Merge remote-tracking branch 'remotes/afaerber/tags/qom-devices-for-peter' into staging
[qemu-kvm.git] / hw / i386 / pc.c
blob03dc007d8dd455fca6829e64226dbe32abbf5a2e
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/numa.h"
45 #include "sysemu/kvm.h"
46 #include "kvm_i386.h"
47 #include "hw/xen/xen.h"
48 #include "sysemu/block-backend.h"
49 #include "hw/block/block.h"
50 #include "ui/qemu-spice.h"
51 #include "exec/memory.h"
52 #include "exec/address-spaces.h"
53 #include "sysemu/arch_init.h"
54 #include "qemu/bitmap.h"
55 #include "qemu/config-file.h"
56 #include "hw/acpi/acpi.h"
57 #include "hw/acpi/cpu_hotplug.h"
58 #include "hw/cpu/icc_bus.h"
59 #include "hw/boards.h"
60 #include "hw/pci/pci_host.h"
61 #include "acpi-build.h"
62 #include "hw/mem/pc-dimm.h"
63 #include "trace.h"
64 #include "qapi/visitor.h"
65 #include "qapi-visit.h"
67 /* debug PC/ISA interrupts */
68 //#define DEBUG_IRQ
70 #ifdef DEBUG_IRQ
71 #define DPRINTF(fmt, ...) \
72 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
73 #else
74 #define DPRINTF(fmt, ...)
75 #endif
77 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
78 * (128K) and other BIOS datastructures (less than 4K reported to be used at
79 * the moment, 32K should be enough for a while). */
80 static unsigned acpi_data_size = 0x20000 + 0x8000;
81 void pc_set_legacy_acpi_data_size(void)
83 acpi_data_size = 0x10000;
86 #define BIOS_CFG_IOPORT 0x510
87 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
88 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
89 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
90 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
91 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93 #define E820_NR_ENTRIES 16
95 struct e820_entry {
96 uint64_t address;
97 uint64_t length;
98 uint32_t type;
99 } QEMU_PACKED __attribute((__aligned__(4)));
101 struct e820_table {
102 uint32_t count;
103 struct e820_entry entry[E820_NR_ENTRIES];
104 } QEMU_PACKED __attribute((__aligned__(4)));
106 static struct e820_table e820_reserve;
107 static struct e820_entry *e820_table;
108 static unsigned e820_entries;
109 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111 void gsi_handler(void *opaque, int n, int level)
113 GSIState *s = opaque;
115 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
116 if (n < ISA_NUM_IRQS) {
117 qemu_set_irq(s->i8259_irq[n], level);
119 qemu_set_irq(s->ioapic_irq[n], level);
122 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
123 unsigned size)
127 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
129 return 0xffffffffffffffffULL;
132 /* MSDOS compatibility mode FPU exception support */
133 static qemu_irq ferr_irq;
135 void pc_register_ferr_irq(qemu_irq irq)
137 ferr_irq = irq;
140 /* XXX: add IGNNE support */
141 void cpu_set_ferr(CPUX86State *s)
143 qemu_irq_raise(ferr_irq);
146 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
147 unsigned size)
149 qemu_irq_lower(ferr_irq);
152 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
154 return 0xffffffffffffffffULL;
157 /* TSC handling */
158 uint64_t cpu_get_tsc(CPUX86State *env)
160 return cpu_get_ticks();
163 /* SMM support */
165 static cpu_set_smm_t smm_set;
166 static void *smm_arg;
168 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
170 assert(smm_set == NULL);
171 assert(smm_arg == NULL);
172 smm_set = callback;
173 smm_arg = arg;
176 void cpu_smm_update(CPUX86State *env)
178 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
179 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
184 /* IRQ handling */
185 int cpu_get_pic_interrupt(CPUX86State *env)
187 X86CPU *cpu = x86_env_get_cpu(env);
188 int intno;
190 intno = apic_get_interrupt(cpu->apic_state);
191 if (intno >= 0) {
192 return intno;
194 /* read the irq from the PIC */
195 if (!apic_accept_pic_intr(cpu->apic_state)) {
196 return -1;
199 intno = pic_read_irq(isa_pic);
200 return intno;
203 static void pic_irq_request(void *opaque, int irq, int level)
205 CPUState *cs = first_cpu;
206 X86CPU *cpu = X86_CPU(cs);
208 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
209 if (cpu->apic_state) {
210 CPU_FOREACH(cs) {
211 cpu = X86_CPU(cs);
212 if (apic_accept_pic_intr(cpu->apic_state)) {
213 apic_deliver_pic_intr(cpu->apic_state, level);
216 } else {
217 if (level) {
218 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
219 } else {
220 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
225 /* PC cmos mappings */
227 #define REG_EQUIPMENT_BYTE 0x14
229 static int cmos_get_fd_drive_type(FDriveType fd0)
231 int val;
233 switch (fd0) {
234 case FDRIVE_DRV_144:
235 /* 1.44 Mb 3"5 drive */
236 val = 4;
237 break;
238 case FDRIVE_DRV_288:
239 /* 2.88 Mb 3"5 drive */
240 val = 5;
241 break;
242 case FDRIVE_DRV_120:
243 /* 1.2 Mb 5"5 drive */
244 val = 2;
245 break;
246 case FDRIVE_DRV_NONE:
247 default:
248 val = 0;
249 break;
251 return val;
254 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
255 int16_t cylinders, int8_t heads, int8_t sectors)
257 rtc_set_memory(s, type_ofs, 47);
258 rtc_set_memory(s, info_ofs, cylinders);
259 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
260 rtc_set_memory(s, info_ofs + 2, heads);
261 rtc_set_memory(s, info_ofs + 3, 0xff);
262 rtc_set_memory(s, info_ofs + 4, 0xff);
263 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
264 rtc_set_memory(s, info_ofs + 6, cylinders);
265 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
266 rtc_set_memory(s, info_ofs + 8, sectors);
269 /* convert boot_device letter to something recognizable by the bios */
270 static int boot_device2nibble(char boot_device)
272 switch(boot_device) {
273 case 'a':
