Merge commit 'b3dbb9546ade0108156a04b4983cd3057fd77563' into upstream-merge
[qemu-kvm.git] / kvm-all.c
blob4674133154abeb1cc07e235220efa557b01589a5
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31 #include "exec-memory.h"
33 /* This check must be after config-host.h is included */
34 #ifdef CONFIG_EVENTFD
35 #include <sys/eventfd.h>
36 #endif
38 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
41 //#define DEBUG_KVM
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
51 typedef struct KVMSlot
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 void *ram;
56 int slot;
57 int flags;
58 } KVMSlot;
60 typedef struct kvm_dirty_log KVMDirtyLog;
62 struct KVMState
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 bool coalesced_flush_in_progress;
70 int broken_set_mem_region;
71 int migration_log;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_state2;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int intx_set_mask;
82 /* The man page (and posix) say ioctl numbers are signed int, but
83 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
84 * unsigned, and treating them as signed here can break things */
85 unsigned irqchip_inject_ioctl;
86 #ifdef KVM_CAP_IRQ_ROUTING
87 struct kvm_irq_routing *irq_routes;
88 int nr_allocated_irq_routes;
89 uint32_t *used_gsi_bitmap;
90 unsigned int max_gsi;
91 #endif
94 KVMState *kvm_state;
95 bool kvm_kernel_irqchip;
97 static const KVMCapabilityInfo kvm_required_capabilites[] = {
98 KVM_CAP_INFO(USER_MEMORY),
99 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
100 KVM_CAP_LAST_INFO
103 static KVMSlot *kvm_alloc_slot(KVMState *s)
105 int i;
107 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
108 if (s->slots[i].memory_size == 0) {
109 return &s->slots[i];
113 fprintf(stderr, "%s: no free slot available\n", __func__);
114 abort();
117 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
118 target_phys_addr_t start_addr,
119 target_phys_addr_t end_addr)
121 int i;
123 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124 KVMSlot *mem = &s->slots[i];
126 if (start_addr == mem->start_addr &&
127 end_addr == mem->start_addr + mem->memory_size) {
128 return mem;
132 return NULL;
136 * Find overlapping slot with lowest start address
138 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
139 target_phys_addr_t start_addr,
140 target_phys_addr_t end_addr)
142 KVMSlot *found = NULL;
143 int i;
145 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
146 KVMSlot *mem = &s->slots[i];
148 if (mem->memory_size == 0 ||
149 (found && found->start_addr < mem->start_addr)) {
150 continue;
153 if (end_addr > mem->start_addr &&
154 start_addr < mem->start_addr + mem->memory_size) {
155 found = mem;
159 return found;
162 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
163 target_phys_addr_t *phys_addr)
165 int i;
167 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
168 KVMSlot *mem = &s->slots[i];
170 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
171 *phys_addr = mem->start_addr + (ram - mem->ram);
172 return 1;
176 return 0;
179 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
181 struct kvm_userspace_memory_region mem;
183 mem.slot = slot->slot;
184 mem.guest_phys_addr = slot->start_addr;
185 mem.memory_size = slot->memory_size;
186 mem.userspace_addr = (unsigned long)slot->ram;
187 mem.flags = slot->flags;
188 if (s->migration_log) {
189 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
191 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
194 static void kvm_reset_vcpu(void *opaque)
196 CPUArchState *env = opaque;
198 kvm_arch_reset_vcpu(env);
201 int kvm_init_vcpu(CPUArchState *env)
203 KVMState *s = kvm_state;
204 long mmap_size;
205 int ret;
207 DPRINTF("kvm_init_vcpu\n");
209 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
210 if (ret < 0) {
211 DPRINTF("kvm_create_vcpu failed\n");
212 goto err;
215 env->kvm_fd = ret;
216 env->kvm_state = s;
217 env->kvm_vcpu_dirty = 1;
219 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
220 if (mmap_size < 0) {
221 ret = mmap_size;
222 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
223 goto err;
226 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
227 env->kvm_fd, 0);
228 if (env->kvm_run == MAP_FAILED) {
229 ret = -errno;
230 DPRINTF("mmap'ing vcpu state failed\n");
231 goto err;
234 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
235 s->coalesced_mmio_ring =
236 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
239 ret = kvm_arch_init_vcpu(env);
240 if (ret == 0) {
241 qemu_register_reset(kvm_reset_vcpu, env);
242 kvm_arch_reset_vcpu(env);
244 err:
245 return ret;
249 * dirty pages logging control
252 static int kvm_mem_flags(KVMState *s, bool log_dirty)
254 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
257 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
259 KVMState *s = kvm_state;
260 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
261 int old_flags;
263 old_flags = mem->flags;
265 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
266 mem->flags = flags;
268 /* If nothing changed effectively, no need to issue ioctl */
269 if (s->migration_log) {
270 flags |= KVM_MEM_LOG_DIRTY_PAGES;
273 if (flags == old_flags) {
274 return 0;
