Merge branch 'upstream-merge'
[qemu-kvm.git] / gdbstub.c
blob14e8b9b4ac994c42ff24009392d309c7914d70ee
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
37 #include "qemu-kvm.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "exec-all.h"
42 #include "qemu_socket.h"
43 #include "kvm.h"
46 enum {
47 GDB_SIGNAL_0 = 0,
48 GDB_SIGNAL_INT = 2,
49 GDB_SIGNAL_TRAP = 5,
50 GDB_SIGNAL_UNKNOWN = 143
53 #ifdef CONFIG_USER_ONLY
55 /* Map target signal numbers to GDB protocol signal numbers and vice
56 * versa. For user emulation's currently supported systems, we can
57 * assume most signals are defined.
60 static int gdb_signal_table[] = {
62 TARGET_SIGHUP,
63 TARGET_SIGINT,
64 TARGET_SIGQUIT,
65 TARGET_SIGILL,
66 TARGET_SIGTRAP,
67 TARGET_SIGABRT,
68 -1, /* SIGEMT */
69 TARGET_SIGFPE,
70 TARGET_SIGKILL,
71 TARGET_SIGBUS,
72 TARGET_SIGSEGV,
73 TARGET_SIGSYS,
74 TARGET_SIGPIPE,
75 TARGET_SIGALRM,
76 TARGET_SIGTERM,
77 TARGET_SIGURG,
78 TARGET_SIGSTOP,
79 TARGET_SIGTSTP,
80 TARGET_SIGCONT,
81 TARGET_SIGCHLD,
82 TARGET_SIGTTIN,
83 TARGET_SIGTTOU,
84 TARGET_SIGIO,
85 TARGET_SIGXCPU,
86 TARGET_SIGXFSZ,
87 TARGET_SIGVTALRM,
88 TARGET_SIGPROF,
89 TARGET_SIGWINCH,
90 -1, /* SIGLOST */
91 TARGET_SIGUSR1,
92 TARGET_SIGUSR2,
93 #ifdef TARGET_SIGPWR
94 TARGET_SIGPWR,
95 #else
96 -1,
97 #endif
98 -1, /* SIGPOLL */
99 -1,
110 #ifdef __SIGRTMIN
111 __SIGRTMIN + 1,
112 __SIGRTMIN + 2,
113 __SIGRTMIN + 3,
114 __SIGRTMIN + 4,
115 __SIGRTMIN + 5,
116 __SIGRTMIN + 6,
117 __SIGRTMIN + 7,
118 __SIGRTMIN + 8,
119 __SIGRTMIN + 9,
120 __SIGRTMIN + 10,
121 __SIGRTMIN + 11,
122 __SIGRTMIN + 12,
123 __SIGRTMIN + 13,
124 __SIGRTMIN + 14,
125 __SIGRTMIN + 15,
126 __SIGRTMIN + 16,
127 __SIGRTMIN + 17,
128 __SIGRTMIN + 18,
129 __SIGRTMIN + 19,
130 __SIGRTMIN + 20,
131 __SIGRTMIN + 21,
132 __SIGRTMIN + 22,
133 __SIGRTMIN + 23,
134 __SIGRTMIN + 24,
135 __SIGRTMIN + 25,
136 __SIGRTMIN + 26,
137 __SIGRTMIN + 27,
138 __SIGRTMIN + 28,
139 __SIGRTMIN + 29,
140 __SIGRTMIN + 30,
141 __SIGRTMIN + 31,
142 -1, /* SIGCANCEL */
143 __SIGRTMIN,
144 __SIGRTMIN + 32,
145 __SIGRTMIN + 33,
146 __SIGRTMIN + 34,
147 __SIGRTMIN + 35,
148 __SIGRTMIN + 36,
149 __SIGRTMIN + 37,
150 __SIGRTMIN + 38,
151 __SIGRTMIN + 39,
152 __SIGRTMIN + 40,
153 __SIGRTMIN + 41,
154 __SIGRTMIN + 42,
155 __SIGRTMIN + 43,
156 __SIGRTMIN + 44,
157 __SIGRTMIN + 45,
158 __SIGRTMIN + 46,
159 __SIGRTMIN + 47,
160 __SIGRTMIN + 48,
161 __SIGRTMIN + 49,
162 __SIGRTMIN + 50,
163 __SIGRTMIN + 51,
164 __SIGRTMIN + 52,
165 __SIGRTMIN + 53,
166 __SIGRTMIN + 54,
167 __SIGRTMIN + 55,
168 __SIGRTMIN + 56,
169 __SIGRTMIN + 57,
170 __SIGRTMIN + 58,
171 __SIGRTMIN + 59,
172 __SIGRTMIN + 60,
173 __SIGRTMIN + 61,
174 __SIGRTMIN + 62,
175 __SIGRTMIN + 63,
176 __SIGRTMIN + 64,
177 __SIGRTMIN + 65,
178 __SIGRTMIN + 66,
179 __SIGRTMIN + 67,
180 __SIGRTMIN + 68,
181 __SIGRTMIN + 69,
182 __SIGRTMIN + 70,
183 __SIGRTMIN + 71,
184 __SIGRTMIN + 72,
185 __SIGRTMIN + 73,
186 __SIGRTMIN + 74,
187 __SIGRTMIN + 75,
188 __SIGRTMIN + 76,
189 __SIGRTMIN + 77,
190 __SIGRTMIN + 78,
191 __SIGRTMIN + 79,
192 __SIGRTMIN + 80,
193 __SIGRTMIN + 81,
194 __SIGRTMIN + 82,
195 __SIGRTMIN + 83,
196 __SIGRTMIN + 84,
197 __SIGRTMIN + 85,
198 __SIGRTMIN + 86,
199 __SIGRTMIN + 87,
200 __SIGRTMIN + 88,
201 __SIGRTMIN + 89,
202 __SIGRTMIN + 90,
203 __SIGRTMIN + 91,
204 __SIGRTMIN + 92,
205 __SIGRTMIN + 93,
206 __SIGRTMIN + 94,
207 __SIGRTMIN + 95,
208 -1, /* SIGINFO */
209 -1, /* UNKNOWN */
210 -1, /* DEFAULT */
217 #endif
219 #else
220 /* In system mode we only need SIGINT and SIGTRAP; other signals
221 are not yet supported. */
223 enum {
224 TARGET_SIGINT = 2,
225 TARGET_SIGTRAP = 5
228 static int gdb_signal_table[] = {
231 TARGET_SIGINT,
234 TARGET_SIGTRAP
236 #endif
238 #ifdef CONFIG_USER_ONLY
239 static int target_signal_to_gdb (int sig)
241 int i;
242 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
243 if (gdb_signal_table[i] == sig)
244 return i;
245 return GDB_SIGNAL_UNKNOWN;
247 #endif
249 static int gdb_signal_to_target (int sig)
251 if (sig < ARRAY_SIZE (gdb_signal_table))
252 return gdb_signal_table[sig];
253 else
254 return -1;
257 //#define DEBUG_GDB
259 typedef struct GDBRegisterState {
260 int base_reg;
261 int num_regs;
262 gdb_reg_cb get_reg;
263 gdb_reg_cb set_reg;
264 const char *xml;
265 struct GDBRegisterState *next;
266 } GDBRegisterState;
268 enum RSState {
269 RS_INACTIVE,
270 RS_IDLE,
271 RS_GETLINE,
272 RS_CHKSUM1,
273 RS_CHKSUM2,
274 RS_SYSCALL,
276 typedef struct GDBState {
277 CPUState *c_cpu; /* current CPU for step/continue ops */
278 CPUState *g_cpu; /* current CPU for other ops */
279 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
280 enum RSState state; /* parsing state */
281 char line_buf[MAX_PACKET_LENGTH];
282 int line_buf_index;
283 int line_csum;
284 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
285 int last_packet_len;
286 int signal;
287 #ifdef CONFIG_USER_ONLY
288 int fd;
289 int running_state;
290 #else
291 CharDriverState *chr;
292 CharDriverState *mon_chr;
293 #endif
294 } GDBState;
296 /* By default use no IRQs and no timers while single stepping so as to
297 * make single stepping like an ICE HW step.
299 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
301 static GDBState *gdbserver_state;
303 /* This is an ugly hack to cope with both new and old gdb.