274 case 'b':
275 return 0x01; /* floppy boot */
276 case 'c':
277 return 0x02; /* hard drive boot */
278 case 'd':
279 return 0x03; /* CD-ROM boot */
280 case 'n':
281 return 0x04; /* Network boot */
283 return 0;
286 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
288 #define PC_MAX_BOOT_DEVICES 3
289 int nbds, bds[3] = { 0, };
290 int i;
292 nbds = strlen(boot_device);
293 if (nbds > PC_MAX_BOOT_DEVICES) {
294 error_setg(errp, "Too many boot devices for PC");
295 return;
297 for (i = 0; i < nbds; i++) {
298 bds[i] = boot_device2nibble(boot_device[i]);
299 if (bds[i] == 0) {
300 error_setg(errp, "Invalid boot device for PC: '%c'",
301 boot_device[i]);
302 return;
305 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
306 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
309 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
311 set_boot_dev(opaque, boot_device, errp);
314 typedef struct pc_cmos_init_late_arg {
315 ISADevice *rtc_state;
316 BusState *idebus[2];
317 } pc_cmos_init_late_arg;
319 static void pc_cmos_init_late(void *opaque)
321 pc_cmos_init_late_arg *arg = opaque;
322 ISADevice *s = arg->rtc_state;
323 int16_t cylinders;
324 int8_t heads, sectors;
325 int val;
326 int i, trans;
328 val = 0;
329 if (ide_get_geometry(arg->idebus[0], 0,
330 &cylinders, &heads, &sectors) >= 0) {
331 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
332 val |= 0xf0;
334 if (ide_get_geometry(arg->idebus[0], 1,
335 &cylinders, &heads, &sectors) >= 0) {
336 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
337 val |= 0x0f;
339 rtc_set_memory(s, 0x12, val);
341 val = 0;
342 for (i = 0; i < 4; i++) {
343 /* NOTE: ide_get_geometry() returns the physical
344 geometry. It is always such that: 1 <= sects <= 63, 1
345 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
346 geometry can be different if a translation is done. */
347 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
348 &cylinders, &heads, &sectors) >= 0) {
349 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
350 assert((trans & ~3) == 0);
351 val |= trans << (i * 2);
354 rtc_set_memory(s, 0x39, val);
356 qemu_unregister_reset(pc_cmos_init_late, opaque);
359 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
360 const char *boot_device, MachineState *machine,
361 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
362 ISADevice *s)
364 int val, nb, i;
365 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
366 static pc_cmos_init_late_arg arg;
367 PCMachineState *pc_machine = PC_MACHINE(machine);
368 Error *local_err = NULL;
370 /* various important CMOS locations needed by PC/Bochs bios */
372 /* memory size */
373 /* base memory (first MiB) */
374 val = MIN(ram_size / 1024, 640);
375 rtc_set_memory(s, 0x15, val);
376 rtc_set_memory(s, 0x16, val >> 8);
377 /* extended memory (next 64MiB) */
378 if (ram_size > 1024 * 1024) {
379 val = (ram_size - 1024 * 1024) / 1024;
380 } else {
381 val = 0;
383 if (val > 65535)
384 val = 65535;
385 rtc_set_memory(s, 0x17, val);
386 rtc_set_memory(s, 0x18, val >> 8);
387 rtc_set_memory(s, 0x30, val);
388 rtc_set_memory(s, 0x31, val >> 8);
389 /* memory between 16MiB and 4GiB */
390 if (ram_size > 16 * 1024 * 1024) {
391 val = (ram_size - 16 * 1024 * 1024) / 65536;
392 } else {
393 val = 0;
395 if (val > 65535)
396 val = 65535;
397 rtc_set_memory(s, 0x34, val);
398 rtc_set_memory(s, 0x35, val >> 8);
399 /* memory above 4GiB */
400 val = above_4g_mem_size / 65536;
401 rtc_set_memory(s, 0x5b, val);
402 rtc_set_memory(s, 0x5c, val >> 8);
403 rtc_set_memory(s, 0x5d, val >> 16);
405 /* set the number of CPU */
406 rtc_set_memory(s, 0x5f, smp_cpus - 1);
408 object_property_add_link(OBJECT(machine), "rtc_state",
409 TYPE_ISA_DEVICE,
410 (Object **)&pc_machine->rtc,
411 object_property_allow_set_link,
412 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
413 object_property_set_link(OBJECT(machine), OBJECT(s),
414 "rtc_state", &error_abort);
416 set_boot_dev(s, boot_device, &local_err);
417 if (local_err) {
418 error_report_err(local_err);
419 exit(1);
422 /* floppy type */
423 if (floppy) {
424 for (i = 0; i < 2; i++) {
425 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
428 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
429 cmos_get_fd_drive_type(fd_type[1]);
430 rtc_set_memory(s, 0x10, val);
432 val = 0;
433 nb = 0;
434 if (fd_type[0] < FDRIVE_DRV_NONE) {
435 nb++;
437 if (fd_type[1] < FDRIVE_DRV_NONE) {
438 nb++;
440 switch (nb) {
441 case 0:
442 break;
443 case 1:
444 val |= 0x01; /* 1 drive, ready for boot */
445 break;
446 case 2:
447 val |= 0x41; /* 2 drives, ready for boot */
448 break;
450 val |= 0x02; /* FPU is there */
451 val |= 0x04; /* PS/2 mouse installed */
452 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
454 /* hard drives */
455 arg.rtc_state = s;
456 arg.idebus[0] = idebus0;
457 arg.idebus[1] = idebus1;
458 qemu_register_reset(pc_cmos_init_late, &arg);
461 #define TYPE_PORT92 "port92"
462 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
464 /* port 92 stuff: could be split off */
465 typedef struct Port92State {
466 ISADevice parent_obj;
468 MemoryRegion io;
469 uint8_t outport;
470 qemu_irq *a20_out;
471 } Port92State;
473 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
474 unsigned size)
476 Port92State *s = opaque;
477 int oldval = s->outport;
479 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
480 s->outport = val;
481 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
482 if ((val & 1) && !(oldval & 1)) {
483 qemu_system_reset_request();
487 static uint64_t port92_read(void *opaque, hwaddr addr,
488 unsigned size)
490 Port92State *s = opaque;