277 return kvm_set_user_memory_region(s, mem);
280 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
281 ram_addr_t size, bool log_dirty)
283 KVMState *s = kvm_state;
284 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
286 if (mem == NULL) {
287 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
288 TARGET_FMT_plx "\n", __func__, phys_addr,
289 (target_phys_addr_t)(phys_addr + size - 1));
290 return -EINVAL;
292 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
295 static void kvm_log_start(MemoryListener *listener,
296 MemoryRegionSection *section)
298 int r;
300 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
301 section->size, true);
302 if (r < 0) {
303 abort();
307 static void kvm_log_stop(MemoryListener *listener,
308 MemoryRegionSection *section)
310 int r;
312 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
313 section->size, false);
314 if (r < 0) {
315 abort();
319 static int kvm_set_migration_log(int enable)
321 KVMState *s = kvm_state;
322 KVMSlot *mem;
323 int i, err;
325 s->migration_log = enable;
327 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
328 mem = &s->slots[i];
330 if (!mem->memory_size) {
331 continue;
333 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
334 continue;
336 err = kvm_set_user_memory_region(s, mem);
337 if (err) {
338 return err;
341 return 0;
344 /* get kvm's dirty pages bitmap and update qemu's */
345 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
346 unsigned long *bitmap)
348 unsigned int i, j;
349 unsigned long page_number, c;
350 target_phys_addr_t addr, addr1;
351 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
352 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
355 * bitmap-traveling is faster than memory-traveling (for addr...)
356 * especially when most of the memory is not dirty.
358 for (i = 0; i < len; i++) {
359 if (bitmap[i] != 0) {
360 c = leul_to_cpu(bitmap[i]);
361 do {
362 j = ffsl(c) - 1;
363 c &= ~(1ul << j);
364 page_number = (i * HOST_LONG_BITS + j) * hpratio;
365 addr1 = page_number * TARGET_PAGE_SIZE;
366 addr = section->offset_within_region + addr1;
367 memory_region_set_dirty(section->mr, addr,
368 TARGET_PAGE_SIZE * hpratio);
369 } while (c != 0);
372 return 0;
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using
380 * memory_region_set_dirty(). This means all bits are set
381 * to dirty.
383 * @start_add: start of logged region.
384 * @end_addr: end of logged region.
386 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
388 KVMState *s = kvm_state;
389 unsigned long size, allocated_size = 0;
390 KVMDirtyLog d;
391 KVMSlot *mem;
392 int ret = 0;
393 target_phys_addr_t start_addr = section->offset_within_address_space;
394 target_phys_addr_t end_addr = start_addr + section->size;
396 d.dirty_bitmap = NULL;
397 while (start_addr < end_addr) {
398 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
399 if (mem == NULL) {
400 break;
403 /* XXX bad kernel interface alert
404 * For dirty bitmap, kernel allocates array of size aligned to
405 * bits-per-long. But for case when the kernel is 64bits and
406 * the userspace is 32bits, userspace can't align to the same
407 * bits-per-long, since sizeof(long) is different between kernel
408 * and user space. This way, userspace will provide buffer which
409 * may be 4 bytes less than the kernel will use, resulting in
410 * userspace memory corruption (which is not detectable by valgrind
411 * too, in most cases).
412 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
413 * a hope that sizeof(long) wont become >8 any time soon.
415 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
416 /*HOST_LONG_BITS*/ 64) / 8;
417 if (!d.dirty_bitmap) {
418 d.dirty_bitmap = g_malloc(size);
419 } else if (size > allocated_size) {
420 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
422 allocated_size = size;
423 memset(d.dirty_bitmap, 0, allocated_size);
425 d.slot = mem->slot;
427 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
428 DPRINTF("ioctl failed %d\n", errno);
429 ret = -1;
430 break;
433 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
434 start_addr = mem->start_addr + mem->memory_size;
436 g_free(d.dirty_bitmap);
438 return ret;
441 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
443 int ret = -ENOSYS;
444 KVMState *s = kvm_state;
446 if (s->coalesced_mmio) {
447 struct kvm_coalesced_mmio_zone zone;
449 zone.addr = start;
450 zone.size = size;
451 zone.pad = 0;
453 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
456 return ret;
459 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
461 int ret = -ENOSYS;
462 KVMState *s = kvm_state;
464 if (s->coalesced_mmio) {
465 struct kvm_coalesced_mmio_zone zone;
467 zone.addr = start;
468 zone.size = size;
469 zone.pad = 0;
471 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
474 return ret;
477 int kvm_check_extension(KVMState *s, unsigned int extension)
479 int ret;
481 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
482 if (ret < 0) {
483 ret = 0;
486 return ret;
489 static int kvm_check_many_ioeventfds(void)
491 /* Userspace can use ioeventfd for io notification. This requires a host
492 * that supports eventfd(2) and an I/O thread; since eventfd does not
493 * support SIGIO it cannot interrupt the vcpu.
