2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
47 #include <machine/profile.h>
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
63 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_UNASSIGNED
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
80 #define SMC_BITMAP_USE_THRESHOLD 10
82 static TranslationBlock
*tbs
;
83 static int code_gen_max_blocks
;
84 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
101 #define code_gen_section \
102 __attribute__((aligned (32)))
105 uint8_t code_gen_prologue
[1024] code_gen_section
;
106 static uint8_t *code_gen_buffer
;
107 static unsigned long code_gen_buffer_size
;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size
;
110 static uint8_t *code_gen_ptr
;
112 #if !defined(CONFIG_USER_ONLY)
114 static int in_migration
;
116 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
118 static MemoryRegion
*system_memory
;
119 static MemoryRegion
*system_io
;
121 MemoryRegion io_mem_ram
, io_mem_rom
, io_mem_unassigned
, io_mem_notdirty
;
122 static MemoryRegion io_mem_subpage_ram
;
126 CPUArchState
*first_cpu
;
127 /* current CPU in the current thread. It is only valid inside
129 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
130 /* 0 = Do not count executed instructions.
131 1 = Precise instruction counting.
132 2 = Adaptive rate instruction counting. */
135 typedef struct PageDesc
{
136 /* list of TBs intersecting this ram page */
137 TranslationBlock
*first_tb
;
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count
;
141 uint8_t *code_bitmap
;
142 #if defined(CONFIG_USER_ONLY)
147 /* In system mode we want L1_MAP to be based on ram offsets,
148 while in user mode we want it to be based on virtual addresses. */
149 #if !defined(CONFIG_USER_ONLY)
150 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
156 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
159 /* Size of the L2 (and L3, etc) page tables. */
161 #define L2_SIZE (1 << L2_BITS)
163 #define P_L2_LEVELS \
164 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
166 /* The bits remaining after N lower levels of page tables. */
167 #define V_L1_BITS_REM \
168 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
173 #define V_L1_BITS V_L1_BITS_REM
176 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
178 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
180 unsigned long qemu_real_host_page_size
;
181 unsigned long qemu_host_page_size
;
182 unsigned long qemu_host_page_mask
;
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map
[V_L1_SIZE
];
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageEntry PhysPageEntry
;
191 static MemoryRegionSection
*phys_sections
;
192 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
193 static uint16_t phys_section_unassigned
;
194 static uint16_t phys_section_notdirty
;
195 static uint16_t phys_section_rom
;
196 static uint16_t phys_section_watch
;
198 struct PhysPageEntry
{
199 uint16_t is_leaf
: 1;
200 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
204 /* Simple allocator for PhysPageEntry nodes */
205 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
206 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
208 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
210 /* This is a multi-level map on the physical address space.
211 The bottom level has pointers to MemoryRegionSections. */
212 static PhysPageEntry phys_map
= { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
214 static void io_mem_init(void);
215 static void memory_map_init(void);
217 static MemoryRegion io_mem_watch
;
222 static const char *logfilename
= "qemu.log";
224 static const char *logfilename
= "/tmp/qemu.log";
228 static int log_append
= 0;
231 #if !defined(CONFIG_USER_ONLY)
232 static int tlb_flush_count
;
234 static int tb_flush_count
;
235 static int tb_phys_invalidate_count
;
238 static void map_exec(void *addr
, long size
)
241 VirtualProtect(addr
, size
,
242 PAGE_EXECUTE_READWRITE
, &old_protect
);
246 static void map_exec(void *addr
, long size
)
248 unsigned long start
, end
, page_size
;
250 page_size
= getpagesize();
251 start
= (unsigned long)addr
;
252 start
&= ~(page_size
- 1);
254 end
= (unsigned long)addr
+ size
;
255 end
+= page_size
- 1;
256 end
&= ~(page_size
- 1);
258 mprotect((void *)start
, end
- start
,
259 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
263 static void page_init(void)
265 /* NOTE: we can always suppose that qemu_host_page_size >=
269 SYSTEM_INFO system_info
;
271 GetSystemInfo(&system_info
);
272 qemu_real_host_page_size
= system_info
.dwPageSize
;
275 qemu_real_host_page_size
= getpagesize();
277 if (qemu_host_page_size
== 0)
278 qemu_host_page_size
= qemu_real_host_page_size
;
279 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
280 qemu_host_page_size
= TARGET_PAGE_SIZE
;
281 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
283 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
285 #ifdef HAVE_KINFO_GETVMMAP
286 struct kinfo_vmentry
*freep
;
289 freep
= kinfo_getvmmap(getpid(), &cnt
);
292 for (i
= 0; i
< cnt
; i
++) {