491 uint32_t ret;
493 ret = s->outport;
494 DPRINTF("port92: read 0x%02x\n", ret);
495 return ret;
498 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
500 Port92State *s = PORT92(dev);
502 s->a20_out = a20_out;
505 static const VMStateDescription vmstate_port92_isa = {
506 .name = "port92",
507 .version_id = 1,
508 .minimum_version_id = 1,
509 .fields = (VMStateField[]) {
510 VMSTATE_UINT8(outport, Port92State),
511 VMSTATE_END_OF_LIST()
515 static void port92_reset(DeviceState *d)
517 Port92State *s = PORT92(d);
519 s->outport &= ~1;
522 static const MemoryRegionOps port92_ops = {
523 .read = port92_read,
524 .write = port92_write,
525 .impl = {
526 .min_access_size = 1,
527 .max_access_size = 1,
529 .endianness = DEVICE_LITTLE_ENDIAN,
532 static void port92_initfn(Object *obj)
534 Port92State *s = PORT92(obj);
536 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
538 s->outport = 0;
541 static void port92_realizefn(DeviceState *dev, Error **errp)
543 ISADevice *isadev = ISA_DEVICE(dev);
544 Port92State *s = PORT92(dev);
546 isa_register_ioport(isadev, &s->io, 0x92);
549 static void port92_class_initfn(ObjectClass *klass, void *data)
551 DeviceClass *dc = DEVICE_CLASS(klass);
553 dc->realize = port92_realizefn;
554 dc->reset = port92_reset;
555 dc->vmsd = &vmstate_port92_isa;
557 * Reason: unlike ordinary ISA devices, this one needs additional
558 * wiring: its A20 output line needs to be wired up by
559 * port92_init().
561 dc->cannot_instantiate_with_device_add_yet = true;
564 static const TypeInfo port92_info = {
565 .name = TYPE_PORT92,
566 .parent = TYPE_ISA_DEVICE,
567 .instance_size = sizeof(Port92State),
568 .instance_init = port92_initfn,
569 .class_init = port92_class_initfn,
572 static void port92_register_types(void)
574 type_register_static(&port92_info);
577 type_init(port92_register_types)
579 static void handle_a20_line_change(void *opaque, int irq, int level)
581 X86CPU *cpu = opaque;
583 /* XXX: send to all CPUs ? */
584 /* XXX: add logic to handle multiple A20 line sources */
585 x86_cpu_set_a20(cpu, level);
588 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
590 int index = le32_to_cpu(e820_reserve.count);
591 struct e820_entry *entry;
593 if (type != E820_RAM) {
594 /* old FW_CFG_E820_TABLE entry -- reservations only */
595 if (index >= E820_NR_ENTRIES) {
596 return -EBUSY;
598 entry = &e820_reserve.entry[index++];
600 entry->address = cpu_to_le64(address);
601 entry->length = cpu_to_le64(length);
602 entry->type = cpu_to_le32(type);
604 e820_reserve.count = cpu_to_le32(index);
607 /* new "etc/e820" file -- include ram too */
608 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
609 e820_table[e820_entries].address = cpu_to_le64(address);
610 e820_table[e820_entries].length = cpu_to_le64(length);
611 e820_table[e820_entries].type = cpu_to_le32(type);
612 e820_entries++;
614 return e820_entries;
617 int e820_get_num_entries(void)
619 return e820_entries;
622 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
624 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
625 *address = le64_to_cpu(e820_table[idx].address);
626 *length = le64_to_cpu(e820_table[idx].length);
627 return true;
629 return false;
632 /* Calculates the limit to CPU APIC ID values
634 * This function returns the limit for the APIC ID value, so that all
635 * CPU APIC IDs are < pc_apic_id_limit().
637 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
639 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
641 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
644 static FWCfgState *bochs_bios_init(void)
646 FWCfgState *fw_cfg;
647 uint8_t *smbios_tables, *smbios_anchor;
648 size_t smbios_tables_len, smbios_anchor_len;
649 uint64_t *numa_fw_cfg;
650 int i, j;
651 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
653 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
654 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
656 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
657 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
658 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
659 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
660 * may see".
662 * So, this means we must not use max_cpus, here, but the maximum possible
663 * APIC ID value, plus one.
665 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
666 * the APIC ID, not the "CPU index"
668 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
669 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
670 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
671 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
672 acpi_tables, acpi_tables_len);
673 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
675 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
676 if (smbios_tables) {
677 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
678 smbios_tables, smbios_tables_len);
681 smbios_get_tables(&smbios_tables, &smbios_tables_len,
682 &smbios_anchor, &smbios_anchor_len);
683 if (smbios_anchor) {
684 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
685 smbios_tables, smbios_tables_len);
686 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
687 smbios_anchor, smbios_anchor_len);
690 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
691 &e820_reserve, sizeof(e820_reserve));
692 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
693 sizeof(struct e820_entry) * e820_entries);
695 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
696 /* allocate memory for the NUMA channel: one (64bit) word for the number
697 * of nodes, one word for each VCPU->node and one word for each node to
698 * hold the amount of memory.
