virtio-scsi: do not compare 32-bit QEMU tags against 64-bit virtio-scsi tags
[qemu-kvm.git] / hw / spapr.c
blob81c9343ca5e228b3d00c402bc75202932184193b
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
45 #include "kvm.h"
46 #include "kvm_ppc.h"
47 #include "pci.h"
49 #include "exec-memory.h"
51 #include <libfdt.h>
53 /* SLOF memory layout:
55 * SLOF raw image loaded at 0, copies its romfs right below the flat
56 * device-tree, then position SLOF itself 31M below that
58 * So we set FW_OVERHEAD to 40MB which should account for all of that
59 * and more
61 * We load our kernel at 4M, leaving space for SLOF initial image
63 #define FDT_MAX_SIZE 0x10000
64 #define RTAS_MAX_SIZE 0x10000
65 #define FW_MAX_SIZE 0x400000
66 #define FW_FILE_NAME "slof.bin"
67 #define FW_OVERHEAD 0x2800000
68 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70 #define MIN_RMA_SLOF 128UL
72 #define TIMEBASE_FREQ 512000000ULL
74 #define MAX_CPUS 256
75 #define XICS_IRQS 1024
77 #define SPAPR_PCI_BUID 0x800000020000001ULL
78 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
79 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
80 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
82 #define PHANDLE_XICP 0x00001111
84 sPAPREnvironment *spapr;
86 qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
87 enum xics_irq_type type)
89 uint32_t irq;
90 qemu_irq qirq;
92 if (hint) {
93 irq = hint;
94 /* FIXME: we should probably check for collisions somehow */
95 } else {
96 irq = spapr->next_irq++;
99 qirq = xics_assign_irq(spapr->icp, irq, type);
100 if (!qirq) {
101 return NULL;
104 if (irq_num) {
105 *irq_num = irq;
108 return qirq;
111 static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
113 int ret = 0, offset;
114 CPUPPCState *env;
115 char cpu_model[32];
116 int smt = kvmppc_smt_threads();
118 assert(spapr->cpu_model);
120 for (env = first_cpu; env != NULL; env = env->next_cpu) {
121 uint32_t associativity[] = {cpu_to_be32(0x5),
122 cpu_to_be32(0x0),
123 cpu_to_be32(0x0),
124 cpu_to_be32(0x0),
125 cpu_to_be32(env->numa_node),
126 cpu_to_be32(env->cpu_index)};
128 if ((env->cpu_index % smt) != 0) {
129 continue;
132 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
133 env->cpu_index);
135 offset = fdt_path_offset(fdt, cpu_model);
136 if (offset < 0) {
137 return offset;
140 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
141 sizeof(associativity));
142 if (ret < 0) {
143 return ret;
146 return ret;
150 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
151 size_t maxsize)
153 size_t maxcells = maxsize / sizeof(uint32_t);
154 int i, j, count;
155 uint32_t *p = prop;
157 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
158 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
160 if (!sps->page_shift) {
161 break;
163 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
164 if (sps->enc[count].page_shift == 0) {
165 break;
168 if ((p - prop) >= (maxcells - 3 - count * 2)) {
169 break;
171 *(p++) = cpu_to_be32(sps->page_shift);
172 *(p++) = cpu_to_be32(sps->slb_enc);
173 *(p++) = cpu_to_be32(count);
174 for (j = 0; j < count; j++) {
175 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
176 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
180 return (p - prop) * sizeof(uint32_t);
183 static void *spapr_create_fdt_skel(const char *cpu_model,
184 target_phys_addr_t rma_size,
185 target_phys_addr_t initrd_base,
186 target_phys_addr_t initrd_size,
187 target_phys_addr_t kernel_size,
188 const char *boot_device,
189 const char *kernel_cmdline,
190 long hash_shift)
192 void *fdt;
193 CPUPPCState *env;
194 uint64_t mem_reg_property[2];
195 uint32_t start_prop = cpu_to_be32(initrd_base);
196 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
197 uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
198 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
199 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
200 char qemu_hypertas_prop[] = "hcall-memop1";
201 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
202 int i;
203 char *modelname;
204 int smt = kvmppc_smt_threads();
205 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
206 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
207 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
208 cpu_to_be32(0x0), cpu_to_be32(0x0),
209 cpu_to_be32(0x0)};
210 char mem_name[32];