293 unsigned long startaddr
, endaddr
;
295 startaddr
= freep
[i
].kve_start
;
296 endaddr
= freep
[i
].kve_end
;
297 if (h2g_valid(startaddr
)) {
298 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
300 if (h2g_valid(endaddr
)) {
301 endaddr
= h2g(endaddr
);
302 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
304 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
306 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
317 last_brk
= (unsigned long)sbrk(0);
319 f
= fopen("/compat/linux/proc/self/maps", "r");
324 unsigned long startaddr
, endaddr
;
327 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
329 if (n
== 2 && h2g_valid(startaddr
)) {
330 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
332 if (h2g_valid(endaddr
)) {
333 endaddr
= h2g(endaddr
);
337 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
349 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
355 #if defined(CONFIG_USER_ONLY)
356 /* We can't use g_malloc because it may recurse into a locked mutex. */
357 # define ALLOC(P, SIZE) \
359 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
360 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
363 # define ALLOC(P, SIZE) \
364 do { P = g_malloc0(SIZE); } while (0)
367 /* Level 1. Always allocated. */
368 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
371 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
378 ALLOC(p
, sizeof(void *) * L2_SIZE
);
382 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
390 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
396 return pd
+ (index
& (L2_SIZE
- 1));
399 static inline PageDesc
*page_find(tb_page_addr_t index
)
401 return page_find_alloc(index
, 0);
404 #if !defined(CONFIG_USER_ONLY)
406 static void phys_map_node_reserve(unsigned nodes
)
408 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
409 typedef PhysPageEntry Node
[L2_SIZE
];
410 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
411 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
412 phys_map_nodes_nb
+ nodes
);
413 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
414 phys_map_nodes_nb_alloc
);
418 static uint16_t phys_map_node_alloc(void)
423 ret
= phys_map_nodes_nb
++;
424 assert(ret
!= PHYS_MAP_NODE_NIL
);
425 assert(ret
!= phys_map_nodes_nb_alloc
);
426 for (i
= 0; i
< L2_SIZE
; ++i
) {
427 phys_map_nodes
[ret
][i
].is_leaf
= 0;
428 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
433 static void phys_map_nodes_reset(void)
435 phys_map_nodes_nb
= 0;
439 static void phys_page_set_level(PhysPageEntry
*lp
, target_phys_addr_t
*index
,
440 target_phys_addr_t
*nb
, uint16_t leaf
,
445 target_phys_addr_t step
= (target_phys_addr_t
)1 << (level
* L2_BITS
);
447 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
448 lp
->ptr
= phys_map_node_alloc();
449 p
= phys_map_nodes
[lp
->ptr
];
451 for (i
= 0; i
< L2_SIZE
; i
++) {
453 p
[i
].ptr
= phys_section_unassigned
;
457 p
= phys_map_nodes
[lp
->ptr
];
459 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
461 while (*nb
&& lp
< &p
[L2_SIZE
]) {
462 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
468 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
474 static void phys_page_set(target_phys_addr_t index
, target_phys_addr_t nb
,
477 /* Wildly overreserve - it doesn't matter much. */
478 phys_map_node_reserve(3 * P_L2_LEVELS
);
480 phys_page_set_level(&phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
483 static MemoryRegionSection
*phys_page_find(target_phys_addr_t index
)
485 PhysPageEntry lp
= phys_map
;
488 uint16_t s_index
= phys_section_unassigned
;
490 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
491 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
494 p
= phys_map_nodes
[lp
.ptr
];
495 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
500 return &phys_sections
[s_index
];
503 static target_phys_addr_t
section_addr(MemoryRegionSection
*section
,
504 target_phys_addr_t addr
)
506 addr
-= section
->offset_within_address_space
;
507 addr
+= section
->offset_within_region
;
511 static void tlb_protect_code(ram_addr_t ram_addr
);
512 static void tlb_unprotect_code_phys(CPUArchState
*env
, ram_addr_t ram_addr
,
514 #define mmap_lock() do { } while(0)
515 #define mmap_unlock() do { } while(0)
518 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
520 #if defined(CONFIG_USER_ONLY)
521 /* Currently it is not recommended to allocate big chunks of data in
522 user mode. It will change when a dedicated libc will be used */
523 #define USE_STATIC_CODE_GEN_BUFFER
526 #ifdef USE_STATIC_CODE_GEN_BUFFER
527 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
528 __attribute__((aligned (CODE_GEN_ALIGN
)));
531 static void code_gen_alloc(unsigned long tb_size
)
533 #ifdef USE_STATIC_CODE_GEN_BUFFER
534 code_gen_buffer
= static_code_gen_buffer
;
535 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
536 map_exec(code_gen_buffer
, code_gen_buffer_size
);
538 code_gen_buffer_size
= tb_size
;
539 if (code_gen_buffer_size
== 0) {
540 #if defined(CONFIG_USER_ONLY)
541 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