700 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
701 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
702 for (i = 0; i < max_cpus; i++) {
703 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
704 assert(apic_id < apic_id_limit);
705 for (j = 0; j < nb_numa_nodes; j++) {
706 if (test_bit(i, numa_info[j].node_cpu)) {
707 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
708 break;
712 for (i = 0; i < nb_numa_nodes; i++) {
713 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
715 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
716 (1 + apic_id_limit + nb_numa_nodes) *
717 sizeof(*numa_fw_cfg));
719 return fw_cfg;
722 static long get_file_size(FILE *f)
724 long where, size;
726 /* XXX: on Unix systems, using fstat() probably makes more sense */
728 where = ftell(f);
729 fseek(f, 0, SEEK_END);
730 size = ftell(f);
731 fseek(f, where, SEEK_SET);
733 return size;
736 static void load_linux(FWCfgState *fw_cfg,
737 const char *kernel_filename,
738 const char *initrd_filename,
739 const char *kernel_cmdline,
740 hwaddr max_ram_size)
742 uint16_t protocol;
743 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
744 uint32_t initrd_max;
745 uint8_t header[8192], *setup, *kernel, *initrd_data;
746 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
747 FILE *f;
748 char *vmode;
750 /* Align to 16 bytes as a paranoia measure */
751 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
753 /* load the kernel header */
754 f = fopen(kernel_filename, "rb");
755 if (!f || !(kernel_size = get_file_size(f)) ||
756 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
757 MIN(ARRAY_SIZE(header), kernel_size)) {
758 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
759 kernel_filename, strerror(errno));
760 exit(1);
763 /* kernel protocol version */
764 #if 0
765 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
766 #endif
767 if (ldl_p(header+0x202) == 0x53726448) {
768 protocol = lduw_p(header+0x206);
769 } else {
770 /* This looks like a multiboot kernel. If it is, let's stop
771 treating it like a Linux kernel. */
772 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
773 kernel_cmdline, kernel_size, header)) {
774 return;
776 protocol = 0;
779 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
780 /* Low kernel */
781 real_addr = 0x90000;
782 cmdline_addr = 0x9a000 - cmdline_size;
783 prot_addr = 0x10000;
784 } else if (protocol < 0x202) {
785 /* High but ancient kernel */
786 real_addr = 0x90000;
787 cmdline_addr = 0x9a000 - cmdline_size;
788 prot_addr = 0x100000;
789 } else {
790 /* High and recent kernel */
791 real_addr = 0x10000;
792 cmdline_addr = 0x20000;
793 prot_addr = 0x100000;
796 #if 0
797 fprintf(stderr,
798 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
799 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
800 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
801 real_addr,
802 cmdline_addr,
803 prot_addr);
804 #endif
806 /* highest address for loading the initrd */
807 if (protocol >= 0x203) {
808 initrd_max = ldl_p(header+0x22c);
809 } else {
810 initrd_max = 0x37ffffff;
813 if (initrd_max >= max_ram_size - acpi_data_size) {
814 initrd_max = max_ram_size - acpi_data_size - 1;
817 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
818 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
819 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
821 if (protocol >= 0x202) {
822 stl_p(header+0x228, cmdline_addr);
823 } else {
824 stw_p(header+0x20, 0xA33F);
825 stw_p(header+0x22, cmdline_addr-real_addr);
828 /* handle vga= parameter */
829 vmode = strstr(kernel_cmdline, "vga=");
830 if (vmode) {
831 unsigned int video_mode;
832 /* skip "vga=" */
833 vmode += 4;
834 if (!strncmp(vmode, "normal", 6)) {
835 video_mode = 0xffff;
836 } else if (!strncmp(vmode, "ext", 3)) {
837 video_mode = 0xfffe;
838 } else if (!strncmp(vmode, "ask", 3)) {
839 video_mode = 0xfffd;
840 } else {
841 video_mode = strtol(vmode, NULL, 0);
843 stw_p(header+0x1fa, video_mode);
846 /* loader type */
847 /* High nybble = B reserved for QEMU; low nybble is revision number.
848 If this code is substantially changed, you may want to consider
849 incrementing the revision. */
850 if (protocol >= 0x200) {
851 header[0x210] = 0xB0;
853 /* heap */
854 if (protocol >= 0x201) {
855 header[0x211] |= 0x80; /* CAN_USE_HEAP */
856 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
859 /* load initrd */
860 if (initrd_filename) {
861 if (protocol < 0x200) {
862 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
863 exit(1);
866 initrd_size = get_image_size(initrd_filename);
867 if (initrd_size < 0) {
868 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
869 initrd_filename, strerror(errno));
870 exit(1);
873 initrd_addr = (initrd_max-initrd_size) & ~4095;
875 initrd_data = g_malloc(initrd_size);
876 load_image(initrd_filename, initrd_data);
878 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
879 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
880 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
882 stl_p(header+0x218, initrd_addr);
883 stl_p(header+0x21c, initrd_size);
886 /* load kernel and setup */
887 setup_size = header[0x1f1];
888 if (setup_size == 0) {
889 setup_size = 4;
891 setup_size = (setup_size+1)*512;
892 kernel_size -= setup_size;
894 setup = g_malloc(setup_size);
895 kernel = g_malloc(kernel_size);
896 fseek(f, 0, SEEK_SET);
897 if (fread(setup, 1, setup_size, f) != setup_size) {
898 fprintf(stderr, "fread() failed\n");
899 exit(1);
901 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
902 fprintf(stderr, "fread() failed\n");
903 exit(1);
905 fclose(f);
906 memcpy(setup, header, MIN(sizeof(header), setup_size));
908 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
909 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
910 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
912 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
913 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
914 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
916 option_rom[nb_option_roms].name = "linuxboot.bin";
917 option_rom[nb_option_roms].bootindex = 0;
918 nb_option_roms++;
921 #define NE2000_NB_MAX 6
923 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
924 0x280, 0x380 };
925 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
927 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
929 static int nb_ne2k = 0;
931 if (nb_ne2k == NE2000_NB_MAX)
932 return;
933 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
934 ne2000_irq[nb_ne2k], nd);
935 nb_ne2k++;
938 DeviceState *cpu_get_current_apic(void)
940 if (current_cpu) {
941 X86CPU *cpu = X86_CPU(current_cpu);
942 return cpu->apic_state;
943 } else {
944 return NULL;
948 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
950 X86CPU *cpu = opaque;
952 if (level) {