211 target_phys_addr_t node0_size, mem_start;
213 #define _FDT(exp) \
214 do { \
215 int ret = (exp); \
216 if (ret < 0) { \
217 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
218 #exp, fdt_strerror(ret)); \
219 exit(1); \
221 } while (0)
223 fdt = g_malloc0(FDT_MAX_SIZE);
224 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
226 if (kernel_size) {
227 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
229 if (initrd_size) {
230 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
232 _FDT((fdt_finish_reservemap(fdt)));
234 /* Root node */
235 _FDT((fdt_begin_node(fdt, "")));
236 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
237 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
239 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
240 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
242 /* /chosen */
243 _FDT((fdt_begin_node(fdt, "chosen")));
245 /* Set Form1_affinity */
246 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
248 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
249 _FDT((fdt_property(fdt, "linux,initrd-start",
250 &start_prop, sizeof(start_prop))));
251 _FDT((fdt_property(fdt, "linux,initrd-end",
252 &end_prop, sizeof(end_prop))));
253 if (kernel_size) {
254 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
255 cpu_to_be64(kernel_size) };
257 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
259 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
261 _FDT((fdt_end_node(fdt)));
263 /* memory node(s) */
264 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
265 if (rma_size > node0_size) {
266 rma_size = node0_size;
269 /* RMA */
270 mem_reg_property[0] = 0;
271 mem_reg_property[1] = cpu_to_be64(rma_size);
272 _FDT((fdt_begin_node(fdt, "memory@0")));
273 _FDT((fdt_property_string(fdt, "device_type", "memory")));
274 _FDT((fdt_property(fdt, "reg", mem_reg_property,
275 sizeof(mem_reg_property))));
276 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
277 sizeof(associativity))));
278 _FDT((fdt_end_node(fdt)));
280 /* RAM: Node 0 */
281 if (node0_size > rma_size) {
282 mem_reg_property[0] = cpu_to_be64(rma_size);
283 mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
285 sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
286 _FDT((fdt_begin_node(fdt, mem_name)));
287 _FDT((fdt_property_string(fdt, "device_type", "memory")));
288 _FDT((fdt_property(fdt, "reg", mem_reg_property,
289 sizeof(mem_reg_property))));
290 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
291 sizeof(associativity))));
292 _FDT((fdt_end_node(fdt)));
295 /* RAM: Node 1 and beyond */
296 mem_start = node0_size;
297 for (i = 1; i < nb_numa_nodes; i++) {
298 mem_reg_property[0] = cpu_to_be64(mem_start);
299 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
300 associativity[3] = associativity[4] = cpu_to_be32(i);
301 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
302 _FDT((fdt_begin_node(fdt, mem_name)));
303 _FDT((fdt_property_string(fdt, "device_type", "memory")));
304 _FDT((fdt_property(fdt, "reg", mem_reg_property,
305 sizeof(mem_reg_property))));
306 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
307 sizeof(associativity))));
308 _FDT((fdt_end_node(fdt)));
309 mem_start += node_mem[i];
312 /* cpus */
313 _FDT((fdt_begin_node(fdt, "cpus")));
315 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
316 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
318 modelname = g_strdup(cpu_model);
320 for (i = 0; i < strlen(modelname); i++) {
321 modelname[i] = toupper(modelname[i]);
324 /* This is needed during FDT finalization */
325 spapr->cpu_model = g_strdup(modelname);
327 for (env = first_cpu; env != NULL; env = env->next_cpu) {
328 int index = env->cpu_index;
329 uint32_t servers_prop[smp_threads];
330 uint32_t gservers_prop[smp_threads * 2];
331 char *nodename;
332 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
333 0xffffffff, 0xffffffff};
334 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
335 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
336 uint32_t page_sizes_prop[64];
337 size_t page_sizes_prop_size;
339 if ((index % smt) != 0) {
340 continue;
343 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
344 fprintf(stderr, "Allocation failure\n");
345 exit(1);
348 _FDT((fdt_begin_node(fdt, nodename)));
350 free(nodename);
352 _FDT((fdt_property_cell(fdt, "reg", index)));
