool iothread_requesting_mutex;
618 static QemuThread io_thread;
620 static QemuThread *tcg_cpu_thread;
621 static QemuCond *tcg_halt_cond;
623 /* cpu creation */
624 static QemuCond qemu_cpu_cond;
625 /* system init */
626 static QemuCond qemu_pause_cond;
627 static QemuCond qemu_work_cond;
629 void qemu_init_cpu_loop(void)
631 qemu_init_sigbus();
632 qemu_cond_init(&qemu_cpu_cond);
633 qemu_cond_init(&qemu_pause_cond);
634 qemu_cond_init(&qemu_work_cond);
635 qemu_cond_init(&qemu_io_proceeded_cond);
636 qemu_mutex_init(&qemu_global_mutex);
638 qemu_thread_get_self(&io_thread);
641 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
643 struct qemu_work_item wi;
645 if (qemu_cpu_is_self(env)) {
646 func(data);
647 return;
650 wi.func = func;
651 wi.data = data;
652 if (!env->queued_work_first) {
653 env->queued_work_first = &wi;
654 } else {
655 env->queued_work_last->next = &wi;
657 env->queued_work_last = &wi;
658 wi.next = NULL;
659 wi.done = false;
661 qemu_cpu_kick(env);
662 while (!wi.done) {
663 CPUArchState *self_env = cpu_single_env;
665 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666 cpu_single_env = self_env;
670 static void flush_queued_work(CPUArchState *env)
672 struct qemu_work_item *wi;
674 if (!env->queued_work_first) {
675 return;
678 while ((wi = env->queued_work_first)) {
679 env->queued_work_first = wi->next;
680 wi->func(wi->data);
681 wi->done = true;
683 env->queued_work_last = NULL;
684 qemu_cond_broadcast(&qemu_work_cond);
687 static void qemu_wait_io_event_common(CPUArchState *env)
689 CPUState *cpu = ENV_GET_CPU(env);
691 if (env->stop) {
692 env->stop = 0;
693 env->stopped = 1;
694 qemu_cond_signal(&qemu_pause_cond);
696 flush_queued_work(env);
697 cpu->thread_kicked = false;
700 static void qemu_tcg_wait_io_event(void)
702 CPUArchState *env;
704 while (all_cpu_threads_idle()) {
705 /* Start accounting real time to the virtual clock if the CPUs
706 are idle. */
707 qemu_clock_warp(vm_clock);
708 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
711 while (iothread_requesting_mutex) {
712 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
715 for (env = first_cpu; env != NULL; env = env->next_cpu) {
716 qemu_wait_io_event_common(env);
720 static void qemu_kvm_wait_io_event(CPUArchState *env)
722 while (cpu_thread_is_idle(env)) {
723 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
726 qemu_kvm_eat_signals(env);
727 qemu_wait_io_event_common(env);
730 static void *qemu_kvm_cpu_thread_fn(void *arg)
732 CPUArchState *env = arg;
733 CPUState *cpu = ENV_GET_CPU(env);
734 int r;
736 qemu_mutex_lock(&qemu_global_mutex);
737 qemu_thread_get_self(cpu->thread);
738 env->thread_id = qemu_get_thread_id();
739 cpu_single_env = env;
741 r = kvm_init_vcpu(env);
742 if (r < 0) {
743 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
744 exit(1);
747 qemu_kvm_init_cpu_signals(env);
749 /* signal CPU creation */
750 env->created = 1;
751 qemu_cond_signal(&qemu_cpu_cond);
753 while (1) {
754 if (cpu_can_run(env)) {
755 r = kvm_cpu_exec(env);
756 if (r == EXCP_DEBUG) {
757 cpu_handle_guest_debug(env);
760 qemu_kvm_wait_io_event(env);
763 return NULL;
766 static void *qemu_dummy_cpu_thread_fn(void *arg)
768 #ifdef _WIN32
769 fprintf(stderr, "qtest is not supported under Windows\n");
770 exit(1);
771 #else
772 CPUArchState *env = arg;
773 CPUState *cpu = ENV_GET_CPU(env);
774 sigset_t waitset;
775 int r;
777 qemu_mutex_lock_iothread();
778 qemu_thread_get_self(cpu->thread);
779 env->thread_id = qemu_get_thread_id();
781 sigemptyset(&waitset);
782 sigaddset(&waitset, SIG_IPI);
784 /* signal CPU creation */
785 env->created = 1;
786 qemu_cond_signal(&qemu_cpu_cond);
788 cpu_single_env = env;
789 while (1) {
790 cpu_single_env = NULL;
791 qemu_mutex_unlock_iothread();
792 do {
793 int sig;
794 r = sigwait(&waitset, &sig);
795 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
796 if (r == -1) {