304 If gdb sends qXfer:features:read then assume we're talking to a newish
305 gdb that understands target descriptions. */
306 static int gdb_has_xml;
308 #ifdef CONFIG_USER_ONLY
309 /* XXX: This is not thread safe. Do we care? */
310 static int gdbserver_fd = -1;
312 static int get_char(GDBState *s)
314 uint8_t ch;
315 int ret;
317 for(;;) {
318 ret = recv(s->fd, &ch, 1, 0);
319 if (ret < 0) {
320 if (errno == ECONNRESET)
321 s->fd = -1;
322 if (errno != EINTR && errno != EAGAIN)
323 return -1;
324 } else if (ret == 0) {
325 close(s->fd);
326 s->fd = -1;
327 return -1;
328 } else {
329 break;
332 return ch;
334 #endif
336 static gdb_syscall_complete_cb gdb_current_syscall_cb;
338 static enum {
339 GDB_SYS_UNKNOWN,
340 GDB_SYS_ENABLED,
341 GDB_SYS_DISABLED,
342 } gdb_syscall_mode;
344 /* If gdb is connected when the first semihosting syscall occurs then use
345 remote gdb syscalls. Otherwise use native file IO. */
346 int use_gdb_syscalls(void)
348 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
349 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
350 : GDB_SYS_DISABLED);
352 return gdb_syscall_mode == GDB_SYS_ENABLED;
355 /* Resume execution. */
356 static inline void gdb_continue(GDBState *s)
358 #ifdef CONFIG_USER_ONLY
359 s->running_state = 1;
360 #else
361 vm_start();
362 #endif
365 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
367 #ifdef CONFIG_USER_ONLY
368 int ret;
370 while (len > 0) {
371 ret = send(s->fd, buf, len, 0);
372 if (ret < 0) {
373 if (errno != EINTR && errno != EAGAIN)
374 return;
375 } else {
376 buf += ret;
377 len -= ret;
380 #else
381 qemu_chr_write(s->chr, buf, len);
382 #endif
385 static inline int fromhex(int v)
387 if (v >= '0' && v <= '9')
388 return v - '0';
389 else if (v >= 'A' && v <= 'F')
390 return v - 'A' + 10;
391 else if (v >= 'a' && v <= 'f')
392 return v - 'a' + 10;
393 else
394 return 0;
397 static inline int tohex(int v)
399 if (v < 10)
400 return v + '0';
401 else
402 return v - 10 + 'a';
405 static void memtohex(char *buf, const uint8_t *mem, int len)
407 int i, c;
408 char *q;
409 q = buf;
410 for(i = 0; i < len; i++) {
411 c = mem[i];
412 *q++ = tohex(c >> 4);
413 *q++ = tohex(c & 0xf);
415 *q = '\0';
418 static void hextomem(uint8_t *mem, const char *buf, int len)
420 int i;
422 for(i = 0; i < len; i++) {
423 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
424 buf += 2;
428 /* return -1 if error, 0 if OK */
429 static int put_packet_binary(GDBState *s, const char *buf, int len)
431 int csum, i;
432 uint8_t *p;
434 for(;;) {
435 p = s->last_packet;
436 *(p++) = '$';
437 memcpy(p, buf, len);
438 p += len;
439 csum = 0;
440 for(i = 0; i < len; i++) {
441 csum += buf[i];
443 *(p++) = '#';
444 *(p++) = tohex((csum >> 4) & 0xf);
445 *(p++) = tohex((csum) & 0xf);
447 s->last_packet_len = p - s->last_packet;
448 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
450 #ifdef CONFIG_USER_ONLY
451 i = get_char(s);
452 if (i < 0)
453 return -1;
454 if (i == '+')
455 break;
456 #else
457 break;
458 #endif
460 return 0;
463 /* return -1 if error, 0 if OK */
464 static int put_packet(GDBState *s, const char *buf)
466 #ifdef DEBUG_GDB
467 printf("reply='%s'\n", buf);
468 #endif
470 return put_packet_binary(s, buf, strlen(buf));
473 /* The GDB remote protocol transfers values in target byte order. This means
474 we can use the raw memory access routines to access the value buffer.
475 Conveniently, these also handle the case where the buffer is mis-aligned.
477 #define GET_REG8(val) do { \
478 stb_p(mem_buf, val); \
479 return 1; \
480 } while(0)
481 #define GET_REG16(val) do { \
482 stw_p(mem_buf, val); \
483 return 2; \
484 } while(0)
485 #define GET_REG32(val) do { \
486 stl_p(mem_buf, val); \
487 return 4; \
488 } while(0)
489 #define GET_REG64(val) do { \
490 stq_p(mem_buf, val); \
491 return 8; \
492 } while(0)
494 #if TARGET_LONG_BITS == 64
495 #define GET_REGL(val) GET_REG64(val)
496 #define ldtul_p(addr) ldq_p(addr)
497 #else
498 #define GET_REGL(val) GET_REG32(val)
499 #define ldtul_p(addr) ldl_p(addr)
500 #endif
502 #if defined(TARGET_I386)
504 #ifdef TARGET_X86_64
505 static const int gpr_map[16] = {
506 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
507 8, 9, 10, 11, 12, 13, 14, 15
509 #else
510 #define gpr_map gpr_map32
511 #endif
512 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
514 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
516 #define IDX_IP_REG CPU_NB_REGS
517 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
518 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
519 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
520 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
521 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
523 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
525 if (n < CPU_NB_REGS) {
526 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
527 GET_REG64(env->regs[gpr_map[n]]);
528 } else if (n < CPU_NB_REGS32) {
529 GET_REG32(env->regs[gpr_map32[n]]);
531 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
532 #ifdef USE_X86LDOUBLE
533 /* FIXME: byteswap float values - after fixing fpregs layout. */
534 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
535 #else
536 memset(mem_buf, 0, 10);
537 #endif
538 return 10;
539 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
540 n -= IDX_XMM_REGS;
541 if (n < CPU_NB_REGS32 ||
542 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
543 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
544 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
545 return 16;
547 } else {
548 switch (n) {
549 case IDX_IP_REG:
550 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
551 GET_REG64(env->eip);
552 } else {
553 GET_REG32(env->eip);
555 case IDX_FLAGS_REG: GET_REG32(env->eflags);
557 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
558 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
559 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
560 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
561 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
562 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
564 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
565 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
566 (env->fpstt & 0x7) << 11);
567 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
568 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
569 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
570 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
571 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
572 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
574 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
577 return 0;
580 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
582 uint16_t selector = ldl_p(mem_buf);
584 if (selector != env->segs[sreg].selector) {
585 #if defined(CONFIG_USER_ONLY)
586 cpu_x86_load_seg(env, sreg, selector);
587 #else
588 unsigned int limit, flags;
589 target_ulong base;
591 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
592 base = selector << 4;
593 limit = 0xffff;
594 flags = 0;
595 } else {
596 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
597 return 4;
599 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
600 #endif
602 return 4;
605 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
607 uint32_t tmp;
609 if (n < CPU_NB_REGS) {
610 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
611 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
612 return sizeof(target_ulong);
613 } else if (n < CPU_NB_REGS32) {
614 n = gpr_map32[n];
615 env->regs[n] &= ~0xffffffffUL;
616 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
617 return 4;
619 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
620 #ifdef USE_X86LDOUBLE
621 /* FIXME: byteswap float values - after fixing fpregs layout. */
622 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
623 #endif
624 return 10;
625 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
626 n -= IDX_XMM_REGS;
627 if (n < CPU_NB_REGS32 ||
628 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
629 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
630 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
631 return 16;
633 } else {
634 switch (n) {
635 case IDX_IP_REG:
636 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
637 env->eip = ldq_p(mem_buf);
638 return 8;
639 } else {
640 env->eip &= ~0xffffffffUL;
641 env->eip |= (uint32_t)ldl_p(mem_buf);
642 return 4;
644 case IDX_FLAGS_REG:
645 env->eflags = ldl_p(mem_buf);
646 return 4;
648 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
649 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
650 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
651 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
652 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