353 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
355 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
356 _FDT((fdt_property_cell(fdt, "dcache-block-size",
357 env->dcache_line_size)));
358 _FDT((fdt_property_cell(fdt, "icache-block-size",
359 env->icache_line_size)));
360 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
361 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
362 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
363 _FDT((fdt_property(fdt, "ibm,pft-size",
364 pft_size_prop, sizeof(pft_size_prop))));
365 _FDT((fdt_property_string(fdt, "status", "okay")));
366 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
368 /* Build interrupt servers and gservers properties */
369 for (i = 0; i < smp_threads; i++) {
370 servers_prop[i] = cpu_to_be32(index + i);
371 /* Hack, direct the group queues back to cpu 0 */
372 gservers_prop[i*2] = cpu_to_be32(index + i);
373 gservers_prop[i*2 + 1] = 0;
375 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
376 servers_prop, sizeof(servers_prop))));
377 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
378 gservers_prop, sizeof(gservers_prop))));
380 if (env->mmu_model & POWERPC_MMU_1TSEG) {
381 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
382 segs, sizeof(segs))));
385 /* Advertise VMX/VSX (vector extensions) if available
386 * 0 / no property == no vector extensions
387 * 1 == VMX / Altivec available
388 * 2 == VSX available */
389 if (env->insns_flags & PPC_ALTIVEC) {
390 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
392 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
395 /* Advertise DFP (Decimal Floating Point) if available
396 * 0 / no property == no DFP
397 * 1 == DFP available */
398 if (env->insns_flags2 & PPC2_DFP) {
399 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
402 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
403 sizeof(page_sizes_prop));
404 if (page_sizes_prop_size) {
405 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
406 page_sizes_prop, page_sizes_prop_size)));
409 _FDT((fdt_end_node(fdt)));
412 g_free(modelname);
414 _FDT((fdt_end_node(fdt)));
416 /* RTAS */
417 _FDT((fdt_begin_node(fdt, "rtas")));
419 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
420 sizeof(hypertas_prop))));
421 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
422 sizeof(qemu_hypertas_prop))));
424 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
425 refpoints, sizeof(refpoints))));
427 _FDT((fdt_end_node(fdt)));
429 /* interrupt controller */
430 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
432 _FDT((fdt_property_string(fdt, "device_type",
433 "PowerPC-External-Interrupt-Presentation")));
434 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
435 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
436 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
437 interrupt_server_ranges_prop,
438 sizeof(interrupt_server_ranges_prop))));
439 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
440 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
441 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
443 _FDT((fdt_end_node(fdt)));
445 /* vdevice */
446 _FDT((fdt_begin_node(fdt, "vdevice")));
448 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
449 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
450 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
451 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
452 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
453 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
455 _FDT((fdt_end_node(fdt)));
457 _FDT((fdt_end_node(fdt))); /* close root node */
458 _FDT((fdt_finish(fdt)));
460 return fdt;
463 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
464 target_phys_addr_t fdt_addr,
465 target_phys_addr_t rtas_addr,
466 target_phys_addr_t rtas_size)
468 int ret;
469 void *fdt;
470 sPAPRPHBState *phb;
472 fdt = g_malloc(FDT_MAX_SIZE);
474 /* open out the base tree into a temp buffer for the final tweaks */
475 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
477 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
478 if (ret < 0) {
479 fprintf(stderr, "couldn't setup vio devices in fdt\n");
480 exit(1);
483 QLIST_FOREACH(phb, &spapr->phbs, list) {
484 ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
487 if (ret < 0) {
488 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