543 /* XXX: needs adjustments */
544 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
547 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
548 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
549 /* The code gen buffer location may have constraints depending on
550 the host cpu and OS */
551 #if defined(__linux__)
556 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
557 #if defined(__x86_64__)
559 /* Cannot map more than that */
560 if (code_gen_buffer_size
> (800 * 1024 * 1024))
561 code_gen_buffer_size
= (800 * 1024 * 1024);
562 #elif defined(__sparc_v9__)
563 // Map the buffer below 2G, so we can use direct calls and branches
565 start
= (void *) 0x60000000UL
;
566 if (code_gen_buffer_size
> (512 * 1024 * 1024))
567 code_gen_buffer_size
= (512 * 1024 * 1024);
568 #elif defined(__arm__)
569 /* Keep the buffer no bigger than 16MB to branch between blocks */
570 if (code_gen_buffer_size
> 16 * 1024 * 1024)
571 code_gen_buffer_size
= 16 * 1024 * 1024;
572 #elif defined(__s390x__)
573 /* Map the buffer so that we can use direct calls and branches. */
574 /* We have a +- 4GB range on the branches; leave some slop. */
575 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
576 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
578 start
= (void *)0x90000000UL
;
580 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
581 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
583 if (code_gen_buffer
== MAP_FAILED
) {
584 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
588 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
589 || defined(__DragonFly__) || defined(__OpenBSD__) \
590 || defined(__NetBSD__)
594 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
595 #if defined(__x86_64__)
596 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
597 * 0x40000000 is free */
599 addr
= (void *)0x40000000;
600 /* Cannot map more than that */
601 if (code_gen_buffer_size
> (800 * 1024 * 1024))
602 code_gen_buffer_size
= (800 * 1024 * 1024);
603 #elif defined(__sparc_v9__)
604 // Map the buffer below 2G, so we can use direct calls and branches
606 addr
= (void *) 0x60000000UL
;
607 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
608 code_gen_buffer_size
= (512 * 1024 * 1024);
611 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
612 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
614 if (code_gen_buffer
== MAP_FAILED
) {
615 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
620 code_gen_buffer
= g_malloc(code_gen_buffer_size
);
621 map_exec(code_gen_buffer
, code_gen_buffer_size
);
623 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
624 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
625 code_gen_buffer_max_size
= code_gen_buffer_size
-
626 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
627 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
628 tbs
= g_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
631 /* Must be called before using the QEMU cpus. 'tb_size' is the size
632 (in bytes) allocated to the translation buffer. Zero means default
634 void tcg_exec_init(unsigned long tb_size
)
637 code_gen_alloc(tb_size
);
638 code_gen_ptr
= code_gen_buffer
;
640 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
641 /* There's no guest base to take into account, so go ahead and
642 initialize the prologue now. */
643 tcg_prologue_init(&tcg_ctx
);
647 bool tcg_enabled(void)
649 return code_gen_buffer
!= NULL
;
652 void cpu_exec_init_all(void)
654 #if !defined(CONFIG_USER_ONLY)
660 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
662 static int cpu_common_post_load(void *opaque
, int version_id
)
664 CPUArchState
*env
= opaque
;
666 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
667 version_id is increased. */
668 env
->interrupt_request
&= ~0x01;
674 static const VMStateDescription vmstate_cpu_common
= {
675 .name
= "cpu_common",
677 .minimum_version_id
= 1,
678 .minimum_version_id_old
= 1,
679 .post_load
= cpu_common_post_load
,
680 .fields
= (VMStateField
[]) {
681 VMSTATE_UINT32(halted
, CPUArchState
),
682 VMSTATE_UINT32(interrupt_request
, CPUArchState
),
683 VMSTATE_END_OF_LIST()
688 CPUArchState
*qemu_get_cpu(int cpu
)
690 CPUArchState
*env
= first_cpu
;
693 if (env
->cpu_index
== cpu
)
701 void cpu_exec_init(CPUArchState
*env
)
706 #if defined(CONFIG_USER_ONLY)
709 env
->next_cpu
= NULL
;
712 while (*penv
!= NULL
) {
713 penv
= &(*penv
)->next_cpu
;
716 env
->cpu_index
= cpu_index
;
718 QTAILQ_INIT(&env
->breakpoints
);
719 QTAILQ_INIT(&env
->watchpoints
);
720 #ifndef CONFIG_USER_ONLY
721 env
->thread_id
= qemu_get_thread_id();
724 #if defined(CONFIG_USER_ONLY)
727 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
728 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
729 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
730 cpu_save
, cpu_load
, env
);
734 /* Allocate a new translation block. Flush the translation buffer if
735 too many translation blocks or too much generated code. */
736 static TranslationBlock
*tb_alloc(target_ulong pc
)
738 TranslationBlock
*tb