653 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
655 case IDX_FP_REGS + 8:
656 env->fpuc = ldl_p(mem_buf);
657 return 4;
658 case IDX_FP_REGS + 9:
659 tmp = ldl_p(mem_buf);
660 env->fpstt = (tmp >> 11) & 7;
661 env->fpus = tmp & ~0x3800;
662 return 4;
663 case IDX_FP_REGS + 10: /* ftag */ return 4;
664 case IDX_FP_REGS + 11: /* fiseg */ return 4;
665 case IDX_FP_REGS + 12: /* fioff */ return 4;
666 case IDX_FP_REGS + 13: /* foseg */ return 4;
667 case IDX_FP_REGS + 14: /* fooff */ return 4;
668 case IDX_FP_REGS + 15: /* fop */ return 4;
670 case IDX_MXCSR_REG:
671 env->mxcsr = ldl_p(mem_buf);
672 return 4;
675 /* Unrecognised register. */
676 return 0;
679 #elif defined (TARGET_PPC)
681 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
682 expects whatever the target description contains. Due to a
683 historical mishap the FP registers appear in between core integer
684 regs and PC, MSR, CR, and so forth. We hack round this by giving the
685 FP regs zero size when talking to a newer gdb. */
686 #define NUM_CORE_REGS 71
687 #if defined (TARGET_PPC64)
688 #define GDB_CORE_XML "power64-core.xml"
689 #else
690 #define GDB_CORE_XML "power-core.xml"
691 #endif
693 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
695 if (n < 32) {
696 /* gprs */
697 GET_REGL(env->gpr[n]);
698 } else if (n < 64) {
699 /* fprs */
700 if (gdb_has_xml)
701 return 0;
702 stfq_p(mem_buf, env->fpr[n-32]);
703 return 8;
704 } else {
705 switch (n) {
706 case 64: GET_REGL(env->nip);
707 case 65: GET_REGL(env->msr);
708 case 66:
710 uint32_t cr = 0;
711 int i;
712 for (i = 0; i < 8; i++)
713 cr |= env->crf[i] << (32 - ((i + 1) * 4));
714 GET_REG32(cr);
716 case 67: GET_REGL(env->lr);
717 case 68: GET_REGL(env->ctr);
718 case 69: GET_REGL(env->xer);
719 case 70:
721 if (gdb_has_xml)
722 return 0;
723 GET_REG32(0); /* fpscr */
727 return 0;
730 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
732 if (n < 32) {
733 /* gprs */
734 env->gpr[n] = ldtul_p(mem_buf);
735 return sizeof(target_ulong);
736 } else if (n < 64) {
737 /* fprs */
738 if (gdb_has_xml)
739 return 0;
740 env->fpr[n-32] = ldfq_p(mem_buf);
741 return 8;
742 } else {
743 switch (n) {
744 case 64:
745 env->nip = ldtul_p(mem_buf);
746 return sizeof(target_ulong);
747 case 65:
748 ppc_store_msr(env, ldtul_p(mem_buf));
749 return sizeof(target_ulong);
750 case 66:
752 uint32_t cr = ldl_p(mem_buf);
753 int i;
754 for (i = 0; i < 8; i++)
755 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
756 return 4;
758 case 67:
759 env->lr = ldtul_p(mem_buf);
760 return sizeof(target_ulong);
761 case 68:
762 env->ctr = ldtul_p(mem_buf);
763 return sizeof(target_ulong);
764 case 69:
765 env->xer = ldtul_p(mem_buf);
766 return sizeof(target_ulong);
767 case 70:
768 /* fpscr */
769 if (gdb_has_xml)
770 return 0;
771 return 4;
774 return 0;
777 #elif defined (TARGET_SPARC)
779 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
780 #define NUM_CORE_REGS 86
781 #else
782 #define NUM_CORE_REGS 72
783 #endif
785 #ifdef TARGET_ABI32
786 #define GET_REGA(val) GET_REG32(val)
787 #else
788 #define GET_REGA(val) GET_REGL(val)
789 #endif
791 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
793 if (n < 8) {
794 /* g0..g7 */
795 GET_REGA(env->gregs[n]);
797 if (n < 32) {
798 /* register window */
799 GET_REGA(env->regwptr[n - 8]);
801 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
802 if (n < 64) {
803 /* fprs */
804 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
806 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
807 switch (n) {
808 case 64: GET_REGA(env->y);
809 case 65: GET_REGA(cpu_get_psr(env));
810 case 66: GET_REGA(env->wim);
811 case 67: GET_REGA(env->tbr);
812 case 68: GET_REGA(env->pc);
813 case 69: GET_REGA(env->npc);
814 case 70: GET_REGA(env->fsr);
815 case 71: GET_REGA(0); /* csr */
816 default: GET_REGA(0);
818 #else
819 if (n < 64) {
820 /* f0-f31 */
821 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
823 if (n < 80) {
824 /* f32-f62 (double width, even numbers only) */
825 uint64_t val;
827 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
828 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
829 GET_REG64(val);
831 switch (n) {
832 case 80: GET_REGL(env->pc);
833 case 81: GET_REGL(env->npc);
834 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
835 ((env->asi & 0xff) << 24) |
836 ((env->pstate & 0xfff) << 8) |
837 cpu_get_cwp64(env));
838 case 83: GET_REGL(env->fsr);
839 case 84: GET_REGL(env->fprs);
840 case 85: GET_REGL(env->y);
842 #endif
843 return 0;
846 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
848 #if defined(TARGET_ABI32)
849 abi_ulong tmp;
851 tmp = ldl_p(mem_buf);
852 #else
853 target_ulong tmp;
855 tmp = ldtul_p(mem_buf);
856 #endif
858 if (n < 8) {
859 /* g0..g7 */
860 env->gregs[n] = tmp;
861 } else if (n < 32) {
862 /* register window */
863 env->regwptr[n - 8] = tmp;
865 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
866 else if (n < 64) {
867 /* fprs */
868 *((uint32_t *)&env->fpr[n - 32]) = tmp;
869 } else {
870 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
871 switch (n) {
872 case 64: env->y = tmp; break;
873 case 65: cpu_put_psr(env, tmp); break;
874 case 66: env->wim = tmp; break;
875 case 67: env->tbr = tmp; break;
876 case 68: env->pc = tmp; break;
877 case 69: env->npc = tmp; break;
878 case 70: env->fsr = tmp; break;
879 default: return 0;
882 return 4;
883 #else
884 else if (n < 64) {
885 /* f0-f31 */
886 env->fpr[n] = ldfl_p(mem_buf);
887 return 4;
888 } else if (n < 80) {
889 /* f32-f62 (double width, even numbers only) */
890 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
891 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
892 } else {
893 switch (n) {
894 case 80: env->pc = tmp; break;
895 case 81: env->npc = tmp; break;
896 case 82:
897 cpu_put_ccr(env, tmp >> 32);
898 env->asi = (tmp >> 24) & 0xff;
899 env->pstate = (tmp >> 8) & 0xfff;
900 cpu_put_cwp64(env, tmp & 0xff);
901 break;
902 case 83: env->fsr = tmp; break;
903 case 84: env->fprs = tmp; break;
904 case 85: env->y = tmp; break;
905 default: return 0;
908 return 8;
909 #endif
911 #elif defined (TARGET_ARM)
913 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
914 whatever the target description contains. Due to a historical mishap
915 the FPA registers appear in between core integer regs and the CPSR.
916 We hack round this by giving the FPA regs zero size when talking to a
917 newer gdb. */
918 #define NUM_CORE_REGS 26
919 #define GDB_CORE_XML "arm-core.xml"
921 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
923 if (n < 16) {
924 /* Core integer register. */
925 GET_REG32(env->regs[n]);
927 if (n < 24) {
928 /* FPA registers. */
929 if (gdb_has_xml)
930 return 0;
931 memset(mem_buf, 0, 12);
932 return 12;
934 switch (n) {
935 case 24:
936 /* FPA status register. */
937 if (gdb_has_xml)
938 return 0;
939 GET_REG32(0);
940 case 25:
941 /* CPSR */
942 GET_REG32(cpsr_read(env));
944 /* Unknown register. */
945 return 0;
948 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
950 uint32_t tmp;
952 tmp = ldl_p(mem_buf);
954 /* Mask out low bit of PC to workaround gdb bugs. This will probably
955 cause problems if we ever implement the Jazelle DBX extensions. */
956 if (n == 15)
957 tmp &= ~1;
959 if (n < 16) {
960 /* Core integer register. */
961 env->regs[n] = tmp;
962 return 4;
964 if (n < 24) { /* 16-23 */
965 /* FPA registers (ignored). */
966 if (gdb_has_xml)
967 return 0;
968 return 12;
970 switch (n) {
971 case 24:
972 /* FPA status register (ignored). */
973 if (gdb_has_xml)
974 return 0;
975 return 4;
976 case 25:
977 /* CPSR */
978 cpsr_write (env, tmp, 0xffffffff);
979 return 4;
981 /* Unknown register. */
982 return 0;
985 #elif defined (TARGET_M68K)
987 #define NUM_CORE_REGS 18
989 #define GDB_CORE_XML "cf-core.xml"
991 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
993 if (n < 8) {
994 /* D0-D7 */
995 GET_REG32(env->dregs[n]);
996 } else if (n < 16) {
997 /* A0-A7 */
998 GET_REG32(env->aregs[n - 8]);
999 } else {
1000 switch (n) {
1001 case 16: GET_REG32(env->sr);
1002 case 17: GET_REG32(env->pc);
1005 /* FP registers not included here because they vary between
1006 ColdFire and m68k. Use XML bits for these. */
1007 return 0;
1010 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1012 uint32_t tmp;
1014 tmp = ldl_p(mem_buf);
1016 if (n < 8) {
1017 /* D0-D7 */
1018 env->dregs[n] = tmp;
1019 } else if (n < 16) {
1020 /* A0-A7 */
1021 env->aregs[n - 8] = tmp;
1022 } else {
1023 switch (n) {
1024 case 16: env->sr = tmp; break;
1025 case 17: env->pc = tmp; break;
1026 default: return 0;
1029 return 4;
1031 #elif defined (TARGET_MIPS)
1033 #define NUM_CORE_REGS 73
1035 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1037 if (n < 32) {
1038 GET_REGL(env->active_tc.gpr[n]);