495 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
496 * can avoid creating too many ioeventfds.
498 #if defined(CONFIG_EVENTFD)
499 int ioeventfds[7];
500 int i, ret = 0;
501 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
502 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
503 if (ioeventfds[i] < 0) {
504 break;
506 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
507 if (ret < 0) {
508 close(ioeventfds[i]);
509 break;
513 /* Decide whether many devices are supported or not */
514 ret = i == ARRAY_SIZE(ioeventfds);
516 while (i-- > 0) {
517 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
518 close(ioeventfds[i]);
520 return ret;
521 #else
522 return 0;
523 #endif
526 static const KVMCapabilityInfo *
527 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
529 while (list->name) {
530 if (!kvm_check_extension(s, list->value)) {
531 return list;
533 list++;
535 return NULL;
538 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
540 KVMState *s = kvm_state;
541 KVMSlot *mem, old;
542 int err;
543 MemoryRegion *mr = section->mr;
544 bool log_dirty = memory_region_is_logging(mr);
545 target_phys_addr_t start_addr = section->offset_within_address_space;
546 ram_addr_t size = section->size;
547 void *ram = NULL;
548 unsigned delta;
550 /* kvm works in page size chunks, but the function may be called
551 with sub-page size and unaligned start address. */
552 delta = TARGET_PAGE_ALIGN(size) - size;
553 if (delta > size) {
554 return;
556 start_addr += delta;
557 size -= delta;
558 size &= TARGET_PAGE_MASK;
559 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
560 return;
563 if (!memory_region_is_ram(mr)) {
564 return;
567 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
569 while (1) {
570 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
571 if (!mem) {
572 break;
575 if (add && start_addr >= mem->start_addr &&
576 (start_addr + size <= mem->start_addr + mem->memory_size) &&
577 (ram - start_addr == mem->ram - mem->start_addr)) {
578 /* The new slot fits into the existing one and comes with
579 * identical parameters - update flags and done. */
580 kvm_slot_dirty_pages_log_change(mem, log_dirty);
581 return;
584 old = *mem;
586 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
587 kvm_physical_sync_dirty_bitmap(section);
590 /* unregister the overlapping slot */
591 mem->memory_size = 0;
592 err = kvm_set_user_memory_region(s, mem);
593 if (err) {
594 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
595 __func__, strerror(-err));
596 abort();
599 /* Workaround for older KVM versions: we can't join slots, even not by
600 * unregistering the previous ones and then registering the larger
601 * slot. We have to maintain the existing fragmentation. Sigh.
603 * This workaround assumes that the new slot starts at the same
604 * address as the first existing one. If not or if some overlapping
605 * slot comes around later, we will fail (not seen in practice so far)
606 * - and actually require a recent KVM version. */
607 if (s->broken_set_mem_region &&
608 old.start_addr == start_addr && old.memory_size < size && add) {
609 mem = kvm_alloc_slot(s);
610 mem->memory_size = old.memory_size;
611 mem->start_addr = old.start_addr;
612 mem->ram = old.ram;
613 mem->flags = kvm_mem_flags(s, log_dirty);
615 err = kvm_set_user_memory_region(s, mem);
616 if (err) {
617 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
618 strerror(-err));
619 abort();
622 start_addr += old.memory_size;
623 ram += old.memory_size;
624 size -= old.memory_size;
625 continue;
628 /* register prefix slot */
629 if (old.start_addr < start_addr) {
630 mem = kvm_alloc_slot(s);
631 mem->memory_size = start_addr - old.start_addr;
632 mem->start_addr = old.start_addr;
633 mem->ram = old.ram;
634 mem->flags = kvm_mem_flags(s, log_dirty);
636 err = kvm_set_user_memory_region(s, mem);
637 if (err) {
638 fprintf(stderr, "%s: error registering prefix slot: %s\n",
639 __func__, strerror(-err));
640 #ifdef TARGET_PPC