953 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
957 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
958 DeviceState *icc_bridge, Error **errp)
960 X86CPU *cpu;
961 Error *local_err = NULL;
963 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
964 if (local_err != NULL) {
965 error_propagate(errp, local_err);
966 return NULL;
969 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
970 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
972 if (local_err) {
973 error_propagate(errp, local_err);
974 object_unref(OBJECT(cpu));
975 cpu = NULL;
977 return cpu;
980 static const char *current_cpu_model;
982 void pc_hot_add_cpu(const int64_t id, Error **errp)
984 DeviceState *icc_bridge;
985 int64_t apic_id = x86_cpu_apic_id_from_index(id);
987 if (id < 0) {
988 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
989 return;
992 if (cpu_exists(apic_id)) {
993 error_setg(errp, "Unable to add CPU: %" PRIi64
994 ", it already exists", id);
995 return;
998 if (id >= max_cpus) {
999 error_setg(errp, "Unable to add CPU: %" PRIi64
1000 ", max allowed: %d", id, max_cpus - 1);
1001 return;
1004 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1005 error_setg(errp, "Unable to add CPU: %" PRIi64
1006 ", resulting APIC ID (%" PRIi64 ") is too large",
1007 id, apic_id);
1008 return;
1011 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1012 TYPE_ICC_BRIDGE, NULL));
1013 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1016 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1018 int i;
1019 X86CPU *cpu = NULL;
1020 Error *error = NULL;
1021 unsigned long apic_id_limit;
1023 /* init CPUs */
1024 if (cpu_model == NULL) {
1025 #ifdef TARGET_X86_64
1026 cpu_model = "qemu64";
1027 #else
1028 cpu_model = "qemu32";
1029 #endif
1031 current_cpu_model = cpu_model;
1033 apic_id_limit = pc_apic_id_limit(max_cpus);
1034 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1035 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1036 apic_id_limit - 1);
1037 exit(1);
1040 for (i = 0; i < smp_cpus; i++) {
1041 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1042 icc_bridge, &error);
1043 if (error) {
1044 error_report_err(error);
1045 exit(1);
1049 /* map APIC MMIO area if CPU has APIC */
1050 if (cpu && cpu->apic_state) {
1051 /* XXX: what if the base changes? */
1052 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1053 APIC_DEFAULT_ADDRESS, 0x1000);
1056 /* tell smbios about cpuid version and features */
1057 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1060 /* pci-info ROM file. Little endian format */
1061 typedef struct PcRomPciInfo {
1062 uint64_t w32_min;
1063 uint64_t w32_max;
1064 uint64_t w64_min;
1065 uint64_t w64_max;
1066 } PcRomPciInfo;
1068 typedef struct PcGuestInfoState {
1069 PcGuestInfo info;
1070 Notifier machine_done;
1071 } PcGuestInfoState;
1073 static
1074 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1076 PcGuestInfoState *guest_info_state = container_of(notifier,
1077 PcGuestInfoState,
1078 machine_done);
1079 acpi_setup(&guest_info_state->info);
1082 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1083 ram_addr_t above_4g_mem_size)
1085 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1086 PcGuestInfo *guest_info = &guest_info_state->info;
1087 int i, j;
1089 guest_info->ram_size_below_4g = below_4g_mem_size;
1090 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1091 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1092 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1093 guest_info->numa_nodes = nb_numa_nodes;
1094 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1095 sizeof *guest_info->node_mem);
1096 for (i = 0; i < nb_numa_nodes; i++) {
1097 guest_info->node_mem[i] = numa_info[i].node_mem;
1100 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1101 sizeof *guest_info->node_cpu);
1103 for (i = 0; i < max_cpus; i++) {
1104 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1105 assert(apic_id < guest_info->apic_id_limit);
1106 for (j = 0; j < nb_numa_nodes; j++) {
1107 if (test_bit(i, numa_info[j].node_cpu)) {
1108 guest_info->node_cpu[apic_id] = j;
1109 break;
1114 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1115 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1116 return guest_info;
1119 /* setup pci memory address space mapping into system address space */
1120 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1121 MemoryRegion *pci_address_space)
1123 /* Set to lower priority than RAM */
1124 memory_region_add_subregion_overlap(system_memory, 0x0,
1125 pci_address_space, -1);
1128 void pc_acpi_init(const char *default_dsdt)
1130 char *filename;
1132 if (acpi_tables != NULL) {
1133 /* manually set via -acpitable, leave it alone */
1134 return;
1137 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1138 if (filename == NULL) {
1139 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1140 } else {
1141 char *arg;
1142 QemuOpts *opts;
1143 Error *err = NULL;
1145 arg = g_strdup_printf("file=%s", filename);
1147 /* creates a deep copy of "arg" */
1148 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1149 g_assert(opts != NULL);
1151 acpi_table_add_builtin(opts, &err);
1152 if (err) {
1153 error_report("WARNING: failed to load %s: %s", filename,
1154 error_get_pretty(err));
1155 error_free(err);
1157 g_free(arg);
1158 g_free(filename);
1162 FWCfgState *xen_load_linux(const char *kernel_filename,
1163 const char *kernel_cmdline,
1164 const char *initrd_filename,
1165 ram_addr_t below_4g_mem_size,
1166 PcGuestInfo *guest_info)
1168 int i;
1169 FWCfgState *fw_cfg;
1171 assert(kernel_filename != NULL);
1173 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1174 rom_set_fw(fw_cfg);
1176 load_linux(fw_cfg, kernel_filename, initrd_filename,
1177 kernel_cmdline, below_4g_mem_size);
1178 for (i = 0; i < nb_option_roms; i++) {
1179 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1180 !strcmp(option_rom[i].name, "multiboot.bin"));
1181 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1183 guest_info->fw_cfg = fw_cfg;
1184 return fw_cfg;
1187 FWCfgState *pc_memory_init(MachineState *machine,
1188 MemoryRegion *system_memory,
1189 ram_addr_t below_4g_mem_size,
1190 ram_addr_t above_4g_mem_size,
1191 MemoryRegion *rom_memory,
1192 MemoryRegion **ram_memory,
1193 PcGuestInfo *guest_info)
1195 int linux_boot, i;
1196 MemoryRegion *ram, *option_rom_mr;
1197 MemoryRegion *ram_below_4g, *ram_above_4g;
1198 FWCfgState *fw_cfg;
1199 PCMachineState *pcms = PC_MACHINE(machine);
1201 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1203 linux_boot = (machine->kernel_filename != NULL);
1205 /* Allocate RAM. We allocate it as a single memory region and use
1206 * aliases to address portions of it, mostly for backwards compatibility
1207 * with older qemus that used qemu_ram_alloc().