1040 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1041 if (n >= 38 && n < 70) {
1042 if (env->CP0_Status & (1 << CP0St_FR))
1043 GET_REGL(env->active_fpu.fpr[n - 38].d);
1044 else
1045 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1047 switch (n) {
1048 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1049 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1052 switch (n) {
1053 case 32: GET_REGL((int32_t)env->CP0_Status);
1054 case 33: GET_REGL(env->active_tc.LO[0]);
1055 case 34: GET_REGL(env->active_tc.HI[0]);
1056 case 35: GET_REGL(env->CP0_BadVAddr);
1057 case 36: GET_REGL((int32_t)env->CP0_Cause);
1058 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1059 case 72: GET_REGL(0); /* fp */
1060 case 89: GET_REGL((int32_t)env->CP0_PRid);
1062 if (n >= 73 && n <= 88) {
1063 /* 16 embedded regs. */
1064 GET_REGL(0);
1067 return 0;
1070 /* convert MIPS rounding mode in FCR31 to IEEE library */
1071 static unsigned int ieee_rm[] =
1073 float_round_nearest_even,
1074 float_round_to_zero,
1075 float_round_up,
1076 float_round_down
1078 #define RESTORE_ROUNDING_MODE \
1079 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1081 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1083 target_ulong tmp;
1085 tmp = ldtul_p(mem_buf);
1087 if (n < 32) {
1088 env->active_tc.gpr[n] = tmp;
1089 return sizeof(target_ulong);
1091 if (env->CP0_Config1 & (1 << CP0C1_FP)
1092 && n >= 38 && n < 73) {
1093 if (n < 70) {
1094 if (env->CP0_Status & (1 << CP0St_FR))
1095 env->active_fpu.fpr[n - 38].d = tmp;
1096 else
1097 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1099 switch (n) {
1100 case 70:
1101 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1102 /* set rounding mode */
1103 RESTORE_ROUNDING_MODE;
1104 #ifndef CONFIG_SOFTFLOAT
1105 /* no floating point exception for native float */
1106 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1107 #endif
1108 break;
1109 case 71: env->active_fpu.fcr0 = tmp; break;
1111 return sizeof(target_ulong);
1113 switch (n) {
1114 case 32: env->CP0_Status = tmp; break;
1115 case 33: env->active_tc.LO[0] = tmp; break;
1116 case 34: env->active_tc.HI[0] = tmp; break;
1117 case 35: env->CP0_BadVAddr = tmp; break;
1118 case 36: env->CP0_Cause = tmp; break;
1119 case 37:
1120 env->active_tc.PC = tmp & ~(target_ulong)1;
1121 if (tmp & 1) {
1122 env->hflags |= MIPS_HFLAG_M16;
1123 } else {
1124 env->hflags &= ~(MIPS_HFLAG_M16);
1126 break;
1127 case 72: /* fp, ignored */ break;
1128 default:
1129 if (n > 89)
1130 return 0;
1131 /* Other registers are readonly. Ignore writes. */
1132 break;
1135 return sizeof(target_ulong);
1137 #elif defined (TARGET_SH4)
1139 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1140 /* FIXME: We should use XML for this. */
1142 #define NUM_CORE_REGS 59
1144 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1146 if (n < 8) {
1147 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1148 GET_REGL(env->gregs[n + 16]);
1149 } else {
1150 GET_REGL(env->gregs[n]);
1152 } else if (n < 16) {
1153 GET_REGL(env->gregs[n]);
1154 } else if (n >= 25 && n < 41) {
1155 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1156 } else if (n >= 43 && n < 51) {
1157 GET_REGL(env->gregs[n - 43]);
1158 } else if (n >= 51 && n < 59) {
1159 GET_REGL(env->gregs[n - (51 - 16)]);
1161 switch (n) {
1162 case 16: GET_REGL(env->pc);
1163 case 17: GET_REGL(env->pr);
1164 case 18: GET_REGL(env->gbr);
1165 case 19: GET_REGL(env->vbr);
1166 case 20: GET_REGL(env->mach);
1167 case 21: GET_REGL(env->macl);
1168 case 22: GET_REGL(env->sr);
1169 case 23: GET_REGL(env->fpul);
1170 case 24: GET_REGL(env->fpscr);
1171 case 41: GET_REGL(env->ssr);
1172 case 42: GET_REGL(env->spc);
1175 return 0;
1178 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1180 uint32_t tmp;
1182 tmp = ldl_p(mem_buf);
1184 if (n < 8) {
1185 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1186 env->gregs[n + 16] = tmp;
1187 } else {
1188 env->gregs[n] = tmp;
1190 return 4;
1191 } else if (n < 16) {
1192 env->gregs[n] = tmp;
1193 return 4;
1194 } else if (n >= 25 && n < 41) {
1195 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1196 return 4;
1197 } else if (n >= 43 && n < 51) {
1198 env->gregs[n - 43] = tmp;
1199 return 4;
1200 } else if (n >= 51 && n < 59) {
1201 env->gregs[n - (51 - 16)] = tmp;
1202 return 4;
1204 switch (n) {
1205 case 16: env->pc = tmp; break;
1206 case 17: env->pr = tmp; break;
1207 case 18: env->gbr = tmp; break;
1208 case 19: env->vbr = tmp; break;
1209 case 20: env->mach = tmp; break;
1210 case 21: env->macl = tmp; break;
1211 case 22: env->sr = tmp; break;
1212 case 23: env->fpul = tmp; break;
1213 case 24: env->fpscr = tmp; break;
1214 case 41: env->ssr = tmp; break;
1215 case 42: env->spc = tmp; break;
1216 default: return 0;
1219 return 4;
1221 #elif defined (TARGET_MICROBLAZE)
1223 #define NUM_CORE_REGS (32 + 5)
1225 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1227 if (n < 32) {
1228 GET_REG32(env->regs[n]);
1229 } else {
1230 GET_REG32(env->sregs[n - 32]);
1232 return 0;
1235 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1237 uint32_t tmp;
1239 if (n > NUM_CORE_REGS)
1240 return 0;
1242 tmp = ldl_p(mem_buf);
1244 if (n < 32) {
1245 env->regs[n] = tmp;
1246 } else {
1247 env->sregs[n - 32] = tmp;
1249 return 4;
1251 #elif defined (TARGET_CRIS)
1253 #define NUM_CORE_REGS 49
1255 static int
1256 read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
1258 if (n < 15) {
1259 GET_REG32(env->regs[n]);
1262 if (n == 15) {
1263 GET_REG32(env->pc);
1266 if (n < 32) {
1267 switch (n) {
1268 case 16:
1269 GET_REG8(env->pregs[n - 16]);
1270 break;
1271 case 17:
1272 GET_REG8(env->pregs[n - 16]);
1273 break;
1274 case 20:
1275 case 21:
1276 GET_REG16(env->pregs[n - 16]);
1277 break;
1278 default:
1279 if (n >= 23) {
1280 GET_REG32(env->pregs[n - 16]);
1282 break;
1285 return 0;
1288 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1290 uint8_t srs;
1292 if (env->pregs[PR_VR] < 32)
1293 return read_register_crisv10(env, mem_buf, n);
1295 srs = env->pregs[PR_SRS];
1296 if (n < 16) {
1297 GET_REG32(env->regs[n]);
1300 if (n >= 21 && n < 32) {
1301 GET_REG32(env->pregs[n - 16]);
1303 if (n >= 33 && n < 49) {
1304 GET_REG32(env->sregs[srs][n - 33]);
1306 switch (n) {
1307 case 16: GET_REG8(env->pregs[0]);
1308 case 17: GET_REG8(env->pregs[1]);
1309 case 18: GET_REG32(env->pregs[2]);
1310 case 19: GET_REG8(srs);
1311 case 20: GET_REG16(env->pregs[4]);
1312 case 32: GET_REG32(env->pc);
1315 return 0;
1318 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1320 uint32_t tmp;
1322 if (n > 49)
1323 return 0;
1325 tmp = ldl_p(mem_buf);
1327 if (n < 16) {
1328 env->regs[n] = tmp;
1331 if (n >= 21 && n < 32) {
1332 env->pregs[n - 16] = tmp;
1335 /* FIXME: Should support function regs be writable? */
1336 switch (n) {
1337 case 16: return 1;
1338 case 17: return 1;
1339 case 18: env->pregs[PR_PID] = tmp; break;
1340 case 19: return 1;
1341 case 20: return 2;
1342 case 32: env->pc = tmp; break;
1345 return 4;
1347 #elif defined (TARGET_ALPHA)
1349 #define NUM_CORE_REGS 67
1351 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1353 uint64_t val;
1354 CPU_DoubleU d;
1356 switch (n) {
1357 case 0 ... 30:
1358 val = env->ir[n];
1359 break;
1360 case 32 ... 62:
1361 d.d = env->fir[n - 32];
1362 val = d.ll;
1363 break;
1364 case 63:
1365 val = cpu_alpha_load_fpcr(env);
1366 break;
1367 case 64:
1368 val = env->pc;
1369 break;
1370 case 66:
1371 val = env->unique;
1372 break;
1373 case 31:
1374 case 65:
1375 /* 31 really is the zero register; 65 is unassigned in the
1376 gdb protocol, but is still required to occupy 8 bytes. */
1377 val = 0;
1378 break;
1379 default:
1380 return 0;
1382 GET_REGL(val);
1385 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1387 target_ulong tmp = ldtul_p(mem_buf);
1388 CPU_DoubleU d;
1390 switch (n) {
1391 case 0 ... 30:
1392 env->ir[n] = tmp;
1393 break;
1394 case 32 ... 62:
1395 d.ll = tmp;
1396 env->fir[n - 32] = d.d;
1397 break;
1398 case 63:
1399 cpu_alpha_store_fpcr(env, tmp);
1400 break;
1401 case 64:
1402 env->pc = tmp;
1403 break;
1404 case 66:
1405 env->unique = tmp;
1406 break;
1407 case 31:
1408 case 65:
1409 /* 31 really is the zero register; 65 is unassigned in the
1410 gdb protocol, but is still required to occupy 8 bytes. */
1411 break;
1412 default:
1413 return 0;
1415 return 8;
1417 #elif defined (TARGET_S390X)
1419 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1421 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1423 switch (n) {
1424 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1425 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1426 case S390_R0_REGNUM ... S390_R15_REGNUM:
1427 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1428 case S390_A0_REGNUM ... S390_A15_REGNUM:
1429 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1430 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1431 case S390_F0_REGNUM ... S390_F15_REGNUM:
1432 /* XXX */
1433 break;
1434 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1435 case S390_CC_REGNUM: GET_REG32(env->cc); break;
1438 return 0;
1441 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1443 target_ulong tmpl;
1444 uint32_t tmp32;
1445 int r = 8;
1446 tmpl = ldtul_p(mem_buf);
1447 tmp32 = ldl_p(mem_buf);
1449 switch (n) {
1450 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1451 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1452 case S390_R0_REGNUM ... S390_R15_REGNUM:
1453 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1454 case S390_A0_REGNUM ... S390_A15_REGNUM:
1455 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1456 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1457 case S390_F0_REGNUM ... S390_F15_REGNUM:
1458 /* XXX */
1459 break;
1460 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1461 case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
1464 return r;
1466 #else
1468 #define NUM_CORE_REGS 0
1470 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1472 return 0;
1475 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1477 return 0;
1480 #endif
1482 static int num_g_regs = NUM_CORE_REGS;
1484 #ifdef GDB_CORE_XML
1485 /* Encode data using the encoding for 'x' packets. */
1486 static int memtox(char *buf, const char *mem, int len)
1488 char *p = buf;
1489 char c;
1491 while (len--) {
1492 c = *(mem++);
1493 switch (c) {
1494 case '#': case '$': case '*': case '}':
1495 *(p++) = '}';
1496 *(p++) = c ^ 0x20;
1497 break;
1498 default:
1499 *(p++) = c;
1500 break;
1503 return p - buf;
1506 static const char *get_feature_xml(const char *p, const char **newp)
1508 size_t len;
1509 int i;
1510 const char *name;
1511 static char target_xml[1024];
1513 len = 0;
1514 while (p[len] && p[len] != ':')
1515 len++;
1516 *newp = p + len;
1518 name = NULL;
1519 if (strncmp(p, "target.xml", len) == 0) {
1520 /* Generate the XML description for this CPU. */
1521 if (!target_xml[0]) {
1522 GDBRegisterState *r;
1524 snprintf(target_xml, sizeof(target_xml),
1525 "<?xml version=\"1.0\"?>"
1526 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1527 "<target>"
1528 "<xi:include href=\"%s\"/>",
1529 GDB_CORE_XML);
1531 for (r = first_cpu->gdb_regs; r; r = r->next) {
1532 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1533 pstrcat(target_xml, sizeof(target_xml), r->xml);
1534 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1536 pstrcat(target_xml, sizeof(target_xml), "</target>");
1538 return target_xml;
1540 for (i = 0; ; i++) {
1541 name = xml_builtin[i][0];
1542 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1543 break;
1545 return name ? xml_builtin[i][1] : NULL;
1547 #endif
1549 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1551 GDBRegisterState *r;
1553 if (reg < NUM_CORE_REGS)
1554 return cpu_gdb_read_register(env, mem_buf, reg);
1556 for (r = env->gdb_regs; r; r = r->next) {
1557 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1558 return r->get_reg(env, mem_buf, reg - r->base_reg);
1561 return 0;
1564 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1566 GDBRegisterState *r;
1568 if (reg < NUM_CORE_REGS)
1569 return cpu_gdb_write_register(env, mem_buf, reg);
1571 for (r = env->gdb_regs; r; r = r->next) {
1572 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1573 return r->set_reg(env, mem_buf, reg - r->base_reg);
1576 return 0;
1579 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1580 specifies the first register number and these registers are included in
1581 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1582 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1585 void gdb_register_coprocessor(CPUState * env,
1586 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1587 int num_regs, const char *xml, int g_pos)
1589 GDBRegisterState *s;
1590 GDBRegisterState **p;
1591 static int last_reg = NUM_CORE_REGS;
1593 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1594 s->base_reg = last_reg;
1595 s->num_regs = num_regs;
1596 s->get_reg = get_reg;
1597 s->set_reg = set_reg;
1598 s->xml = xml;
1599 p = &env->gdb_regs;
1600 while (*p) {
1601 /* Check for duplicates. */
1602 if (strcmp((*p)->xml, xml) == 0)
1603 return;
1604 p = &(*p)->next;
1606 /* Add to end of list. */
1607 last_reg += num_regs;
1608 *p = s;
1609 if (g_pos) {
1610 if (g_pos != s->base_reg) {
1611 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1612 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1613 } else {
1614 num_g_regs = last_reg;
1619 #ifndef CONFIG_USER_ONLY
1620 static const int xlat_gdb_type[] = {
1621 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1622 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1623 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1625 #endif
1627 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1629 CPUState *env;
1630 int err = 0;
1632 if (kvm_enabled())
1633 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1635 switch (type) {
1636 case GDB_BREAKPOINT_SW:
1637 case GDB_BREAKPOINT_HW:
1638 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1639 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1640 if (err)
1641 break;
1643 return err;
1644 #ifndef CONFIG_USER_ONLY
1645 case GDB_WATCHPOINT_WRITE:
1646 case GDB_WATCHPOINT_READ:
1647 case GDB_WATCHPOINT_ACCESS:
1648 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1649 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1650 NULL);
1651 if (err)
1652 break;
1654 return err;
1655 #endif
1656 default:
1657 return -ENOSYS;
1661 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1663 CPUState *env;
1664 int err = 0;
1666 if (kvm_enabled())
1667 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1669 switch (type) {
1670 case GDB_BREAKPOINT_SW:
1671 case GDB_BREAKPOINT_HW:
1672 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1673 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1674 if (err)
1675 break;
1677 return err;
1678 #ifndef CONFIG_USER_ONLY
1679 case GDB_WATCHPOINT_WRITE:
1680 case GDB_WATCHPOINT_READ:
1681 case GDB_WATCHPOINT_ACCESS:
1682 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1683 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1684 if (err)
1685 break;
1687 return err;
1688 #endif
1689 default:
1690 return -ENOSYS;
1694 static void gdb_breakpoint_remove_all(void)
1696 CPUState *env;
1698 if (kvm_enabled()) {
1699 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1700 return;
1703 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1704 cpu_breakpoint_remove_all(env, BP_GDB);
1705 #ifndef CONFIG_USER_ONLY
1706 cpu_watchpoint_remove_all(env, BP_GDB);
1707 #endif
1711 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1713 #if defined(TARGET_I386)
1714 cpu_synchronize_state(s->c_cpu);
1715 s->c_cpu->eip = pc;
1716 #elif defined (TARGET_PPC)
1717 s->c_cpu->nip = pc;
1718 #elif defined (TARGET_SPARC)
1719 s->c_cpu->pc = pc;
1720 s->c_cpu->npc = pc + 4;
1721 #elif defined (TARGET_ARM)
1722 s->c_cpu->regs[15] = pc;
1723 #elif defined (TARGET_SH4)
1724 s->c_cpu->pc = pc;
1725 #elif defined (TARGET_MIPS)
1726 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1727 if (pc & 1) {
1728 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1729 } else {
1730 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1732 #elif defined (TARGET_MICROBLAZE)
1733 s->c_cpu->sregs[SR_PC] = pc;
1734 #elif defined (TARGET_CRIS)
1735 s->c_cpu->pc = pc;
1736 #elif defined (TARGET_ALPHA)
1737 s->c_cpu->pc = pc;
1738 #elif defined (TARGET_S390X)
1739 cpu_synchronize_state(s->c_cpu);
1740 s->c_cpu->psw.addr = pc;
1741 #endif
1744 static inline int gdb_id(CPUState *env)
1746 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1747 return env->host_tid;
1748 #else
1749 return env->cpu_index + 1;
1750 #endif
1753 static CPUState *find_cpu(uint32_t thread_id)
1755 CPUState *env;
1757 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1758 if (gdb_id(env) == thread_id) {
1759 return env;
1763 return NULL;
1766 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1768 CPUState *env;
1769 const char *p;
1770 uint32_t thread;
1771 int ch, reg_size, type, res;
1772 char buf[MAX_PACKET_LENGTH];
1773 uint8_t mem_buf[MAX_PACKET_LENGTH];
1774 uint8_t *registers;
1775 target_ulong addr, len;
1777 #ifdef DEBUG_GDB
1778 printf("command='%s'\n", line_buf);
1779 #endif
1780 p = line_buf;
1781 ch = *p++;
1782 switch(ch) {
1783 case '?':
1784 /* TODO: Make this return the correct value for user-mode. */
1785 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1786 gdb_id(s->c_cpu));
1787 put_packet(s, buf);
1788 /* Remove all the breakpoints when this query is issued,
1789 * because gdb is doing and initial connect and the state
1790 * should be cleaned up.