641 fprintf(stderr, "%s: This is probably because your kernel's " \
642 "PAGE_SIZE is too big. Please try to use 4k " \
643 "PAGE_SIZE!\n", __func__);
644 #endif
645 abort();
649 /* register suffix slot */
650 if (old.start_addr + old.memory_size > start_addr + size) {
651 ram_addr_t size_delta;
653 mem = kvm_alloc_slot(s);
654 mem->start_addr = start_addr + size;
655 size_delta = mem->start_addr - old.start_addr;
656 mem->memory_size = old.memory_size - size_delta;
657 mem->ram = old.ram + size_delta;
658 mem->flags = kvm_mem_flags(s, log_dirty);
660 err = kvm_set_user_memory_region(s, mem);
661 if (err) {
662 fprintf(stderr, "%s: error registering suffix slot: %s\n",
663 __func__, strerror(-err));
664 abort();
669 /* in case the KVM bug workaround already "consumed" the new slot */
670 if (!size) {
671 return;
673 if (!add) {
674 return;
676 mem = kvm_alloc_slot(s);
677 mem->memory_size = size;
678 mem->start_addr = start_addr;
679 mem->ram = ram;
680 mem->flags = kvm_mem_flags(s, log_dirty);
682 err = kvm_set_user_memory_region(s, mem);
683 if (err) {
684 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
685 strerror(-err));
686 abort();
690 static void kvm_begin(MemoryListener *listener)
694 static void kvm_commit(MemoryListener *listener)
698 static void kvm_region_add(MemoryListener *listener,
699 MemoryRegionSection *section)
701 kvm_set_phys_mem(section, true);
704 static void kvm_region_del(MemoryListener *listener,
705 MemoryRegionSection *section)
707 kvm_set_phys_mem(section, false);
710 static void kvm_region_nop(MemoryListener *listener,
711 MemoryRegionSection *section)
715 static void kvm_log_sync(MemoryListener *listener,
716 MemoryRegionSection *section)
718 int r;
720 r = kvm_physical_sync_dirty_bitmap(section);
721 if (r < 0) {
722 abort();
726 static void kvm_log_global_start(struct MemoryListener *listener)
728 int r;
730 r = kvm_set_migration_log(1);
731 assert(r >= 0);
734 static void kvm_log_global_stop(struct MemoryListener *listener)
736 int r;
738 r = kvm_set_migration_log(0);
739 assert(r >= 0);
742 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
743 bool match_data, uint64_t data, int fd)
745 int r;
747 assert(match_data && section->size <= 8);
749 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
750 data, true, section->size);
751 if (r < 0) {
752 abort();
756 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
757 bool match_data, uint64_t data, int fd)
759 int r;
761 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
762 data, false, section->size);
763 if (r < 0) {
764 abort();
768 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
769 bool match_data, uint64_t data, int fd)
771 int r;
773 assert(match_data && section->size == 2);
775 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
776 data, true);
777 if (r < 0) {
778 abort();
782 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
783 bool match_data, uint64_t data, int fd)
786 int r;
788 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
789 data, false);
790 if (r < 0) {
791 abort();
795 static void kvm_eventfd_add(MemoryListener *listener,
796 MemoryRegionSection *section,
797 bool match_data, uint64_t data, int fd)
799 if (section->address_space == get_system_memory()) {
800 kvm_mem_ioeventfd_add(section, match_data, data, fd);
801 } else {
802 kvm_io_ioeventfd_add(section, match_data, data, fd);
806 static void kvm_eventfd_del(MemoryListener *listener,
807 MemoryRegionSection *section,
808 bool match_data, uint64_t data, int fd)
810 if (section->address_space == get_system_memory()) {
811 kvm_mem_ioeventfd_del(section, match_data, data, fd);
812 } else {
813 kvm_io_ioeventfd_del(section, match_data, data, fd);
817 static MemoryListener kvm_memory_listener = {
818 .begin = kvm_begin,
819 .commit = kvm_commit,
820 .region_add = kvm_region_add,
821 .region_del = kvm_region_del,
822 .region_nop = kvm_region_nop,
823 .log_start = kvm_log_start,
824 .log_stop = kvm_log_stop,
825 .log_sync = kvm_log_sync,