797 perror("sigwait");
798 exit(1);
800 qemu_mutex_lock_iothread();
801 cpu_single_env = env;
802 qemu_wait_io_event_common(env);
805 return NULL;
806 #endif
809 static void tcg_exec_all(void);
811 static void *qemu_tcg_cpu_thread_fn(void *arg)
813 CPUArchState *env = arg;
814 CPUState *cpu = ENV_GET_CPU(env);
816 qemu_tcg_init_cpu_signals();
817 qemu_thread_get_self(cpu->thread);
819 /* signal CPU creation */
820 qemu_mutex_lock(&qemu_global_mutex);
821 for (env = first_cpu; env != NULL; env = env->next_cpu) {
822 env->thread_id = qemu_get_thread_id();
823 env->created = 1;
825 qemu_cond_signal(&qemu_cpu_cond);
827 /* wait for initial kick-off after machine start */
828 while (first_cpu->stopped) {
829 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
831 /* process any pending work */
832 for (env = first_cpu; env != NULL; env = env->next_cpu) {
833 qemu_wait_io_event_common(env);
837 while (1) {
838 tcg_exec_all();
839 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
840 qemu_notify_event();
842 qemu_tcg_wait_io_event();
845 return NULL;
848 static void qemu_cpu_kick_thread(CPUArchState *env)
850 CPUState *cpu = ENV_GET_CPU(env);
851 #ifndef _WIN32
852 int err;
854 err = pthread_kill(cpu->thread->thread, SIG_IPI);
855 if (err) {
856 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
857 exit(1);
859 #else /* _WIN32 */
860 if (!qemu_cpu_is_self(env)) {
861 SuspendThread(cpu->hThread);
862 cpu_signal(0);
863 ResumeThread(cpu->hThread);
865 #endif
868 void qemu_cpu_kick(void *_env)
870 CPUArchState *env = _env;
871 CPUState *cpu = ENV_GET_CPU(env);
873 qemu_cond_broadcast(env->halt_cond);
874 if (!tcg_enabled() && !cpu->thread_kicked) {
875 qemu_cpu_kick_thread(env);
876 cpu->thread_kicked = true;
880 void qemu_cpu_kick_self(void)
882 #ifndef _WIN32
883 assert(cpu_single_env);
884 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
886 if (!cpu_single_cpu->thread_kicked) {
887 qemu_cpu_kick_thread(cpu_single_env);
888 cpu_single_cpu->thread_kicked = true;
890 #else
891 abort();
892 #endif
895 int qemu_cpu_is_self(void *_env)
897 CPUArchState *env = _env;
898 CPUState *cpu = ENV_GET_CPU(env);
900 return qemu_thread_is_self(cpu->thread);
903 void qemu_mutex_lock_iothread(void)
905 if (!tcg_enabled()) {
906 qemu_mutex_lock(&qemu_global_mutex);
907 } else {
908 iothread_requesting_mutex = true;
909 if (qemu_mutex_trylock(&qemu_global_mutex)) {
910 qemu_cpu_kick_thread(first_cpu);
911 qemu_mutex_lock(&qemu_global_mutex);
913 iothread_requesting_mutex = false;
914 qemu_cond_broadcast(&qemu_io_proceeded_cond);
918 void qemu_mutex_unlock_iothread(void)
920 qemu_mutex_unlock(&qemu_global_mutex);
923 static int all_vcpus_paused(void)
925 CPUArchState *penv = first_cpu;
927 while (penv) {
928 if (!penv->stopped) {
929 return 0;
931 penv = penv->next_cpu;
934 return 1;
937 void pause_all_vcpus(void)
939 CPUArchState *penv = first_cpu;
941 qemu_clock_enable(vm_clock, false);
942 while (penv) {
943 penv->stop = 1;
944 qemu_cpu_kick(penv);
945 penv = penv->next_cpu;
948 if (!qemu_thread_is_self(&io_thread)) {
949 cpu_stop_current();
950 if (!kvm_enabled()) {
951 while (penv) {
952 penv->stop = 0;
953 penv->stopped = 1;
954 penv = penv->next_cpu;
956 return;
960 while (!all_vcpus_paused()) {
961 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
962 penv = first_cpu;
963 while (penv) {
964 qemu_cpu_kick(penv);
965 penv = penv->next_cpu;
970 void resume_all_vcpus(void)
972 CPUArchState *penv = first_cpu;
974 qemu_clock_enable(vm_clock, true);
975 while (penv) {
976 penv->stop = 0;
977 penv->stopped = 0;
978 qemu_cpu_kick(penv);
979 penv = penv->next_cpu;
983 static void qemu_tcg_init_vcpu(void *_env)
985 CPUArchState *env = _env;
986 CPUState *cpu = ENV_GET_CPU(env);
988 /* share a single thread for all cpus with TCG */
989 if (!tcg_cpu_thread) {
990 cpu->thread = g_malloc0(sizeof(QemuThread));