1792 gdb_breakpoint_remove_all();
1793 break;
1794 case 'c':
1795 if (*p != '\0') {
1796 addr = strtoull(p, (char **)&p, 16);
1797 gdb_set_cpu_pc(s, addr);
1799 s->signal = 0;
1800 gdb_continue(s);
1801 return RS_IDLE;
1802 case 'C':
1803 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1804 if (s->signal == -1)
1805 s->signal = 0;
1806 gdb_continue(s);
1807 return RS_IDLE;
1808 case 'v':
1809 if (strncmp(p, "Cont", 4) == 0) {
1810 int res_signal, res_thread;
1812 p += 4;
1813 if (*p == '?') {
1814 put_packet(s, "vCont;c;C;s;S");
1815 break;
1817 res = 0;
1818 res_signal = 0;
1819 res_thread = 0;
1820 while (*p) {
1821 int action, signal;
1823 if (*p++ != ';') {
1824 res = 0;
1825 break;
1827 action = *p++;
1828 signal = 0;
1829 if (action == 'C' || action == 'S') {
1830 signal = strtoul(p, (char **)&p, 16);
1831 } else if (action != 'c' && action != 's') {
1832 res = 0;
1833 break;
1835 thread = 0;
1836 if (*p == ':') {
1837 thread = strtoull(p+1, (char **)&p, 16);
1839 action = tolower(action);
1840 if (res == 0 || (res == 'c' && action == 's')) {
1841 res = action;
1842 res_signal = signal;
1843 res_thread = thread;
1846 if (res) {
1847 if (res_thread != -1 && res_thread != 0) {
1848 env = find_cpu(res_thread);
1849 if (env == NULL) {
1850 put_packet(s, "E22");
1851 break;
1853 s->c_cpu = env;
1855 if (res == 's') {
1856 cpu_single_step(s->c_cpu, sstep_flags);
1858 s->signal = res_signal;
1859 gdb_continue(s);
1860 return RS_IDLE;
1862 break;
1863 } else {
1864 goto unknown_command;
1866 case 'k':
1867 /* Kill the target */
1868 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1869 exit(0);
1870 case 'D':
1871 /* Detach packet */
1872 gdb_breakpoint_remove_all();
1873 gdb_syscall_mode = GDB_SYS_DISABLED;
1874 gdb_continue(s);
1875 put_packet(s, "OK");
1876 break;
1877 case 's':
1878 if (*p != '\0') {
1879 addr = strtoull(p, (char **)&p, 16);
1880 gdb_set_cpu_pc(s, addr);
1882 cpu_single_step(s->c_cpu, sstep_flags);
1883 gdb_continue(s);
1884 return RS_IDLE;
1885 case 'F':
1887 target_ulong ret;
1888 target_ulong err;
1890 ret = strtoull(p, (char **)&p, 16);
1891 if (*p == ',') {
1892 p++;
1893 err = strtoull(p, (char **)&p, 16);
1894 } else {
1895 err = 0;
1897 if (*p == ',')
1898 p++;
1899 type = *p;
1900 if (gdb_current_syscall_cb)
1901 gdb_current_syscall_cb(s->c_cpu, ret, err);
1902 if (type == 'C') {
1903 put_packet(s, "T02");
1904 } else {
1905 gdb_continue(s);
1908 break;
1909 case 'g':
1910 cpu_synchronize_state(s->g_cpu);
1911 len = 0;
1912 for (addr = 0; addr < num_g_regs; addr++) {
1913 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1914 len += reg_size;
1916 memtohex(buf, mem_buf, len);
1917 put_packet(s, buf);
1918 break;
1919 case 'G':
1920 cpu_synchronize_state(s->g_cpu);
1921 registers = mem_buf;
1922 len = strlen(p) / 2;
1923 hextomem((uint8_t *)registers, p, len);
1924 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1925 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1926 len -= reg_size;
1927 registers += reg_size;
1929 put_packet(s, "OK");
1930 break;
1931 case 'm':
1932 addr = strtoull(p, (char **)&p, 16);
1933 if (*p == ',')
1934 p++;
1935 len = strtoull(p, NULL, 16);
1936 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1937 put_packet (s, "E14");
1938 } else {
1939 memtohex(buf, mem_buf, len);
1940 put_packet(s, buf);
1942 break;
1943 case 'M':
1944 addr = strtoull(p, (char **)&p, 16);
1945 if (*p == ',')
1946 p++;
1947 len = strtoull(p, (char **)&p, 16);
1948 if (*p == ':')
1949 p++;
1950 hextomem(mem_buf, p, len);
1951 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1952 put_packet(s, "E14");
1953 else
1954 put_packet(s, "OK");
1955 break;
1956 case 'p':
1957 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1958 This works, but can be very slow. Anything new enough to
1959 understand XML also knows how to use this properly. */
1960 if (!gdb_has_xml)
1961 goto unknown_command;
1962 addr = strtoull(p, (char **)&p, 16);
1963 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1964 if (reg_size) {
1965 memtohex(buf, mem_buf, reg_size);
1966 put_packet(s, buf);
1967 } else {
1968 put_packet(s, "E14");
1970 break;
1971 case 'P':
1972 if (!gdb_has_xml)
1973 goto unknown_command;
1974 addr = strtoull(p, (char **)&p, 16);
1975 if (*p == '=')
1976 p++;
1977 reg_size = strlen(p) / 2;
1978 hextomem(mem_buf, p, reg_size);
1979 gdb_write_register(s->g_cpu, mem_buf, addr);
1980 put_packet(s, "OK");
1981 break;
1982 case 'Z':
1983 case 'z':
1984 type = strtoul(p, (char **)&p, 16);
1985 if (*p == ',')
1986 p++;
1987 addr = strtoull(p, (char **)&p, 16);
1988 if (*p == ',')
1989 p++;
1990 len = strtoull(p, (char **)&p, 16);
1991 if (ch == 'Z')
1992 res = gdb_breakpoint_insert(addr, len, type);
1993 else
1994 res = gdb_breakpoint_remove(addr, len, type);
1995 if (res >= 0)
1996 put_packet(s, "OK");
1997 else if (res == -ENOSYS)
1998 put_packet(s, "");
1999 else
2000 put_packet(s, "E22");
2001 break;
2002 case 'H':
2003 type = *p++;
2004 thread = strtoull(p, (char **)&p, 16);
2005 if (thread == -1 || thread == 0) {
2006 put_packet(s, "OK");
2007 break;
2009 env = find_cpu(thread);
2010 if (env == NULL) {
2011 put_packet(s, "E22");
2012 break;
2014 switch (type) {
2015 case 'c':
2016 s->c_cpu = env;
2017 put_packet(s, "OK");
2018 break;
2019 case 'g':
2020 s->g_cpu = env;
2021 put_packet(s, "OK");
2022 break;
2023 default:
2024 put_packet(s, "E22");
2025 break;
2027 break;
2028 case 'T':
2029 thread = strtoull(p, (char **)&p, 16);
2030 env = find_cpu(thread);
2032 if (env != NULL) {
2033 put_packet(s, "OK");
2034 } else {
2035 put_packet(s, "E22");
2037 break;
2038 case 'q':
2039 case 'Q':
2040 /* parse any 'q' packets here */
2041 if (!strcmp(p,"qemu.sstepbits")) {
2042 /* Query Breakpoint bit definitions */
2043 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2044 SSTEP_ENABLE,
2045 SSTEP_NOIRQ,
2046 SSTEP_NOTIMER);
2047 put_packet(s, buf);
2048 break;
2049 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2050 /* Display or change the sstep_flags */
2051 p += 10;
2052 if (*p != '=') {
2053 /* Display current setting */
2054 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2055 put_packet(s, buf);
2056 break;
2058 p++;
2059 type = strtoul(p, (char **)&p, 16);
2060 sstep_flags = type;
2061 put_packet(s, "OK");
2062 break;
2063 } else if (strcmp(p,"C") == 0) {
2064 /* "Current thread" remains vague in the spec, so always return
2065 * the first CPU (gdb returns the first thread). */
2066 put_packet(s, "QC1");
2067 break;
2068 } else if (strcmp(p,"fThreadInfo") == 0) {
2069 s->query_cpu = first_cpu;
2070 goto report_cpuinfo;
2071 } else if (strcmp(p,"sThreadInfo") == 0) {
2072 report_cpuinfo:
2073 if (s->query_cpu) {
2074 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2075 put_packet(s, buf);
2076 s->query_cpu = s->query_cpu->next_cpu;
2077 } else
2078 put_packet(s, "l");