489 exit(1);
492 /* RTAS */
493 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
494 if (ret < 0) {
495 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
498 /* Advertise NUMA via ibm,associativity */
499 if (nb_numa_nodes > 1) {
500 ret = spapr_set_associativity(fdt, spapr);
501 if (ret < 0) {
502 fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
506 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
508 _FDT((fdt_pack(fdt)));
510 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
511 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
512 fdt_totalsize(fdt), FDT_MAX_SIZE);
513 exit(1);
516 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
518 g_free(fdt);
521 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
523 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
526 static void emulate_spapr_hypercall(CPUPPCState *env)
528 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
531 static void spapr_reset(void *opaque)
533 sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
535 fprintf(stderr, "sPAPR reset\n");
537 /* flush out the hash table */
538 memset(spapr->htab, 0, spapr->htab_size);
540 /* Load the fdt */
541 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
542 spapr->rtas_size);
544 /* Set up the entry state */
545 first_cpu->gpr[3] = spapr->fdt_addr;
546 first_cpu->gpr[5] = 0;
547 first_cpu->halted = 0;
548 first_cpu->nip = spapr->entry_point;
552 static void spapr_cpu_reset(void *opaque)
554 PowerPCCPU *cpu = opaque;
556 cpu_reset(CPU(cpu));
559 /* pSeries LPAR / sPAPR hardware init */
560 static void ppc_spapr_init(ram_addr_t ram_size,
561 const char *boot_device,
562 const char *kernel_filename,
563 const char *kernel_cmdline,
564 const char *initrd_filename,
565 const char *cpu_model)
567 PowerPCCPU *cpu;
568 CPUPPCState *env;
569 int i;
570 MemoryRegion *sysmem = get_system_memory();
571 MemoryRegion *ram = g_new(MemoryRegion, 1);
572 target_phys_addr_t rma_alloc_size, rma_size;
573 uint32_t initrd_base = 0;
574 long kernel_size = 0, initrd_size = 0;
575 long load_limit, rtas_limit, fw_size;
576 long pteg_shift = 17;
577 char *filename;
579 spapr = g_malloc0(sizeof(*spapr));
580 QLIST_INIT(&spapr->phbs);
582 cpu_ppc_hypercall = emulate_spapr_hypercall;
584 /* Allocate RMA if necessary */
585 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
587 if (rma_alloc_size == -1) {
588 hw_error("qemu: Unable to create RMA\n");
589 exit(1);
591 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
592 rma_size = rma_alloc_size;
593 } else {
594 rma_size = ram_size;
597 /* We place the device tree and RTAS just below either the top of the RMA,
598 * or just below 2GB, whichever is lowere, so that it can be
599 * processed with 32-bit real mode code if necessary */
600 rtas_limit = MIN(rma_size, 0x80000000);
601 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
602 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
603 load_limit = spapr->fdt_addr - FW_OVERHEAD;
605 /* init CPUs */
606 if (cpu_model == NULL) {
607 cpu_model = kvm_enabled() ? "host" : "POWER7";
609 for (i = 0; i < smp_cpus; i++) {
610 cpu = cpu_ppc_init(cpu_model);
611 if (cpu == NULL) {
612 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
613 exit(1);
615 env = &cpu->env;
617 /* Set time-base frequency to 512 MHz */
618 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
619 qemu_register_reset(spapr_cpu_reset, cpu);
621 env->hreset_vector = 0x60;
622 env->hreset_excp_prefix = 0;
623 env->gpr[3] = env->cpu_index;
626 /* allocate RAM */
627 spapr->ram_limit = ram_size;
628 if (spapr->ram_limit > rma_alloc_size) {
629 ram_addr_t nonrma_base = rma_alloc_size;
630 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
632 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
633 vmstate_register_ram_global(ram);
634 memory_region_add_subregion(sysmem, nonrma_base, ram);
637 /* allocate hash page table. For now we always make this 16mb,
638 * later we should probably make it scale to the size of guest
639 * RAM */
640 spapr->htab_size = 1ULL << (pteg_shift + 7);
641 spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
643 for (env = first_cpu; env != NULL; env = env->next_cpu) {
644 env->external_htab = spapr->htab;
645 env->htab_base = -1;
646 env->htab_mask = spapr->htab_size - 1;
648 /* Tell KVM that we're in PAPR mode */