;
740 if (nb_tbs
>= code_gen_max_blocks
||
741 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
749 void tb_free(TranslationBlock
*tb
)
751 /* In practice this is mostly used for single use temporary TB
752 Ignore the hard cases and just back up if this TB happens to
753 be the last one generated. */
754 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
755 code_gen_ptr
= tb
->tc_ptr
;
760 static inline void invalidate_page_bitmap(PageDesc
*p
)
762 if (p
->code_bitmap
) {
763 g_free(p
->code_bitmap
);
764 p
->code_bitmap
= NULL
;
766 p
->code_write_count
= 0;
769 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
771 static void page_flush_tb_1 (int level
, void **lp
)
780 for (i
= 0; i
< L2_SIZE
; ++i
) {
781 pd
[i
].first_tb
= NULL
;
782 invalidate_page_bitmap(pd
+ i
);
786 for (i
= 0; i
< L2_SIZE
; ++i
) {
787 page_flush_tb_1 (level
- 1, pp
+ i
);
792 static void page_flush_tb(void)
795 for (i
= 0; i
< V_L1_SIZE
; i
++) {
796 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
800 /* flush all the translation blocks */
801 /* XXX: tb_flush is currently not thread safe */
802 void tb_flush(CPUArchState
*env1
)
805 #if defined(DEBUG_FLUSH)
806 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
807 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
809 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
811 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
812 cpu_abort(env1
, "Internal error: code buffer overflow\n");
816 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
817 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
820 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
823 code_gen_ptr
= code_gen_buffer
;
824 /* XXX: flush processor icache at this point if cache flush is
829 #ifdef DEBUG_TB_CHECK
831 static void tb_invalidate_check(target_ulong address
)
833 TranslationBlock
*tb
;
835 address
&= TARGET_PAGE_MASK
;
836 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
837 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
838 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
839 address
>= tb
->pc
+ tb
->size
)) {
840 printf("ERROR invalidate: address=" TARGET_FMT_lx
841 " PC=%08lx size=%04x\n",
842 address
, (long)tb
->pc
, tb
->size
);
848 /* verify that all the pages have correct rights for code */
849 static void tb_page_check(void)
851 TranslationBlock
*tb
;
852 int i
, flags1
, flags2
;
854 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
855 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
856 flags1
= page_get_flags(tb
->pc
);
857 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
858 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
859 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
860 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
868 /* invalidate one TB */
869 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
872 TranslationBlock
*tb1
;
876 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
879 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
883 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
885 TranslationBlock
*tb1
;
891 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
893 *ptb
= tb1
->page_next
[n1
];
896 ptb
= &tb1
->page_next
[n1
];
900 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
902 TranslationBlock
*tb1
, **ptb
;
905 ptb
= &tb
->jmp_next
[n
];
908 /* find tb(n) in circular list */
912 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
913 if (n1
== n
&& tb1
== tb
)
916 ptb
= &tb1
->jmp_first
;
918 ptb
= &tb1
->jmp_next
[n1
];
921 /* now we can suppress tb(n) from the list */
922 *ptb
= tb
->jmp_next
[n
];
924 tb
->jmp_next
[n
] = NULL
;
928 /* reset the jump entry 'n' of a TB so that it is not chained to
930 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
932 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
935 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
940 tb_page_addr_t phys_pc
;
941 TranslationBlock
*tb1
, *tb2
;
943 /* remove the TB from the hash list */
944 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
945 h
= tb_phys_hash_func(phys_pc
);
946 tb_remove(&tb_phys_hash
[h
], tb
,
947 offsetof(TranslationBlock
, phys_hash_next
));
949 /* remove the TB from the page list */
950 if (tb
->page_addr
[0] != page_addr
) {
951 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
952 tb_page_remove(&p
->first_tb
, tb
);
953 invalidate_page_bitmap(p
);
955 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
956 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
957 tb_page_remove(&p
->first_tb
, tb
);
958 invalidate_page_bitmap(p
);
961 tb_invalidated_flag
= 1;
963 /* remove the TB from the hash list */
964 h
= tb_jmp_cache_hash_func(tb
->pc
);
965 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
966 if (env
->tb_jmp_cache
[h
] == tb
)
967 env
->tb_jmp_cache
[h
] = NULL
;
970 /* suppress this TB from the two jump lists */
971 tb_jmp_remove(tb
, 0);
972 tb_jmp_remove(tb
, 1);
974 /* suppress any remaining jumps to this TB */
980 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
981 tb2