1209 ram = g_malloc(sizeof(*ram));
1210 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1211 machine->ram_size);
1212 *ram_memory = ram;
1213 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1214 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1215 0, below_4g_mem_size);
1216 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1217 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1218 if (above_4g_mem_size > 0) {
1219 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1220 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1221 below_4g_mem_size, above_4g_mem_size);
1222 memory_region_add_subregion(system_memory, 0x100000000ULL,
1223 ram_above_4g);
1224 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1227 if (!guest_info->has_reserved_memory &&
1228 (machine->ram_slots ||
1229 (machine->maxram_size > machine->ram_size))) {
1230 MachineClass *mc = MACHINE_GET_CLASS(machine);
1232 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1233 mc->name);
1234 exit(EXIT_FAILURE);
1237 /* initialize hotplug memory address space */
1238 if (guest_info->has_reserved_memory &&
1239 (machine->ram_size < machine->maxram_size)) {
1240 ram_addr_t hotplug_mem_size =
1241 machine->maxram_size - machine->ram_size;
1243 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1244 error_report("unsupported amount of memory slots: %"PRIu64,
1245 machine->ram_slots);
1246 exit(EXIT_FAILURE);
1249 pcms->hotplug_memory_base =
1250 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1252 if (pcms->enforce_aligned_dimm) {
1253 /* size hotplug region assuming 1G page max alignment per slot */
1254 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1257 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1258 hotplug_mem_size) {
1259 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1260 machine->maxram_size);
1261 exit(EXIT_FAILURE);
1264 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1265 "hotplug-memory", hotplug_mem_size);
1266 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1267 &pcms->hotplug_memory);
1270 /* Initialize PC system firmware */
1271 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1273 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1274 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1275 &error_abort);
1276 vmstate_register_ram_global(option_rom_mr);
1277 memory_region_add_subregion_overlap(rom_memory,
1278 PC_ROM_MIN_VGA,
1279 option_rom_mr,
1282 fw_cfg = bochs_bios_init();
1283 rom_set_fw(fw_cfg);
1285 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1286 uint64_t *val = g_malloc(sizeof(*val));
1287 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1288 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1291 if (linux_boot) {
1292 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1293 machine->kernel_cmdline, below_4g_mem_size);
1296 for (i = 0; i < nb_option_roms; i++) {
1297 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1299 guest_info->fw_cfg = fw_cfg;
1300 return fw_cfg;
1303 qemu_irq *pc_allocate_cpu_irq(void)
1305 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1308 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1310 DeviceState *dev = NULL;
1312 if (pci_bus) {
1313 PCIDevice *pcidev = pci_vga_init(pci_bus);
1314 dev = pcidev ? &pcidev->qdev : NULL;
1315 } else if (isa_bus) {
1316 ISADevice *isadev = isa_vga_init(isa_bus);
1317 dev = isadev ? DEVICE(isadev) : NULL;
1319 return dev;
1322 static void cpu_request_exit(void *opaque, int irq, int level)
1324 CPUState *cpu = current_cpu;
1326 if (cpu && level) {
1327 cpu_exit(cpu);
1331 static const MemoryRegionOps ioport80_io_ops = {
1332 .write = ioport80_write,
1333 .read = ioport80_read,
1334 .endianness = DEVICE_NATIVE_ENDIAN,
1335 .impl = {
1336 .min_access_size = 1,
1337 .max_access_size = 1,
1341 static const MemoryRegionOps ioportF0_io_ops = {
1342 .write = ioportF0_write,
1343 .read = ioportF0_read,
1344 .endianness = DEVICE_NATIVE_ENDIAN,
1345 .impl = {
1346 .min_access_size = 1,
1347 .max_access_size = 1,
1351 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1352 ISADevice **rtc_state,
1353 ISADevice **floppy,
1354 bool no_vmport,
1355 uint32 hpet_irqs)
1357 int i;
1358 DriveInfo *fd[MAX_FD];
1359 DeviceState *hpet = NULL;
1360 int pit_isa_irq = 0;
1361 qemu_irq pit_alt_irq = NULL;
1362 qemu_irq rtc_irq = NULL;
1363 qemu_irq *a20_line;
1364 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1365 qemu_irq *cpu_exit_irq;
1366 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1367 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1369 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1370 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1372 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1373 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1376 * Check if an HPET shall be created.
1378 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1379 * when the HPET wants to take over. Thus we have to disable the latter.