649 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
650 ((pteg_shift + 7) - 18);
651 env->spr[SPR_HIOR] = 0;
653 if (kvm_enabled()) {
654 kvmppc_set_papr(env);
658 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
659 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
660 rtas_limit - spapr->rtas_addr);
661 if (spapr->rtas_size < 0) {
662 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
663 exit(1);
665 if (spapr->rtas_size > RTAS_MAX_SIZE) {
666 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
667 spapr->rtas_size, RTAS_MAX_SIZE);
668 exit(1);
670 g_free(filename);
673 /* Set up Interrupt Controller */
674 spapr->icp = xics_system_init(XICS_IRQS);
675 spapr->next_irq = 16;
677 /* Set up IOMMU */
678 spapr_iommu_init();
680 /* Set up VIO bus */
681 spapr->vio_bus = spapr_vio_bus_init();
683 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
684 if (serial_hds[i]) {
685 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
689 /* Set up PCI */
690 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
691 SPAPR_PCI_MEM_WIN_ADDR,
692 SPAPR_PCI_MEM_WIN_SIZE,
693 SPAPR_PCI_IO_WIN_ADDR);
695 for (i = 0; i < nb_nics; i++) {
696 NICInfo *nd = &nd_table[i];
698 if (!nd->model) {
699 nd->model = g_strdup("ibmveth");
702 if (strcmp(nd->model, "ibmveth") == 0) {
703 spapr_vlan_create(spapr->vio_bus, nd);
704 } else {
705 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
709 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
710 spapr_vscsi_create(spapr->vio_bus);
713 if (rma_size < (MIN_RMA_SLOF << 20)) {
714 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
715 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
716 exit(1);
719 fprintf(stderr, "sPAPR memory map:\n");
720 fprintf(stderr, "RTAS : 0x%08lx..%08lx\n",
721 (unsigned long)spapr->rtas_addr,
722 (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
723 fprintf(stderr, "FDT : 0x%08lx..%08lx\n",
724 (unsigned long)spapr->fdt_addr,
725 (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
727 if (kernel_filename) {
728 uint64_t lowaddr = 0;
730 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
731 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
732 if (kernel_size < 0) {
733 kernel_size = load_image_targphys(kernel_filename,
734 KERNEL_LOAD_ADDR,
735 load_limit - KERNEL_LOAD_ADDR);
737 if (kernel_size < 0) {
738 fprintf(stderr, "qemu: could not load kernel '%s'\n",
739 kernel_filename);
740 exit(1);
742 fprintf(stderr, "Kernel : 0x%08x..%08lx\n",
743 KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
745 /* load initrd */
746 if (initrd_filename) {
747 /* Try to locate the initrd in the gap between the kernel
748 * and the firmware. Add a bit of space just in case
750 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
751 initrd_size = load_image_targphys(initrd_filename, initrd_base,
752 load_limit - initrd_base);
753 if (initrd_size < 0) {
754 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
755 initrd_filename);
756 exit(1);
758 fprintf(stderr, "Ramdisk : 0x%08lx..%08lx\n",
759 (long)initrd_base, (long)(initrd_base + initrd_size - 1));
760 } else {
761 initrd_base = 0;
762 initrd_size = 0;
766 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
767 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
768 if (fw_size < 0) {
769 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
770 exit(1);
772 g_free(filename);
773 fprintf(stderr, "Firmware load : 0x%08x..%08lx\n",
774 0, fw_size);
775 fprintf(stderr, "Firmware runtime : 0x%08lx..%08lx\n",
776 load_limit, (unsigned long)spapr->fdt_addr);
778 spapr->entry_point = 0x100;
780 /* SLOF will startup the secondary CPUs using RTAS */
781 for (env = first_cpu; env != NULL; env = env->next_cpu) {
782 env->halted = 1;
785 /* Prepare the device tree */
786 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
787 initrd_base, initrd_size,
788 kernel_size,
789 boot_device, kernel_cmdline,
790 pteg_shift + 7);
791 assert(spapr->fdt_skel != NULL);
793 qemu_register_reset(spapr_reset, spapr);
796 static QEMUMachine spapr_machine = {
797 .name = "pseries",
798 .desc = "pSeries Logical Partition (PAPR compliant)",
799 .init = ppc_spapr_init,
800 .max_cpus = MAX_CPUS,
801 .no_parallel = 1,
802 .use_scsi = 1,
805 static void spapr_machine_init(void)
807 qemu_register_machine(&spapr_machine);
810 machine_init(spapr_machine_init);