= tb1
->jmp_next
[n1
];
982 tb_reset_jump(tb1
, n1
);
983 tb1
->jmp_next
[n1
] = NULL
;
986 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
988 tb_phys_invalidate_count
++;
991 static inline void set_bits(uint8_t *tab
, int start
, int len
)
997 mask
= 0xff << (start
& 7);
998 if ((start
& ~7) == (end
& ~7)) {
1000 mask
&= ~(0xff << (end
& 7));
1005 start
= (start
+ 8) & ~7;
1007 while (start
< end1
) {
1012 mask
= ~(0xff << (end
& 7));
1018 static void build_page_bitmap(PageDesc
*p
)
1020 int n
, tb_start
, tb_end
;
1021 TranslationBlock
*tb
;
1023 p
->code_bitmap
= g_malloc0(TARGET_PAGE_SIZE
/ 8);
1026 while (tb
!= NULL
) {
1028 tb
= (TranslationBlock
*)((long)tb
& ~3);
1029 /* NOTE: this is subtle as a TB may span two physical pages */
1031 /* NOTE: tb_end may be after the end of the page, but
1032 it is not a problem */
1033 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1034 tb_end
= tb_start
+ tb
->size
;
1035 if (tb_end
> TARGET_PAGE_SIZE
)
1036 tb_end
= TARGET_PAGE_SIZE
;
1039 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1041 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1042 tb
= tb
->page_next
[n
];
1046 TranslationBlock
*tb_gen_code(CPUArchState
*env
,
1047 target_ulong pc
, target_ulong cs_base
,
1048 int flags
, int cflags
)
1050 TranslationBlock
*tb
;
1052 tb_page_addr_t phys_pc
, phys_page2
;
1053 target_ulong virt_page2
;
1056 phys_pc
= get_page_addr_code(env
, pc
);
1059 /* flush must be done */
1061 /* cannot fail at this point */
1063 /* Don't forget to invalidate previous TB info. */
1064 tb_invalidated_flag
= 1;
1066 tc_ptr
= code_gen_ptr
;
1067 tb
->tc_ptr
= tc_ptr
;
1068 tb
->cs_base
= cs_base
;
1070 tb
->cflags
= cflags
;
1071 cpu_gen_code(env
, tb
, &code_gen_size
);
1072 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
1074 /* check next page if needed */
1075 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1077 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1078 phys_page2
= get_page_addr_code(env
, virt_page2
);
1080 tb_link_page(tb
, phys_pc
, phys_page2
);
1084 /* invalidate all TBs which intersect with the target physical page
1085 starting in range [start;end[. NOTE: start and end must refer to
1086 the same physical page. 'is_cpu_write_access' should be true if called
1087 from a real cpu write access: the virtual CPU will exit the current
1088 TB if code is modified inside this TB. */
1089 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1090 int is_cpu_write_access
)
1092 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1093 CPUArchState
*env
= cpu_single_env
;
1094 tb_page_addr_t tb_start
, tb_end
;
1097 #ifdef TARGET_HAS_PRECISE_SMC
1098 int current_tb_not_found
= is_cpu_write_access
;
1099 TranslationBlock
*current_tb
= NULL
;
1100 int current_tb_modified
= 0;
1101 target_ulong current_pc
= 0;
1102 target_ulong current_cs_base
= 0;
1103 int current_flags
= 0;
1104 #endif /* TARGET_HAS_PRECISE_SMC */
1106 p
= page_find(start
>> TARGET_PAGE_BITS
);
1109 if (!p
->code_bitmap
&&
1110 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1111 is_cpu_write_access
) {
1112 /* build code bitmap */
1113 build_page_bitmap(p
);
1116 /* we remove all the TBs in the range [start, end[ */
1117 /* XXX: see if in some cases it could be faster to invalidate all the code */
1119 while (tb
!= NULL
) {
1121 tb
= (TranslationBlock
*)((long)tb
& ~3);
1122 tb_next
= tb
->page_next
[n
];
1123 /* NOTE: this is subtle as a TB may span two physical pages */
1125 /* NOTE: tb_end may be after the end of the page, but
1126 it is not a problem */
1127 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1128 tb_end
= tb_start
+ tb
->size
;
1130 tb_start
= tb
->page_addr
[1];
1131 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1133 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1134 #ifdef TARGET_HAS_PRECISE_SMC
1135 if (current_tb_not_found
) {
1136 current_tb_not_found
= 0;
1138 if (env
->mem_io_pc
) {
1139 /* now we have a real cpu fault */
1140 current_tb
= tb_find_pc(env
->mem_io_pc
);
1143 if (current_tb
== tb
&&
1144 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1145 /* If we are modifying the current TB, we must stop
1146 its execution. We could be more precise by checking
1147 that the modification is after the current PC, but it
1148 would require a specialized function to partially
1149 restore the CPU state */
1151 current_tb_modified
= 1;
1152 cpu_restore_state(current_tb
, env
, env
->mem_io_pc
);
1153 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1156 #endif /* TARGET_HAS_PRECISE_SMC */
1157 /* we need to do that to handle the case where a signal
1158 occurs while doing tb_phys_invalidate() */
1161 saved_tb
= env
->current_tb
;
1162 env
->current_tb
= NULL
;
1164 tb_phys_invalidate(tb
, -1);
1166 env
->current_tb
= saved_tb
;
1167 if (env
->interrupt_request
&& env
->current_tb
)
1168 cpu_interrupt(env
, env
->interrupt_request
);
1173 #if !defined(CONFIG_USER_ONLY)
1174 /* if no code remaining, no need to continue to use slow writes */
1176 invalidate_page_bitmap(p
);