826 .log_global_start = kvm_log_global_start,
827 .log_global_stop = kvm_log_global_stop,
828 .eventfd_add = kvm_eventfd_add,
829 .eventfd_del = kvm_eventfd_del,
830 .priority = 10,
833 static void kvm_handle_interrupt(CPUArchState *env, int mask)
835 env->interrupt_request |= mask;
837 if (!qemu_cpu_is_self(env)) {
838 qemu_cpu_kick(env);
842 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
844 struct kvm_irq_level event;
845 int ret;
847 assert(kvm_irqchip_in_kernel());
849 event.level = level;
850 event.irq = irq;
851 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
852 if (ret < 0) {
853 perror("kvm_set_irqchip_line");
854 abort();
857 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
860 #ifdef KVM_CAP_IRQ_ROUTING
861 static void set_gsi(KVMState *s, unsigned int gsi)
863 assert(gsi < s->max_gsi);
865 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
868 static void kvm_init_irq_routing(KVMState *s)
870 int gsi_count;
872 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
873 if (gsi_count > 0) {
874 unsigned int gsi_bits, i;
876 /* Round up so we can search ints using ffs */
877 gsi_bits = ALIGN(gsi_count, 32);
878 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
879 s->max_gsi = gsi_bits;
881 /* Mark any over-allocated bits as already in use */
882 for (i = gsi_count; i < gsi_bits; i++) {
883 set_gsi(s, i);
887 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
888 s->nr_allocated_irq_routes = 0;
890 kvm_arch_init_irq_routing(s);
893 void kvm_add_routing_entry(KVMState *s,
894 struct kvm_irq_routing_entry *entry)
896 struct kvm_irq_routing_entry *new;
897 int n, size;
899 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
900 n = s->nr_allocated_irq_routes * 2;
901 if (n < 64) {
902 n = 64;
904 size = sizeof(struct kvm_irq_routing);
905 size += n * sizeof(*new);
906 s->irq_routes = g_realloc(s->irq_routes, size);
907 s->nr_allocated_irq_routes = n;
909 n = s->irq_routes->nr++;
910 new = &s->irq_routes->entries[n];
911 memset(new, 0, sizeof(*new));
912 new->gsi = entry->gsi;
913 new->type = entry->type;
914 new->flags = entry->flags;
915 new->u = entry->u;
917 set_gsi(s, entry->gsi);
920 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
922 struct kvm_irq_routing_entry e;
924 e.gsi = irq;
925 e.type = KVM_IRQ_ROUTING_IRQCHIP;
926 e.flags = 0;
927 e.u.irqchip.irqchip = irqchip;
928 e.u.irqchip.pin = pin;
929 kvm_add_routing_entry(s, &e);
932 int kvm_irqchip_commit_routes(KVMState *s)
934 s->irq_routes->flags = 0;
935 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
938 #else /* !KVM_CAP_IRQ_ROUTING */
940 static void kvm_init_irq_routing(KVMState *s)
944 int kvm_irqchip_commit_routes(KVMState *s)
946 return -ENOSYS;
949 #endif /* !KVM_CAP_IRQ_ROUTING */
951 static int kvm_irqchip_create(KVMState *s)
953 QemuOptsList *list = qemu_find_opts("machine");
954 int ret;
956 if (QTAILQ_EMPTY(&list->head) ||
957 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
958 "kernel_irqchip", false) ||
959 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
960 return 0;
963 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
964 if (ret < 0) {
965 fprintf(stderr, "Create kernel irqchip failed\n");
966 return ret;
969 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
970 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
971 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
973 kvm_kernel_irqchip = true;
975 kvm_init_irq_routing(s);
977 return 0;
980 int kvm_init(void)
982 static const char upgrade_note[] =
983 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
984 "(see http://sourceforge.net/projects/kvm).\n";
985 KVMState *s;
986 const KVMCapabilityInfo *missing_cap;
987 int ret;
988 int i;
990 s = g_malloc0(sizeof(KVMState));
993 * On systems where the kernel can support different base page
994 * sizes, host page size may be different from TARGET_PAGE_SIZE,
995 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
996 * page size for the system though.