1381 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1382 /* In order to set property, here not using sysbus_try_create_simple */
1383 hpet = qdev_try_create(NULL, TYPE_HPET);
1384 if (hpet) {
1385 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1386 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1387 * IRQ8 and IRQ2.
1389 uint8_t compat = object_property_get_int(OBJECT(hpet),
1390 HPET_INTCAP, NULL);
1391 if (!compat) {
1392 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1394 qdev_init_nofail(hpet);
1395 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1397 for (i = 0; i < GSI_NUM_PINS; i++) {
1398 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1400 pit_isa_irq = -1;
1401 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1402 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1405 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1407 qemu_register_boot_set(pc_boot_set, *rtc_state);
1409 if (!xen_enabled()) {
1410 if (kvm_irqchip_in_kernel()) {
1411 pit = kvm_pit_init(isa_bus, 0x40);
1412 } else {
1413 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1415 if (hpet) {
1416 /* connect PIT to output control line of the HPET */
1417 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1419 pcspk_init(isa_bus, pit);
1422 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1423 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1425 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1426 i8042 = isa_create_simple(isa_bus, "i8042");
1427 i8042_setup_a20_line(i8042, &a20_line[0]);
1428 if (!no_vmport) {
1429 vmport_init(isa_bus);
1430 vmmouse = isa_try_create(isa_bus, "vmmouse");
1431 } else {
1432 vmmouse = NULL;
1434 if (vmmouse) {
1435 DeviceState *dev = DEVICE(vmmouse);
1436 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1437 qdev_init_nofail(dev);
1439 port92 = isa_create_simple(isa_bus, "port92");
1440 port92_init(port92, &a20_line[1]);
1442 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1443 DMA_init(0, cpu_exit_irq);
1445 for(i = 0; i < MAX_FD; i++) {
1446 fd[i] = drive_get(IF_FLOPPY, 0, i);
1448 *floppy = fdctrl_init_isa(isa_bus, fd);
1451 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1453 int i;
1455 for (i = 0; i < nb_nics; i++) {
1456 NICInfo *nd = &nd_table[i];
1458 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1459 pc_init_ne2k_isa(isa_bus, nd);
1460 } else {
1461 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1466 void pc_pci_device_init(PCIBus *pci_bus)
1468 int max_bus;
1469 int bus;
1471 max_bus = drive_get_max_bus(IF_SCSI);
1472 for (bus = 0; bus <= max_bus; bus++) {
1473 pci_create_simple(pci_bus, -1, "lsi53c895a");
1477 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1479 DeviceState *dev;
1480 SysBusDevice *d;
1481 unsigned int i;
1483 if (kvm_irqchip_in_kernel()) {
1484 dev = qdev_create(NULL, "kvm-ioapic");
1485 } else {
1486 dev = qdev_create(NULL, "ioapic");
1488 if (parent_name) {
1489 object_property_add_child(object_resolve_path(parent_name, NULL),
1490 "ioapic", OBJECT(dev), NULL);
1492 qdev_init_nofail(dev);
1493 d = SYS_BUS_DEVICE(dev);
1494 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1496 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1497 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1501 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1503 MachineClass *mc = MACHINE_CLASS(oc);
1504 QEMUMachine *qm = data;
1506 mc->family = qm->family;
1507 mc->name = qm->name;
1508 mc->alias = qm->alias;
1509 mc->desc = qm->desc;
1510 mc->init = qm->init;
1511 mc->reset = qm->reset;
1512 mc->hot_add_cpu = qm->hot_add_cpu;
1513 mc->kvm_type = qm->kvm_type;
1514 mc->block_default_type = qm->block_default_type;
1515 mc->units_per_default_bus = qm->units_per_default_bus;
1516 mc->max_cpus = qm->max_cpus;
1517 mc->no_serial = qm->no_serial;
1518 mc->no_parallel = qm->no_parallel;
1519 mc->use_virtcon = qm->use_virtcon;
1520 mc->use_sclp = qm->use_sclp;
1521 mc->no_floppy = qm->no_floppy;
1522 mc->no_cdrom = qm->no_cdrom;
1523 mc->no_sdcard = qm->no_sdcard;
1524 mc->is_default = qm->is_default;
1525 mc->default_machine_opts = qm->default_machine_opts;
1526 mc->default_boot_order = qm->default_boot_order;
1527 mc->default_display = qm->default_display;
1528 mc->compat_props = qm->compat_props;
1529 mc->hw_version = qm->hw_version;
1532 void qemu_register_pc_machine(QEMUMachine *m)
1534 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1535 TypeInfo ti = {
1536 .name = name,
1537 .parent = TYPE_PC_MACHINE,
1538 .class_init = pc_generic_machine_class_init,
1539 .class_data = (void *)m,
1542 type_register(&ti);
1543 g_free(name);
1546 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1547 DeviceState *dev, Error **errp)
1549 int slot;
1550 HotplugHandlerClass *hhc;
1551 Error *local_err = NULL;
1552 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1553 MachineState *machine = MACHINE(hotplug_dev);
1554 PCDIMMDevice *dimm = PC_DIMM(dev);
1555 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1556 MemoryRegion *mr = ddc->get_memory_region(dimm);
1557 uint64_t existing_dimms_capacity = 0;
1558 uint64_t align = TARGET_PAGE_SIZE;
1559 uint64_t addr;
1561 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1562 if (local_err) {
1563 goto out;
1566 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1567 align = memory_region_get_alignment(mr);
1570 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1571 memory_region_size(&pcms->hotplug_memory),
1572 !addr ? NULL : &addr, align,
1573 memory_region_size(mr), &local_err);
1574 if (local_err) {
1575 goto out;
1578 existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1579 if (local_err) {
1580 goto out;
1583 if (existing_dimms_capacity + memory_region_size(mr) >
1584 machine->maxram_size - machine->ram_size) {
1585 error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1586 " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1587 existing_dimms_capacity,
1588 machine->maxram_size - machine->ram_size);
1589 goto out;
1592 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1593 if (local_err) {
1594 goto out;
