2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "hw/arm/arm.h"
26 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
30 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
32 struct kvm_vcpu_init
*init
)
34 int ret
, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
36 kvmfd
= qemu_open("/dev/kvm", O_RDWR
);
40 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, 0);
44 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
49 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, init
);
51 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
56 /* Old kernel which doesn't know about the
57 * PREFERRED_TARGET ioctl: we know it will only support
58 * creating one kind of guest CPU which is its preferred
61 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
62 init
->target
= *cpus_to_try
++;
63 memset(init
->features
, 0, sizeof(init
->features
));
64 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
94 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
98 for (i
= 2; i
>= 0; i
--) {
103 static void kvm_arm_host_cpu_class_init(ObjectClass
*oc
, void *data
)
105 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_CLASS(oc
);
107 /* All we really need to set up for the 'host' CPU
108 * is the feature bits -- we rely on the fact that the
109 * various ID register values in ARMCPU are only used for
112 if (!kvm_arm_get_host_cpu_features(ahcc
)) {
113 fprintf(stderr
, "Failed to retrieve host CPU features!\n");
118 static void kvm_arm_host_cpu_initfn(Object
*obj
)
120 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_GET_CLASS(obj
);
121 ARMCPU
*cpu
= ARM_CPU(obj
);
122 CPUARMState
*env
= &cpu
->env
;
124 cpu
->kvm_target
= ahcc
->target
;
125 cpu
->dtb_compatible
= ahcc
->dtb_compatible
;
126 env
->features
= ahcc
->features
;
129 static const TypeInfo host_arm_cpu_type_info
= {
130 .name
= TYPE_ARM_HOST_CPU
,
131 #ifdef TARGET_AARCH64
132 .parent
= TYPE_AARCH64_CPU
,
134 .parent
= TYPE_ARM_CPU
,
136 .instance_init
= kvm_arm_host_cpu_initfn
,
137 .class_init
= kvm_arm_host_cpu_class_init
,
138 .class_size
= sizeof(ARMHostCPUClass
),
141 int kvm_arch_init(KVMState
*s
)
143 /* For ARM interrupt delivery is always asynchronous,
144 * whether we are using an in-kernel VGIC or not.
146 kvm_async_interrupts_allowed
= true;
148 type_register_static(&host_arm_cpu_type_info
);
153 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
155 return cpu
->cpu_index
;
158 /* We track all the KVM devices which need their memory addresses
159 * passing to the kernel in a list of these structures.
160 * When board init is complete we run through the list and
161 * tell the kernel the base addresses of the memory regions.
162 * We use a MemoryListener to track mapping and unmapping of
163 * the regions during board creation, so the board models don't
164 * need to do anything special for the KVM case.
166 typedef struct KVMDevice
{
167 struct kvm_arm_device_addr kda
;
168 struct kvm_device_attr kdattr
;
170 QSLIST_ENTRY(KVMDevice
) entries
;
174 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
176 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
177 MemoryRegionSection
*section
)
181 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
182 if (section
->mr
== kd
->mr
) {
183 kd
->kda
.addr
= section
->offset_within_address_space
;
188 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
189 MemoryRegionSection
*section
)
193 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
194 if (section
->mr
== kd
->mr
) {
200 static MemoryListener devlistener
= {
201 .region_add
= kvm_arm_devlistener_add
,
202 .region_del
= kvm_arm_devlistener_del
,
205 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
207 struct kvm_device_attr
*attr
= &kd
->kdattr
;
210 /* If the device control API is available and we have a device fd on the
211 * KVMDevice struct, let's use the newer API
213 if (kd
->dev_fd
>= 0) {
214 uint64_t addr
= kd
->kda
.addr
;
215 attr
->addr
= (uintptr_t)&addr
;
216 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
218 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
222 fprintf(stderr
, "Failed to set device address: %s\n",
228 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
232 memory_listener_unregister(&devlistener
);
233 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
234 if (kd
->kda
.addr
!= -1) {
235 kvm_arm_set_device_addr(kd
);
237 memory_region_unref(kd
->mr
);
242 static Notifier notify
= {
243 .notify
= kvm_arm_machine_init_done
,
246 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
247 uint64_t attr
, int dev_fd
)
251 if (!kvm_irqchip_in_kernel()) {
255 if (QSLIST_EMPTY(&kvm_devices_head
)) {
256 memory_listener_register(&devlistener
, NULL
);
257 qemu_add_machine_init_done_notifier(¬ify
);
259 kd
= g_new0(KVMDevice
, 1);
263 kd
->kdattr
.flags
= 0;
264 kd
->kdattr
.group
= group
;
265 kd
->kdattr
.attr
= attr
;
267 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
268 memory_region_ref(kd
->mr
);
271 bool write_kvmstate_to_list(ARMCPU
*cpu
)
273 CPUState
*cs
= CPU(cpu
);
277 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
278 struct kvm_one_reg r
;
279 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
285 switch (regidx
& KVM_REG_SIZE_MASK
) {
286 case KVM_REG_SIZE_U32
:
287 r
.addr
= (uintptr_t)&v32
;
288 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
290 cpu
->cpreg_values
[i
] = v32
;
293 case KVM_REG_SIZE_U64
:
294 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
295 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
307 bool write_list_to_kvmstate(ARMCPU
*cpu
)
309 CPUState
*cs
= CPU(cpu
);
313 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
314 struct kvm_one_reg r
;
315 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
320 switch (regidx
& KVM_REG_SIZE_MASK
) {
321 case KVM_REG_SIZE_U32
:
322 v32
= cpu
->cpreg_values
[i
];
323 r
.addr
= (uintptr_t)&v32
;
325 case KVM_REG_SIZE_U64
:
326 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
331 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
333 /* We might fail for "unknown register" and also for
334 * "you tried to set a register which is constant with
335 * a different value from what it actually contains".
343 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
347 void kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
351 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
356 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
361 int kvm_arch_process_async_events(CPUState
*cs
)
366 int kvm_arch_on_sigbus_vcpu(CPUState
*cs
, int code
, void *addr
)
371 int kvm_arch_on_sigbus(int code
, void *addr
)
376 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
378 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
381 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
,
382 struct kvm_sw_breakpoint
*bp
)
384 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
388 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
389 target_ulong len
, int type
)
391 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
395 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
396 target_ulong len
, int type
)
398 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
402 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
,
403 struct kvm_sw_breakpoint
*bp
)
405 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
409 void kvm_arch_remove_all_hw_breakpoints(void)
411 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
414 void kvm_arch_init_irq_routing(KVMState
*s
)
418 int kvm_arch_irqchip_create(KVMState
*s
)
422 /* If we can create the VGIC using the newer device control API, we
423 * let the device do this when it initializes itself, otherwise we
424 * fall back to the old API */
426 ret
= kvm_create_device(s
, KVM_DEV_TYPE_ARM_VGIC_V2
, true);