998 assert(TARGET_PAGE_SIZE <= getpagesize());
1000 #ifdef KVM_CAP_SET_GUEST_DEBUG
1001 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1002 #endif
1003 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1004 s->slots[i].slot = i;
1006 s->vmfd = -1;
1007 s->fd = qemu_open("/dev/kvm", O_RDWR);
1008 if (s->fd == -1) {
1009 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1010 ret = -errno;
1011 goto err;
1014 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1015 if (ret < KVM_API_VERSION) {
1016 if (ret > 0) {
1017 ret = -EINVAL;
1019 fprintf(stderr, "kvm version too old\n");
1020 goto err;
1023 if (ret > KVM_API_VERSION) {
1024 ret = -EINVAL;
1025 fprintf(stderr, "kvm version not supported\n");
1026 goto err;
1029 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1030 if (s->vmfd < 0) {
1031 #ifdef TARGET_S390X
1032 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1033 "your host kernel command line\n");
1034 #endif
1035 ret = s->vmfd;
1036 goto err;
1039 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1040 if (!missing_cap) {
1041 missing_cap =
1042 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1044 if (missing_cap) {
1045 ret = -EINVAL;
1046 fprintf(stderr, "kvm does not support %s\n%s",
1047 missing_cap->name, upgrade_note);
1048 goto err;
1051 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1053 s->broken_set_mem_region = 1;
1054 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1055 if (ret > 0) {
1056 s->broken_set_mem_region = 0;
1059 #ifdef KVM_CAP_VCPU_EVENTS
1060 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1061 #endif
1063 s->robust_singlestep =
1064 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1066 #ifdef KVM_CAP_DEBUGREGS
1067 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1068 #endif
1070 #ifdef KVM_CAP_XSAVE
1071 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1072 #endif
1074 #ifdef KVM_CAP_XCRS
1075 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1076 #endif
1078 #ifdef KVM_CAP_PIT_STATE2
1079 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1080 #endif
1082 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1084 ret = kvm_arch_init(s);
1085 if (ret < 0) {
1086 goto err;
1089 ret = kvm_irqchip_create(s);
1090 if (ret < 0) {
1091 goto err;
1094 kvm_state = s;
1095 memory_listener_register(&kvm_memory_listener, NULL);
1097 s->many_ioeventfds = kvm_check_many_ioeventfds();
1099 cpu_interrupt_handler = kvm_handle_interrupt;
1101 return 0;
1103 err:
1104 if (s) {
1105 if (s->vmfd >= 0) {
1106 close(s->vmfd);
1108 if (s->fd != -1) {
1109 close(s->fd);
1112 g_free(s);
1114 return ret;
1117 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1118 uint32_t count)
1120 int i;
1121 uint8_t *ptr = data;
1123 for (i = 0; i < count; i++) {
1124 if (direction == KVM_EXIT_IO_IN) {
1125 switch (size) {
1126 case 1:
1127 stb_p(ptr, cpu_inb(port));
1128 break;
1129 case 2:
1130 stw_p(ptr, cpu_inw(port));
1131 break;
1132 case 4:
1133 stl_p(ptr, cpu_inl(port));
1134 break;
1136 } else {
1137 switch (size) {
1138 case 1:
1139 cpu_outb(port, ldub_p(ptr));
1140 break;
1141 case 2:
1142 cpu_outw(port, lduw_p(ptr));
1143 break;
1144 case 4:
1145 cpu_outl(port, ldl_p(ptr));
1146 break;
1150 ptr += size;
1154 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1156 fprintf(stderr, "KVM internal error.");
1157 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1158 int i;
1160 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1161 for (i = 0; i < run->internal.ndata; ++i) {
1162 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1163 i, (uint64_t)run->internal.data[i]);
1165 } else {
1166 fprintf(stderr, "\n");
1168 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1169 fprintf(stderr, "emulation failure\n");
1170 if (!kvm_arch_stop_on_emulation_error(env)) {
1171 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1172 return EXCP_INTERRUPT;
1175 /* FIXME: Should trigger a qmp message to let management know
1176 * something went wrong.
1178 return -1;
1181 void kvm_flush_coalesced_mmio_buffer(void)
1183 KVMState *s = kvm_state;
1185 if (s->coalesced_flush_in_progress) {
1186 return;
1189 s->coalesced_flush_in_progress = true;
1191 if (s->coalesced_mmio_ring) {
1192 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1193 while (ring->first != ring->last) {
1194 struct kvm_coalesced_mmio *ent;
1196 ent = &ring->coalesced_mmio[ring->first];
1198 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1199 smp_wmb();
1200 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1204 s->coalesced_flush_in_progress = false;
1207 static void do_kvm_cpu_synchronize_state(void *_env)
1209 CPUArchState *env = _env;
1211 if (!env->kvm_vcpu_dirty) {
1212 kvm_arch_get_registers(env);
1213 env->kvm_vcpu_dirty = 1;
1217 void kvm_cpu_synchronize_state(CPUArchState *env)
1219 if (!env->kvm_vcpu_dirty) {
1220 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1224 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1226 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1227 env->kvm_vcpu_dirty = 0;
1230 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1232 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1233 env->kvm_vcpu_dirty = 0;
1236 int kvm_cpu_exec(CPUArchState *env)
1238 struct kvm_run *run = env->kvm_run;
1239 int ret, run_ret;
1241 DPRINTF("kvm_cpu_exec()\n");
1243 if (kvm_arch_process_async_events(env)) {
1244 env->exit_request = 0;
1245 return EXCP_HLT;
1248 do {
1249 if (env->kvm_vcpu_dirty) {
1250 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1251 env->kvm_vcpu_dirty = 0;
1254 kvm_arch_pre_run(env, run);
1255 if (env->exit_request) {
1256 DPRINTF("interrupt exit requested\n");
1258 * KVM requires us to reenter the kernel after IO exits to complete
1259 * instruction emulation. This self-signal will ensure that we
1260 * leave ASAP again.