1596 trace_mhp_pc_dimm_assigned_address(addr);
1598 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1599 if (local_err) {
1600 goto out;
1603 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1604 machine->ram_slots, &local_err);
1605 if (local_err) {
1606 goto out;
1608 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1609 if (local_err) {
1610 goto out;
1612 trace_mhp_pc_dimm_assigned_slot(slot);
1614 if (!pcms->acpi_dev) {
1615 error_setg(&local_err,
1616 "memory hotplug is not enabled: missing acpi device");
1617 goto out;
1620 if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1621 error_setg(&local_err, "hypervisor has no free memory slots left");
1622 goto out;
1625 memory_region_add_subregion(&pcms->hotplug_memory,
1626 addr - pcms->hotplug_memory_base, mr);
1627 vmstate_register_ram(mr, dev);
1629 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1630 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1631 out:
1632 error_propagate(errp, local_err);
1635 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1636 DeviceState *dev, Error **errp)
1638 HotplugHandlerClass *hhc;
1639 Error *local_err = NULL;
1640 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1642 if (!dev->hotplugged) {
1643 goto out;
1646 if (!pcms->acpi_dev) {
1647 error_setg(&local_err,
1648 "cpu hotplug is not enabled: missing acpi device");
1649 goto out;
1652 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1653 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1654 if (local_err) {
1655 goto out;
1658 /* increment the number of CPUs */
1659 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1660 out:
1661 error_propagate(errp, local_err);
1664 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1665 DeviceState *dev, Error **errp)
1667 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1668 pc_dimm_plug(hotplug_dev, dev, errp);
1669 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1670 pc_cpu_plug(hotplug_dev, dev, errp);
1674 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1675 DeviceState *dev)
1677 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1679 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1680 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1681 return HOTPLUG_HANDLER(machine);
1684 return pcmc->get_hotplug_handler ?
1685 pcmc->get_hotplug_handler(machine, dev) : NULL;
1688 static void
1689 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1690 const char *name, Error **errp)
1692 PCMachineState *pcms = PC_MACHINE(obj);
1693 int64_t value = memory_region_size(&pcms->hotplug_memory);
1695 visit_type_int(v, &value, name, errp);
1698 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1699 void *opaque, const char *name,
1700 Error **errp)
1702 PCMachineState *pcms = PC_MACHINE(obj);
1703 uint64_t value = pcms->max_ram_below_4g;
1705 visit_type_size(v, &value, name, errp);
1708 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1709 void *opaque, const char *name,
1710 Error **errp)
1712 PCMachineState *pcms = PC_MACHINE(obj);
1713 Error *error = NULL;
1714 uint64_t value;
1716 visit_type_size(v, &value, name, &error);
1717 if (error) {
1718 error_propagate(errp, error);
1719 return;
1721 if (value > (1ULL << 32)) {
1722 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1723 "Machine option 'max-ram-below-4g=%"PRIu64
1724 "' expects size less than or equal to 4G", value);
1725 error_propagate(errp, error);
1726 return;
1729 if (value < (1ULL << 20)) {
1730 error_report("Warning: small max_ram_below_4g(%"PRIu64
1731 ") less than 1M. BIOS may not work..",
1732 value);
1735 pcms->max_ram_below_4g = value;
1738 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1739 const char *name, Error **errp)
1741 PCMachineState *pcms = PC_MACHINE(obj);
1742 OnOffAuto vmport = pcms->vmport;
1744 visit_type_OnOffAuto(v, &vmport, name, errp);
1747 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1748 const char *name, Error **errp)
1750 PCMachineState *pcms = PC_MACHINE(obj);
1752 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1755 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1757 PCMachineState *pcms = PC_MACHINE(obj);
1759 return pcms->enforce_aligned_dimm;
1762 static void pc_machine_initfn(Object *obj)
1764 PCMachineState *pcms = PC_MACHINE(obj);
1766 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1767 pc_machine_get_hotplug_memory_region_size,
1768 NULL, NULL, NULL, NULL);
1770 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1771 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1772 pc_machine_get_max_ram_below_4g,
1773 pc_machine_set_max_ram_below_4g,
1774 NULL, NULL, NULL);
1775 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1776 "Maximum ram below the 4G boundary (32bit boundary)",
1777 NULL);
1779 pcms->vmport = ON_OFF_AUTO_AUTO;
1780 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1781 pc_machine_get_vmport,
1782 pc_machine_set_vmport,
1783 NULL, NULL, NULL);
1784 object_property_set_description(obj, PC_MACHINE_VMPORT,
1785 "Enable vmport (pc & q35)",
1786 NULL);
1788 pcms->enforce_aligned_dimm = true;
1789 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1790 pc_machine_get_aligned_dimm,
1791 NULL, NULL);
1794 static void pc_machine_class_init(ObjectClass *oc, void *data)
1796 MachineClass *mc = MACHINE_CLASS(oc);
1797 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1798 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1800 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1801 mc->get_hotplug_handler = pc_get_hotpug_handler;
1802 hc->plug = pc_machine_device_plug_cb;
1805 static const TypeInfo pc_machine_info = {
1806 .name = TYPE_PC_MACHINE,
1807 .parent = TYPE_MACHINE,
1808 .abstract = true,
1809 .instance_size = sizeof(PCMachineState),
1810 .instance_init = pc_machine_initfn,
1811 .class_size = sizeof(PCMachineClass),
1812 .class_init = pc_machine_class_init,
1813 .interfaces = (InterfaceInfo[]) {
1814 { TYPE_HOTPLUG_HANDLER },
1819 static void pc_machine_register_types(void)
1821 type_register_static(&pc_machine_info);
1824 type_init(pc_machine_register_types)