1177 if (is_cpu_write_access
) {
1178 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1182 #ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb_modified
) {
1184 /* we generate a block containing just the instruction
1185 modifying the memory. It will ensure that it cannot modify
1187 env
->current_tb
= NULL
;
1188 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1189 cpu_resume_from_signal(env
, NULL
);
1194 /* len must be <= 8 and start must be a multiple of len */
1195 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1201 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1202 cpu_single_env
->mem_io_vaddr
, len
,
1203 cpu_single_env
->eip
,
1204 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1207 p
= page_find(start
>> TARGET_PAGE_BITS
);
1210 if (p
->code_bitmap
) {
1211 offset
= start
& ~TARGET_PAGE_MASK
;
1212 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1213 if (b
& ((1 << len
) - 1))
1217 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1221 #if !defined(CONFIG_SOFTMMU)
1222 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1223 unsigned long pc
, void *puc
)
1225 TranslationBlock
*tb
;
1228 #ifdef TARGET_HAS_PRECISE_SMC
1229 TranslationBlock
*current_tb
= NULL
;
1230 CPUArchState
*env
= cpu_single_env
;
1231 int current_tb_modified
= 0;
1232 target_ulong current_pc
= 0;
1233 target_ulong current_cs_base
= 0;
1234 int current_flags
= 0;
1237 addr
&= TARGET_PAGE_MASK
;
1238 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1242 #ifdef TARGET_HAS_PRECISE_SMC
1243 if (tb
&& pc
!= 0) {
1244 current_tb
= tb_find_pc(pc
);
1247 while (tb
!= NULL
) {
1249 tb
= (TranslationBlock
*)((long)tb
& ~3);
1250 #ifdef TARGET_HAS_PRECISE_SMC
1251 if (current_tb
== tb
&&
1252 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
1259 current_tb_modified
= 1;
1260 cpu_restore_state(current_tb
, env
, pc
);
1261 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1264 #endif /* TARGET_HAS_PRECISE_SMC */
1265 tb_phys_invalidate(tb
, addr
);
1266 tb
= tb
->page_next
[n
];
1269 #ifdef TARGET_HAS_PRECISE_SMC
1270 if (current_tb_modified
) {
1271 /* we generate a block containing just the instruction
1272 modifying the memory. It will ensure that it cannot modify
1274 env
->current_tb
= NULL
;
1275 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1276 cpu_resume_from_signal(env
, puc
);
1282 /* add the tb in the target page and protect it if necessary */
1283 static inline void tb_alloc_page(TranslationBlock
*tb
,
1284 unsigned int n
, tb_page_addr_t page_addr
)
1287 #ifndef CONFIG_USER_ONLY
1288 bool page_already_protected
;
1291 tb
->page_addr
[n
] = page_addr
;
1292 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1293 tb
->page_next
[n
] = p
->first_tb
;
1294 #ifndef CONFIG_USER_ONLY
1295 page_already_protected
= p
->first_tb
!= NULL
;
1297 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1298 invalidate_page_bitmap(p
);
1300 #if defined(TARGET_HAS_SMC) || 1
1302 #if defined(CONFIG_USER_ONLY)
1303 if (p
->flags
& PAGE_WRITE
) {
1308 /* force the host page as non writable (writes will have a
1309 page fault + mprotect overhead) */
1310 page_addr
&= qemu_host_page_mask
;
1312 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1313 addr
+= TARGET_PAGE_SIZE
) {
1315 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1319 p2
->flags
&= ~PAGE_WRITE
;
1321 mprotect(g2h(page_addr
), qemu_host_page_size
,
1322 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1323 #ifdef DEBUG_TB_INVALIDATE
1324 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1329 /* if some code is already present, then the pages are already
1330 protected. So we handle the case where only the first TB is
1331 allocated in a physical page */
1332 if (!page_already_protected
) {
1333 tlb_protect_code(page_addr
);
1337 #endif /* TARGET_HAS_SMC */
1340 /* add a new TB and link it to the physical page tables. phys_page2 is
1341 (-1) to indicate that only one page contains the TB. */
1342 void tb_link_page(TranslationBlock
*tb
,
1343 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1346 TranslationBlock
**ptb
;
1348 /* Grab the mmap lock to stop another thread invalidating this TB
1349 before we are done. */
1351 /* add in the physical hash table */
1352 h
= tb_phys_hash_func(phys_pc
);
1353 ptb
= &tb_phys_hash
[h
];
1354 tb
->phys_hash_next
= *ptb
;
1357 /* add in the page list */
1358 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1359 if (phys_page2
!= -1)
1360 tb_alloc_page(tb
, 1, phys_page2
);
1362 tb
->page_addr
[1] = -1;
1364 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1365 tb
->jmp_next
[0] = NULL
;
1366 tb
->jmp_next
[1] = NULL
;
1368 /* init original jump addresses */
1369 if (tb
->tb_next_offset
[0] != 0xffff)
1370 tb_reset_jump(tb
, 0);
1371 if (tb
->tb_next_offset
[1] != 0xffff)
1372 tb_reset_jump(tb
, 1);
1374 #ifdef DEBUG_TB_CHECK
1380 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1381 tb[1].tc_ptr. Return NULL if not found */
1382 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1384 int m_min
, m_max
, m
;
1386 TranslationBlock