991 env->halt_cond = g_malloc0(sizeof(QemuCond));
992 qemu_cond_init(env->halt_cond);
993 tcg_halt_cond = env->halt_cond;
994 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
995 QEMU_THREAD_JOINABLE);
996 #ifdef _WIN32
997 cpu->hThread = qemu_thread_get_handle(cpu->thread);
998 #endif
999 while (env->created == 0) {
1000 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1002 tcg_cpu_thread = cpu->thread;
1003 } else {
1004 cpu->thread = tcg_cpu_thread;
1005 env->halt_cond = tcg_halt_cond;
1009 static void qemu_kvm_start_vcpu(CPUArchState *env)
1011 CPUState *cpu = ENV_GET_CPU(env);
1013 cpu->thread = g_malloc0(sizeof(QemuThread));
1014 env->halt_cond = g_malloc0(sizeof(QemuCond));
1015 qemu_cond_init(env->halt_cond);
1016 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1017 QEMU_THREAD_JOINABLE);
1018 while (env->created == 0) {
1019 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1023 static void qemu_dummy_start_vcpu(CPUArchState *env)
1025 CPUState *cpu = ENV_GET_CPU(env);
1027 cpu->thread = g_malloc0(sizeof(QemuThread));
1028 env->halt_cond = g_malloc0(sizeof(QemuCond));
1029 qemu_cond_init(env->halt_cond);
1030 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1031 QEMU_THREAD_JOINABLE);
1032 while (env->created == 0) {
1033 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1037 void qemu_init_vcpu(void *_env)
1039 CPUArchState *env = _env;
1041 env->nr_cores = smp_cores;
1042 env->nr_threads = smp_threads;
1043 env->stopped = 1;
1044 if (kvm_enabled()) {
1045 qemu_kvm_start_vcpu(env);
1046 } else if (tcg_enabled()) {
1047 qemu_tcg_init_vcpu(env);
1048 } else {
1049 qemu_dummy_start_vcpu(env);
1053 void cpu_stop_current(void)
1055 if (cpu_single_env) {
1056 cpu_single_env->stop = 0;
1057 cpu_single_env->stopped = 1;
1058 cpu_exit(cpu_single_env);
1059 qemu_cond_signal(&qemu_pause_cond);
1063 void vm_stop(RunState state)
1065 if (!qemu_thread_is_self(&io_thread)) {
1066 qemu_system_vmstop_request(state);
1068 * FIXME: should not return to device code in case
1069 * vm_stop() has been requested.
1071 cpu_stop_current();
1072 return;
1074 do_vm_stop(state);
1077 /* does a state transition even if the VM is already stopped,
1078 current state is forgotten forever */
1079 void vm_stop_force_state(RunState state)
1081 if (runstate_is_running()) {
1082 vm_stop(state);
1083 } else {
1084 runstate_set(state);
1088 static int tcg_cpu_exec(CPUArchState *env)
1090 int ret;
1091 #ifdef CONFIG_PROFILER
1092 int64_t ti;
1093 #endif
1095 #ifdef CONFIG_PROFILER
1096 ti = profile_getclock();
1097 #endif
1098 if (use_icount) {
1099 int64_t count;
1100 int decr;
1101 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1102 env->icount_decr.u16.low = 0;
1103 env->icount_extra = 0;
1104 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1105 qemu_icount += count;
1106 decr = (count > 0xffff) ? 0xffff : count;
1107 count -= decr;
1108 env->icount_decr.u16.low = decr;
1109 env->icount_extra = count;
1111 ret = cpu_exec(env);
1112 #ifdef CONFIG_PROFILER
1113 qemu_time += profile_getclock() - ti;
1114 #endif
1115 if (use_icount) {
1116 /* Fold pending instructions back into the
1117 instruction counter, and clear the interrupt flag. */
1118 qemu_icount -= (env->icount_decr.u16.low
1119 + env->icount_extra);
1120 env->icount_decr.u32 = 0;
1121 env->icount_extra = 0;
1123 return ret;
1126 static void tcg_exec_all(void)
1128 int r;
1130 /* Account partial waits to the vm_clock. */
1131 qemu_clock_warp(vm_clock);
1133 if (next_cpu == NULL) {
1134 next_cpu = first_cpu;
1136 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1137 CPUArchState *env = next_cpu;
1139 qemu_clock_enable(vm_clock,
1140 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1142 if (cpu_can_run(env)) {
1143 r = tcg_cpu_exec(env);
1144 if (r == EXCP_DEBUG) {
1145 cpu_handle_guest_debug(env);
1146 break;
1148 } else if (env->stop || env->stopped) {
1149 break;