2079 break;
2080 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2081 thread = strtoull(p+16, (char **)&p, 16);
2082 env = find_cpu(thread);
2083 if (env != NULL) {
2084 cpu_synchronize_state(env);
2085 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2086 "CPU#%d [%s]", env->cpu_index,
2087 env->halted ? "halted " : "running");
2088 memtohex(buf, mem_buf, len);
2089 put_packet(s, buf);
2091 break;
2093 #ifdef CONFIG_USER_ONLY
2094 else if (strncmp(p, "Offsets", 7) == 0) {
2095 TaskState *ts = s->c_cpu->opaque;
2097 snprintf(buf, sizeof(buf),
2098 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2099 ";Bss=" TARGET_ABI_FMT_lx,
2100 ts->info->code_offset,
2101 ts->info->data_offset,
2102 ts->info->data_offset);
2103 put_packet(s, buf);
2104 break;
2106 #else /* !CONFIG_USER_ONLY */
2107 else if (strncmp(p, "Rcmd,", 5) == 0) {
2108 int len = strlen(p + 5);
2110 if ((len % 2) != 0) {
2111 put_packet(s, "E01");
2112 break;
2114 hextomem(mem_buf, p + 5, len);
2115 len = len / 2;
2116 mem_buf[len++] = 0;
2117 qemu_chr_read(s->mon_chr, mem_buf, len);
2118 put_packet(s, "OK");
2119 break;
2121 #endif /* !CONFIG_USER_ONLY */
2122 if (strncmp(p, "Supported", 9) == 0) {
2123 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2124 #ifdef GDB_CORE_XML
2125 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2126 #endif
2127 put_packet(s, buf);
2128 break;
2130 #ifdef GDB_CORE_XML
2131 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2132 const char *xml;
2133 target_ulong total_len;
2135 gdb_has_xml = 1;
2136 p += 19;
2137 xml = get_feature_xml(p, &p);
2138 if (!xml) {
2139 snprintf(buf, sizeof(buf), "E00");
2140 put_packet(s, buf);
2141 break;
2144 if (*p == ':')
2145 p++;
2146 addr = strtoul(p, (char **)&p, 16);
2147 if (*p == ',')
2148 p++;
2149 len = strtoul(p, (char **)&p, 16);
2151 total_len = strlen(xml);
2152 if (addr > total_len) {
2153 snprintf(buf, sizeof(buf), "E00");
2154 put_packet(s, buf);
2155 break;
2157 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2158 len = (MAX_PACKET_LENGTH - 5) / 2;
2159 if (len < total_len - addr) {
2160 buf[0] = 'm';
2161 len = memtox(buf + 1, xml + addr, len);
2162 } else {
2163 buf[0] = 'l';
2164 len = memtox(buf + 1, xml + addr, total_len - addr);
2166 put_packet_binary(s, buf, len + 1);
2167 break;
2169 #endif
2170 /* Unrecognised 'q' command. */
2171 goto unknown_command;
2173 default:
2174 unknown_command:
2175 /* put empty packet */
2176 buf[0] = '\0';
2177 put_packet(s, buf);
2178 break;
2180 return RS_IDLE;
2183 void gdb_set_stop_cpu(CPUState *env)
2185 gdbserver_state->c_cpu = env;
2186 gdbserver_state->g_cpu = env;
2189 #ifndef CONFIG_USER_ONLY
2190 static void gdb_vm_state_change(void *opaque, int running, int reason)
2192 GDBState *s = gdbserver_state;
2193 CPUState *env = s->c_cpu;
2194 char buf[256];
2195 const char *type;
2196 int ret;
2198 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2199 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
2200 return;
2202 /* disable single step if it was enable */
2203 cpu_single_step(env, 0);
2205 if (reason == EXCP_DEBUG) {
2206 if (env->watchpoint_hit) {
2207 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2208 case BP_MEM_READ:
2209 type = "r";
2210 break;
2211 case BP_MEM_ACCESS:
2212 type = "a";
2213 break;
2214 default:
2215 type = "";
2216 break;
2218 snprintf(buf, sizeof(buf),
2219 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2220 GDB_SIGNAL_TRAP, gdb_id(env), type,
2221 env->watchpoint_hit->vaddr);
2222 put_packet(s, buf);
2223 env->watchpoint_hit = NULL;
2224 return;
2226 tb_flush(env);
2227 ret = GDB_SIGNAL_TRAP;
2228 } else {
2229 ret = GDB_SIGNAL_INT;
2231 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2232 put_packet(s, buf);
2234 #endif
2236 /* Send a gdb syscall request.
2237 This accepts limited printf-style format specifiers, specifically:
2238 %x - target_ulong argument printed in hex.
2239 %lx - 64-bit argument printed in hex.
2240 %s - string pointer (target_ulong) and length (int) pair. */
2241 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2243 va_list va;
2244 char buf[256];
2245 char *p;
2246 target_ulong addr;
2247 uint64_t i64;
2248 GDBState *s;
2250 s = gdbserver_state;
2251 if (!s)
2252 return;
2253 gdb_current_syscall_cb = cb;
2254 s->state = RS_SYSCALL;
2255 #ifndef CONFIG_USER_ONLY
2256 vm_stop(EXCP_DEBUG);
2257 #endif
2258 s->state = RS_IDLE;
2259 va_start(va, fmt);
2260 p = buf;
2261 *(p++) = 'F';
2262 while (*fmt) {
2263 if (*fmt == '%') {
2264 fmt++;
2265 switch (*fmt++) {
2266 case 'x':
2267 addr = va_arg(va, target_ulong);
2268 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2269 break;
2270 case 'l':
2271 if (*(fmt++) != 'x')
2272 goto bad_format;
2273 i64 = va_arg(va, uint64_t);
2274 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2275 break;
2276 case 's':
2277 addr = va_arg(va, target_ulong);
2278 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2279 addr, va_arg(va, int));
2280 break;
2281 default:
2282 bad_format:
2283 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2284 fmt - 1);
2285 break;
2287 } else {
2288 *(p++) = *(fmt++);
2291 *p = 0;
2292 va_end(va);
2293 put_packet(s, buf);
2294 #ifdef CONFIG_USER_ONLY
2295 gdb_handlesig(s->c_cpu, 0);
2296 #else
2297 cpu_exit(s->c_cpu);
2298 #endif
2301 static void gdb_read_byte(GDBState *s, int ch)
2303 int i, csum;
2304 uint8_t reply;
2306 #ifndef CONFIG_USER_ONLY
2307 if (s->last_packet_len) {
2308 /* Waiting for a response to the last packet. If we see the start
2309 of a new command then abandon the previous response. */
2310 if (ch == '-') {
2311 #ifdef DEBUG_GDB
2312 printf("Got NACK, retransmitting\n");
2313 #endif
2314 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2316 #ifdef DEBUG_GDB
2317 else if (ch == '+')
2318 printf("Got ACK\n");
2319 else
2320 printf("Got '%c' when expecting ACK/NACK\n", ch);
2321 #endif
2322 if (ch == '+' || ch == '$')
2323 s->last_packet_len = 0;
2324 if (ch != '$')
2325 return;
2327 if (vm_running) {
2328 /* when the CPU is running, we cannot do anything except stop
2329 it when receiving a char */
2330 vm_stop(EXCP_INTERRUPT);
2331 } else
2332 #endif
2334 switch(s->state) {
2335 case RS_IDLE:
2336 if (ch == '$') {
2337 s->line_buf_index = 0;
2338 s->state = RS_GETLINE;
2340 break;
2341 case RS_GETLINE:
2342 if (ch == '#') {
2343 s->state = RS_CHKSUM1;
2344 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2345 s->state = RS_IDLE;
2346 } else {
2347 s->line_buf[s->line_buf_index++] = ch;
2349 break;
2350 case RS_CHKSUM1:
2351 s->line_buf[s->line_buf_index] = '\0';
2352 s->line_csum = fromhex(ch) << 4;
2353 s->state = RS_CHKSUM2;
2354 break;
2355 case RS_CHKSUM2:
2356 s->line_csum |= fromhex(ch);
2357 csum = 0;
2358 for(i = 0; i < s->line_buf_index; i++) {
2359 csum += s->line_buf[i];
2361 if (s->line_csum != (csum & 0xff)) {