1262 qemu_cpu_kick_self();
1264 qemu_mutex_unlock_iothread();
1266 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1268 qemu_mutex_lock_iothread();
1269 kvm_arch_post_run(env, run);
1271 kvm_flush_coalesced_mmio_buffer();
1273 if (run_ret < 0) {
1274 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1275 DPRINTF("io window exit\n");
1276 ret = EXCP_INTERRUPT;
1277 break;
1279 fprintf(stderr, "error: kvm run failed %s\n",
1280 strerror(-run_ret));
1281 abort();
1284 switch (run->exit_reason) {
1285 case KVM_EXIT_IO:
1286 DPRINTF("handle_io\n");
1287 kvm_handle_io(run->io.port,
1288 (uint8_t *)run + run->io.data_offset,
1289 run->io.direction,
1290 run->io.size,
1291 run->io.count);
1292 ret = 0;
1293 break;
1294 case KVM_EXIT_MMIO:
1295 DPRINTF("handle_mmio\n");
1296 cpu_physical_memory_rw(run->mmio.phys_addr,
1297 run->mmio.data,
1298 run->mmio.len,
1299 run->mmio.is_write);
1300 ret = 0;
1301 break;
1302 case KVM_EXIT_IRQ_WINDOW_OPEN:
1303 DPRINTF("irq_window_open\n");
1304 ret = EXCP_INTERRUPT;
1305 break;
1306 case KVM_EXIT_SHUTDOWN:
1307 DPRINTF("shutdown\n");
1308 qemu_system_reset_request();
1309 ret = EXCP_INTERRUPT;
1310 break;
1311 case KVM_EXIT_UNKNOWN:
1312 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1313 (uint64_t)run->hw.hardware_exit_reason);
1314 ret = -1;
1315 break;
1316 case KVM_EXIT_INTERNAL_ERROR:
1317 ret = kvm_handle_internal_error(env, run);
1318 break;
1319 default:
1320 DPRINTF("kvm_arch_handle_exit\n");
1321 ret = kvm_arch_handle_exit(env, run);
1322 break;
1324 } while (ret == 0);
1326 if (ret < 0) {
1327 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1328 vm_stop(RUN_STATE_INTERNAL_ERROR);
1331 env->exit_request = 0;
1332 return ret;
1335 int kvm_ioctl(KVMState *s, int type, ...)
1337 int ret;
1338 void *arg;
1339 va_list ap;
1341 va_start(ap, type);
1342 arg = va_arg(ap, void *);
1343 va_end(ap);
1345 ret = ioctl(s->fd, type, arg);
1346 if (ret == -1) {
1347 ret = -errno;
1349 return ret;
1352 int kvm_vm_ioctl(KVMState *s, int type, ...)
1354 int ret;
1355 void *arg;
1356 va_list ap;
1358 va_start(ap, type);
1359 arg = va_arg(ap, void *);
1360 va_end(ap);
1362 ret = ioctl(s->vmfd, type, arg);
1363 if (ret == -1) {
1364 ret = -errno;
1366 return ret;
1369 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1371 int ret;
1372 void *arg;
1373 va_list ap;
1375 va_start(ap, type);
1376 arg = va_arg(ap, void *);
1377 va_end(ap);
1379 ret = ioctl(env->kvm_fd, type, arg);
1380 if (ret == -1) {
1381 ret = -errno;
1383 return ret;
1386 int kvm_has_sync_mmu(void)
1388 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1391 int kvm_has_vcpu_events(void)
1393 return kvm_state->vcpu_events;
1396 int kvm_has_robust_singlestep(void)
1398 return kvm_state->robust_singlestep;
1401 int kvm_has_debugregs(void)
1403 return kvm_state->debugregs;
1406 int kvm_has_xsave(void)
1408 return kvm_state->xsave;
1411 int kvm_has_xcrs(void)
1413 return kvm_state->xcrs;
1416 int kvm_has_pit_state2(void)
1418 return kvm_state->pit_state2;
1421 int kvm_has_many_ioeventfds(void)
1423 if (!kvm_enabled()) {
1424 return 0;
1426 return kvm_state->many_ioeventfds;
1429 int kvm_has_gsi_routing(void)
1431 #ifdef KVM_CAP_IRQ_ROUTING
1432 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1433 #else
1434 return false;
1435 #endif
1438 int kvm_has_intx_set_mask(void)
1440 return kvm_state->intx_set_mask;
1443 int kvm_allows_irq0_override(void)
1445 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1448 void kvm_setup_guest_memory(void *start, size_t size)
1450 if (!kvm_has_sync_mmu()) {
1451 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1453 if (ret) {
1454 perror("qemu_madvise");
1455 fprintf(stderr,
1456 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1457 exit(1);
1462 #ifdef KVM_CAP_SET_GUEST_DEBUG
1463 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1464 target_ulong pc)
1466 struct kvm_sw_breakpoint *bp;
1468 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1469 if (bp->pc == pc) {
1470 return bp;
1473 return NULL;
1476 int kvm_sw_breakpoints_active(CPUArchState *env)
1478 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1481 struct kvm_set_guest_debug_data {
1482 struct kvm_guest_debug dbg;
1483 CPUArchState *env;
1484 int err;
1487 static void kvm_invoke_set_guest_debug(void *data)
1489 struct kvm_set_guest_debug_data *dbg_data = data;
1490 CPUArchState *env = dbg_data->env;
1492 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1495 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1497 struct kvm_set_guest_debug_data data;
1499 data.dbg.control = reinject_trap;
1501 if (env->singlestep_enabled) {
1502 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1504 kvm_arch_update_guest_debug(env, &data.dbg);
1505 data.env = env;
1507 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1508 return data.err;