1152 exit_request = 0;
1155 void set_numa_modes(void)
1157 CPUArchState *env;
1158 int i;
1160 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1161 for (i = 0; i < nb_numa_nodes; i++) {
1162 if (node_cpumask[i] & (1 << env->cpu_index)) {
1163 env->numa_node = i;
1169 void set_cpu_log(const char *optarg)
1171 int mask;
1172 const CPULogItem *item;
1174 mask = cpu_str_to_log_mask(optarg);
1175 if (!mask) {
1176 printf("Log items (comma separated):\n");
1177 for (item = cpu_log_items; item->mask != 0; item++) {
1178 printf("%-10s %s\n", item->name, item->help);
1180 exit(1);
1182 cpu_set_log(mask);
1185 void set_cpu_log_filename(const char *optarg)
1187 cpu_set_log_filename(optarg);
1190 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1192 /* XXX: implement xxx_cpu_list for targets that still miss it */
1193 #if defined(cpu_list_id)
1194 cpu_list_id(f, cpu_fprintf, optarg);
1195 #elif defined(cpu_list)
1196 cpu_list(f, cpu_fprintf); /* deprecated */
1197 #endif
1200 CpuInfoList *qmp_query_cpus(Error **errp)
1202 CpuInfoList *head = NULL, *cur_item = NULL;
1203 CPUArchState *env;
1205 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1206 CpuInfoList *info;
1208 cpu_synchronize_state(env);
1210 info = g_malloc0(sizeof(*info));
1211 info->value = g_malloc0(sizeof(*info->value));
1212 info->value->CPU = env->cpu_index;
1213 info->value->current = (env == first_cpu);
1214 info->value->halted = env->halted;
1215 info->value->thread_id = env->thread_id;
1216 #if defined(TARGET_I386)
1217 info->value->has_pc = true;
1218 info->value->pc = env->eip + env->segs[R_CS].base;
1219 #elif defined(TARGET_PPC)
1220 info->value->has_nip = true;
1221 info->value->nip = env->nip;
1222 #elif defined(TARGET_SPARC)
1223 info->value->has_pc = true;
1224 info->value->pc = env->pc;
1225 info->value->has_npc = true;
1226 info->value->npc = env->npc;
1227 #elif defined(TARGET_MIPS)
1228 info->value->has_PC = true;
1229 info->value->PC = env->active_tc.PC;
1230 #endif
1232 /* XXX: waiting for the qapi to support GSList */
1233 if (!cur_item) {
1234 head = cur_item = info;
1235 } else {
1236 cur_item->next = info;
1237 cur_item = info;
1241 return head;
1244 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1245 bool has_cpu, int64_t cpu_index, Error **errp)
1247 FILE *f;
1248 uint32_t l;
1249 CPUArchState *env;
1250 uint8_t buf[1024];
1252 if (!has_cpu) {
1253 cpu_index = 0;
1256 for (env = first_cpu; env; env = env->next_cpu) {
1257 if (cpu_index == env->cpu_index) {
1258 break;
1262 if (env == NULL) {
1263 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1264 "a CPU number");
1265 return;
1268 f = fopen(filename, "wb");
1269 if (!f) {
1270 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1271 return;
1274 while (size != 0) {
1275 l = sizeof(buf);
1276 if (l > size)
1277 l = size;
1278 cpu_memory_rw_debug(env, addr, buf, l, 0);
1279 if (fwrite(buf, 1, l, f) != l) {
1280 error_set(errp, QERR_IO_ERROR);
1281 goto exit;
1283 addr += l;
1284 size -= l;
1287 exit:
1288 fclose(f);
1291 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1292 Error **errp)
1294 FILE *f;
1295 uint32_t l;
1296 uint8_t buf[1024];
1298 f = fopen(filename, "wb");
1299 if (!f) {
1300 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1301 return;
1304 while (size != 0) {
1305 l = sizeof(buf);
1306 if (l > size)
1307 l = size;
1308 cpu_physical_memory_rw(addr, buf, l, 0);
1309 if (fwrite(buf, 1, l, f) != l) {
1310 error_set(errp, QERR_IO_ERROR);
1311 goto exit;
1313 addr += l;
1314 size -= l;
1317 exit:
1318 fclose(f);
1321 void qmp_inject_nmi(Error **errp)
1323 #if defined(TARGET_I386)
1324 CPUArchState *env;
1326 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1327 if (!env->apic_state) {
1328 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1329 } else {
1330 apic_deliver_nmi(env->apic_state);
1333 #else
1334 error_set(errp, QERR_UNSUPPORTED);
1335 #endif