*tb
;
1390 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1391 tc_ptr
>= (unsigned long)code_gen_ptr
)
1393 /* binary search (cf Knuth) */
1396 while (m_min
<= m_max
) {
1397 m
= (m_min
+ m_max
) >> 1;
1399 v
= (unsigned long)tb
->tc_ptr
;
1402 else if (tc_ptr
< v
) {
1411 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1413 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1415 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1418 tb1
= tb
->jmp_next
[n
];
1420 /* find head of list */
1423 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1426 tb1
= tb1
->jmp_next
[n1
];
1428 /* we are now sure now that tb jumps to tb1 */
1431 /* remove tb from the jmp_first list */
1432 ptb
= &tb_next
->jmp_first
;
1436 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1437 if (n1
== n
&& tb1
== tb
)
1439 ptb
= &tb1
->jmp_next
[n1
];
1441 *ptb
= tb
->jmp_next
[n
];
1442 tb
->jmp_next
[n
] = NULL
;
1444 /* suppress the jump to next tb in generated code */
1445 tb_reset_jump(tb
, n
);
1447 /* suppress jumps in the tb on which we could have jumped */
1448 tb_reset_jump_recursive(tb_next
);
1452 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1454 tb_reset_jump_recursive2(tb
, 0);
1455 tb_reset_jump_recursive2(tb
, 1);
1458 #if defined(TARGET_HAS_ICE)
1459 #if defined(CONFIG_USER_ONLY)
1460 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1462 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1465 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1467 target_phys_addr_t addr
;
1468 ram_addr_t ram_addr
;
1469 MemoryRegionSection
*section
;
1471 addr
= cpu_get_phys_page_debug(env
, pc
);
1472 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1473 if (!(memory_region_is_ram(section
->mr
)
1474 || (section
->mr
->rom_device
&& section
->mr
->readable
))) {
1477 ram_addr
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1478 + section_addr(section
, addr
);
1479 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1482 #endif /* TARGET_HAS_ICE */
1484 #if defined(CONFIG_USER_ONLY)
1485 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1490 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1491 int flags
, CPUWatchpoint
**watchpoint
)
1496 /* Add a watchpoint. */
1497 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1498 int flags
, CPUWatchpoint
**watchpoint
)
1500 target_ulong len_mask
= ~(len
- 1);
1503 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1504 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
1505 len
== 0 || len
> TARGET_PAGE_SIZE
) {
1506 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1507 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1510 wp
= g_malloc(sizeof(*wp
));
1513 wp
->len_mask
= len_mask
;
1516 /* keep all GDB-injected watchpoints in front */
1518 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1520 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1522 tlb_flush_page(env
, addr
);
1529 /* Remove a specific watchpoint. */
1530 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1533 target_ulong len_mask
= ~(len
- 1);
1536 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1537 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1538 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1539 cpu_watchpoint_remove_by_ref(env
, wp
);
1546 /* Remove a specific watchpoint by reference. */
1547 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
1549 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1551 tlb_flush_page(env
, watchpoint
->vaddr
);
1556 /* Remove all matching watchpoints. */
1557 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1559 CPUWatchpoint
*wp
, *next
;
1561 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1562 if (wp
->flags
& mask
)
1563 cpu_watchpoint_remove_by_ref(env
, wp
);
1568 /* Add a breakpoint. */
1569 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
1570 CPUBreakpoint
**breakpoint
)
1572 #if defined(TARGET_HAS_ICE)
1575 bp
= g_malloc(sizeof(*bp
));
1580 /* keep all GDB-injected breakpoints in front */
1582 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1584 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1586 breakpoint_invalidate(env
, pc
);
1596 /* Remove a specific breakpoint. */
1597 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
1599 #if defined(TARGET_HAS_ICE)
1602 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1603 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1604 cpu_breakpoint_remove_by_ref(env
, bp
);
1614 /* Remove a specific breakpoint by reference. */
1615 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
1617 #if defined(TARGET_HAS_ICE)
1618 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1620 breakpoint_invalidate(env
, breakpoint
->pc
);
1626 /* Remove all matching breakpoints. */
1627 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
1629 #if defined(TARGET_HAS_ICE)
1630 CPUBreakpoint
*bp
, *next
;
1632 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1633 if (bp
->flags
& mask
)
1634 cpu_breakpoint_remove_by_ref(env
, bp
);