1511 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1512 target_ulong len, int type)
1514 struct kvm_sw_breakpoint *bp;
1515 CPUArchState *env;
1516 int err;
1518 if (type == GDB_BREAKPOINT_SW) {
1519 bp = kvm_find_sw_breakpoint(current_env, addr);
1520 if (bp) {
1521 bp->use_count++;
1522 return 0;
1525 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1526 if (!bp) {
1527 return -ENOMEM;
1530 bp->pc = addr;
1531 bp->use_count = 1;
1532 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1533 if (err) {
1534 g_free(bp);
1535 return err;
1538 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1539 bp, entry);
1540 } else {
1541 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1542 if (err) {
1543 return err;
1547 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1548 err = kvm_update_guest_debug(env, 0);
1549 if (err) {
1550 return err;
1553 return 0;
1556 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1557 target_ulong len, int type)
1559 struct kvm_sw_breakpoint *bp;
1560 CPUArchState *env;
1561 int err;
1563 if (type == GDB_BREAKPOINT_SW) {
1564 bp = kvm_find_sw_breakpoint(current_env, addr);
1565 if (!bp) {
1566 return -ENOENT;
1569 if (bp->use_count > 1) {
1570 bp->use_count--;
1571 return 0;
1574 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1575 if (err) {
1576 return err;
1579 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1580 g_free(bp);
1581 } else {
1582 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1583 if (err) {
1584 return err;
1588 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1589 err = kvm_update_guest_debug(env, 0);
1590 if (err) {
1591 return err;
1594 return 0;
1597 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1599 struct kvm_sw_breakpoint *bp, *next;
1600 KVMState *s = current_env->kvm_state;
1601 CPUArchState *env;
1603 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1604 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1605 /* Try harder to find a CPU that currently sees the breakpoint. */
1606 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1607 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1608 break;
1613 kvm_arch_remove_all_hw_breakpoints();
1615 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1616 kvm_update_guest_debug(env, 0);
1620 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1622 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1624 return -EINVAL;
1627 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1628 target_ulong len, int type)
1630 return -EINVAL;
1633 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1634 target_ulong len, int type)
1636 return -EINVAL;
1639 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1642 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1644 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1646 struct kvm_signal_mask *sigmask;
1647 int r;
1649 if (!sigset) {
1650 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1653 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1655 sigmask->len = 8;
1656 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1657 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1658 g_free(sigmask);
1660 return r;
1663 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1664 uint32_t size)
1666 int ret;
1667 struct kvm_ioeventfd iofd;
1669 iofd.datamatch = val;
1670 iofd.addr = addr;
1671 iofd.len = size;
1672 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1673 iofd.fd = fd;
1675 if (!kvm_enabled()) {
1676 return -ENOSYS;
1679 if (!assign) {
1680 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1683 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1685 if (ret < 0) {
1686 return -errno;
1689 return 0;
1692 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1694 struct kvm_ioeventfd kick = {
1695 .datamatch = val,
1696 .addr = addr,
1697 .len = 2,
1698 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1699 .fd = fd,
1701 int r;
1702 if (!kvm_enabled()) {
1703 return -ENOSYS;
1705 if (!assign) {
1706 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1708 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1709 if (r < 0) {
1710 return r;
1712 return 0;
1715 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1717 struct kvm_irqfd irqfd = {
1718 .fd = fd,
1719 .gsi = gsi,
1720 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1722 int r;
1723 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1724 return -ENOSYS;
1726 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1727 if (r < 0)
1728 return r;
1729 return 0;
1732 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1734 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1737 int kvm_on_sigbus(int code, void *addr)
1739 return kvm_arch_on_sigbus(code, addr);
1742 #undef PAGE_SIZE
1743 #include "qemu-kvm.c"