2362 reply = '-';
2363 put_buffer(s, &reply, 1);
2364 s->state = RS_IDLE;
2365 } else {
2366 reply = '+';
2367 put_buffer(s, &reply, 1);
2368 s->state = gdb_handle_packet(s, s->line_buf);
2370 break;
2371 default:
2372 abort();
2377 /* Tell the remote gdb that the process has exited. */
2378 void gdb_exit(CPUState *env, int code)
2380 GDBState *s;
2381 char buf[4];
2383 s = gdbserver_state;
2384 if (!s) {
2385 return;
2387 #ifdef CONFIG_USER_ONLY
2388 if (gdbserver_fd < 0 || s->fd < 0) {
2389 return;
2391 #endif
2393 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2394 put_packet(s, buf);
2396 #ifndef CONFIG_USER_ONLY
2397 if (s->chr) {
2398 qemu_chr_close(s->chr);
2400 #endif
2403 #ifdef CONFIG_USER_ONLY
2405 gdb_queuesig (void)
2407 GDBState *s;
2409 s = gdbserver_state;
2411 if (gdbserver_fd < 0 || s->fd < 0)
2412 return 0;
2413 else
2414 return 1;
2418 gdb_handlesig (CPUState *env, int sig)
2420 GDBState *s;
2421 char buf[256];
2422 int n;
2424 s = gdbserver_state;
2425 if (gdbserver_fd < 0 || s->fd < 0)
2426 return sig;
2428 /* disable single step if it was enabled */
2429 cpu_single_step(env, 0);
2430 tb_flush(env);
2432 if (sig != 0)
2434 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2435 put_packet(s, buf);
2437 /* put_packet() might have detected that the peer terminated the
2438 connection. */
2439 if (s->fd < 0)
2440 return sig;
2442 sig = 0;
2443 s->state = RS_IDLE;
2444 s->running_state = 0;
2445 while (s->running_state == 0) {
2446 n = read (s->fd, buf, 256);
2447 if (n > 0)
2449 int i;
2451 for (i = 0; i < n; i++)
2452 gdb_read_byte (s, buf[i]);
2454 else if (n == 0 || errno != EAGAIN)
2456 /* XXX: Connection closed. Should probably wait for annother
2457 connection before continuing. */
2458 return sig;
2461 sig = s->signal;
2462 s->signal = 0;
2463 return sig;
2466 /* Tell the remote gdb that the process has exited due to SIG. */
2467 void gdb_signalled(CPUState *env, int sig)
2469 GDBState *s;
2470 char buf[4];
2472 s = gdbserver_state;
2473 if (gdbserver_fd < 0 || s->fd < 0)
2474 return;
2476 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2477 put_packet(s, buf);
2480 static void gdb_accept(void)
2482 GDBState *s;
2483 struct sockaddr_in sockaddr;
2484 socklen_t len;
2485 int val, fd;
2487 for(;;) {
2488 len = sizeof(sockaddr);
2489 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2490 if (fd < 0 && errno != EINTR) {
2491 perror("accept");
2492 return;
2493 } else if (fd >= 0) {
2494 #ifndef _WIN32
2495 fcntl(fd, F_SETFD, FD_CLOEXEC);
2496 #endif
2497 break;
2501 /* set short latency */
2502 val = 1;
2503 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2505 s = qemu_mallocz(sizeof(GDBState));
2506 s->c_cpu = first_cpu;
2507 s->g_cpu = first_cpu;
2508 s->fd = fd;
2509 gdb_has_xml = 0;
2511 gdbserver_state = s;
2513 fcntl(fd, F_SETFL, O_NONBLOCK);
2516 static int gdbserver_open(int port)
2518 struct sockaddr_in sockaddr;
2519 int fd, val, ret;
2521 fd = socket(PF_INET, SOCK_STREAM, 0);
2522 if (fd < 0) {
2523 perror("socket");
2524 return -1;
2526 #ifndef _WIN32
2527 fcntl(fd, F_SETFD, FD_CLOEXEC);
2528 #endif
2530 /* allow fast reuse */
2531 val = 1;
2532 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2534 sockaddr.sin_family = AF_INET;
2535 sockaddr.sin_port = htons(port);
2536 sockaddr.sin_addr.s_addr = 0;
2537 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2538 if (ret < 0) {
2539 perror("bind");
2540 return -1;
2542 ret = listen(fd, 0);
2543 if (ret < 0) {
2544 perror("listen");
2545 return -1;
2547 return fd;
2550 int gdbserver_start(int port)
2552 gdbserver_fd = gdbserver_open(port);
2553 if (gdbserver_fd < 0)
2554 return -1;
2555 /* accept connections */
2556 gdb_accept();
2557 return 0;
2560 /* Disable gdb stub for child processes. */
2561 void gdbserver_fork(CPUState *env)
2563 GDBState *s = gdbserver_state;
2564 if (gdbserver_fd < 0 || s->fd < 0)
2565 return;
2566 close(s->fd);
2567 s->fd = -1;
2568 cpu_breakpoint_remove_all(env, BP_GDB);
2569 cpu_watchpoint_remove_all(env, BP_GDB);
2571 #else
2572 static int gdb_chr_can_receive(void *opaque)
2574 /* We can handle an arbitrarily large amount of data.
2575 Pick the maximum packet size, which is as good as anything. */
2576 return MAX_PACKET_LENGTH;
2579 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2581 int i;
2583 for (i = 0; i < size; i++) {
2584 gdb_read_byte(gdbserver_state, buf[i]);
2588 static void gdb_chr_event(void *opaque, int event)
2590 switch (event) {
2591 case CHR_EVENT_OPENED:
2592 vm_stop(EXCP_INTERRUPT);
2593 gdb_has_xml = 0;
2594 break;
2595 default:
2596 break;
2600 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2602 char buf[MAX_PACKET_LENGTH];
2604 buf[0] = 'O';
2605 if (len > (MAX_PACKET_LENGTH/2) - 1)
2606 len = (MAX_PACKET_LENGTH/2) - 1;
2607 memtohex(buf + 1, (uint8_t *)msg, len);
2608 put_packet(s, buf);
2611 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2613 const char *p = (const char *)buf;
2614 int max_sz;
2616 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2617 for (;;) {
2618 if (len <= max_sz) {
2619 gdb_monitor_output(gdbserver_state, p, len);
2620 break;
2622 gdb_monitor_output(gdbserver_state, p, max_sz);
2623 p += max_sz;
2624 len -= max_sz;
2626 return len;
2629 #ifndef _WIN32
2630 static void gdb_sigterm_handler(int signal)
2632 if (vm_running)
2633 vm_stop(EXCP_INTERRUPT);
2635 #endif
2637 int gdbserver_start(const char *device)
2639 GDBState *s;
2640 char gdbstub_device_name[128];
2641 CharDriverState *chr = NULL;
2642 CharDriverState *mon_chr;
2644 if (!device)
2645 return -1;
2646 if (strcmp(device, "none") != 0) {
2647 if (strstart(device, "tcp:", NULL)) {
2648 /* enforce required TCP attributes */
2649 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2650 "%s,nowait,nodelay,server", device);
2651 device = gdbstub_device_name;
2653 #ifndef _WIN32
2654 else if (strcmp(device, "stdio") == 0) {
2655 struct sigaction act;
2657 memset(&act, 0, sizeof(act));
2658 act.sa_handler = gdb_sigterm_handler;
2659 sigaction(SIGINT, &act, NULL);
2661 #endif
2662 chr = qemu_chr_open("gdb", device, NULL);
2663 if (!chr)
2664 return -1;
2666 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2667 gdb_chr_event, NULL);
2670 s = gdbserver_state;
2671 if (!s) {
2672 s = qemu_mallocz(sizeof(GDBState));
2673 gdbserver_state = s;
2675 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2677 /* Initialize a monitor terminal for gdb */
2678 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2679 mon_chr->chr_write = gdb_monitor_write;
2680 monitor_init(mon_chr, 0);
2681 } else {
2682 if (s->chr)
2683 qemu_chr_close(s->chr);
2684 mon_chr = s->mon_chr;
2685 memset(s, 0, sizeof(GDBState));
2687 s->c_cpu = first_cpu;
2688 s->g_cpu = first_cpu;
2689 s->chr = chr;
2690 s->state = chr ? RS_IDLE : RS_INACTIVE;
2691 s->mon_chr = mon_chr;
2693 return 0;
2695 #endif