1639 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1640 CPU loop after each instruction */
1641 void cpu_single_step(CPUArchState
*env
, int enabled
)
1643 #if defined(TARGET_HAS_ICE)
1644 if (env
->singlestep_enabled
!= enabled
) {
1645 env
->singlestep_enabled
= enabled
;
1647 kvm_update_guest_debug(env
, 0);
1649 /* must flush all the translated code to avoid inconsistencies */
1650 /* XXX: only flush what is necessary */
1657 /* enable or disable low levels log */
1658 void cpu_set_log(int log_flags
)
1660 loglevel
= log_flags
;
1661 if (loglevel
&& !logfile
) {
1662 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1664 perror(logfilename
);
1667 #if !defined(CONFIG_SOFTMMU)
1668 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1670 static char logfile_buf
[4096];
1671 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1673 #elif defined(_WIN32)
1674 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1675 setvbuf(logfile
, NULL
, _IONBF
, 0);
1677 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1681 if (!loglevel
&& logfile
) {
1687 void cpu_set_log_filename(const char *filename
)
1689 logfilename
= strdup(filename
);
1694 cpu_set_log(loglevel
);
1697 static void cpu_unlink_tb(CPUArchState
*env
)
1699 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1700 problem and hope the cpu will stop of its own accord. For userspace
1701 emulation this often isn't actually as bad as it sounds. Often
1702 signals are used primarily to interrupt blocking syscalls. */
1703 TranslationBlock
*tb
;
1704 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1706 spin_lock(&interrupt_lock
);
1707 tb
= env
->current_tb
;
1708 /* if the cpu is currently executing code, we must unlink it and
1709 all the potentially executing TB */
1711 env
->current_tb
= NULL
;
1712 tb_reset_jump_recursive(tb
);
1714 spin_unlock(&interrupt_lock
);
1717 #ifndef CONFIG_USER_ONLY
1718 /* mask must never be zero, except for A20 change call */
1719 static void tcg_handle_interrupt(CPUArchState
*env
, int mask
)
1723 old_mask
= env
->interrupt_request
;
1724 env
->interrupt_request
|= mask
;
1727 * If called from iothread context, wake the target cpu in
1730 if (!qemu_cpu_is_self(env
)) {
1736 env
->icount_decr
.u16
.high
= 0xffff;
1738 && (mask
& ~old_mask
) != 0) {
1739 cpu_abort(env
, "Raised interrupt while not in I/O function");
1746 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1748 #else /* CONFIG_USER_ONLY */
1750 void cpu_interrupt(CPUArchState
*env
, int mask
)
1752 env
->interrupt_request
|= mask
;
1755 #endif /* CONFIG_USER_ONLY */
1757 void cpu_reset_interrupt(CPUArchState
*env
, int mask
)
1759 env
->interrupt_request
&= ~mask
;
1762 void cpu_exit(CPUArchState
*env
)
1764 env
->exit_request
= 1;
1768 const CPULogItem cpu_log_items
[] = {
1769 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1770 "show generated host assembly code for each compiled TB" },
1771 { CPU_LOG_TB_IN_ASM
, "in_asm",
1772 "show target assembly code for each compiled TB" },
1773 { CPU_LOG_TB_OP
, "op",
1774 "show micro ops for each compiled TB" },
1775 { CPU_LOG_TB_OP_OPT
, "op_opt",
1778 "before eflags optimization and "
1780 "after liveness analysis" },
1781 { CPU_LOG_INT
, "int",
1782 "show interrupts/exceptions in short format" },
1783 { CPU_LOG_EXEC
, "exec",
1784 "show trace before each executed TB (lots of logs)" },
1785 { CPU_LOG_TB_CPU
, "cpu",
1786 "show CPU state before block translation" },
1788 { CPU_LOG_PCALL
, "pcall",
1789 "show protected mode far calls/returns/exceptions" },
1790 { CPU_LOG_RESET
, "cpu_reset",
1791 "show CPU state before CPU resets" },
1794 { CPU_LOG_IOPORT
, "ioport",
1795 "show all i/o ports accesses" },
1800 static int cmp1(const char *s1
, int n
, const char *s2
)
1802 if (strlen(s2
) != n
)
1804 return memcmp(s1
, s2
, n
) == 0;
1807 /* takes a comma separated list of log masks. Return 0 if error. */
1808 int cpu_str_to_log_mask(const char *str
)
1810 const CPULogItem
*item
;
1817 p1
= strchr(p
, ',');
1820 if(cmp1(p
,p1
-p
,"all")) {
1821 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1825 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1826 if (cmp1(p
, p1
- p
, item
->name
))
1840 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
1847 fprintf(stderr
, "qemu: fatal: ");
1848 vfprintf(stderr
, fmt
, ap
);
1849 fprintf(stderr
, "\n");
1851 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1853 cpu_dump_state(env
, stderr
, fprintf
, 0);
1855 if (qemu_log_enabled()) {
1856 qemu_log("qemu: fatal: ");
1857 qemu_log_vprintf(fmt
, ap2
);
1860 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1862 log_cpu_state(env
, 0);
1869 #if defined(CONFIG_USER_ONLY)
1871 struct sigaction act
;
1872 sigfillset(&act
.sa_mask
);
1873 act
.sa_handler
= SIG_DFL
;
1874 sigaction(SIGABRT
, &act
, NULL
);
1880 CPUArchState
*cpu_copy(CPUArchState
*env
)
1882 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
1883 CPUArchState
*next_cpu
= new_env
->next_cpu
;
1884 int cpu_index
= new_env
->cpu_index
;
1885 #if defined(TARGET_HAS_ICE)
1890 memcpy(new_env
, env
, sizeof(CPUArchState
));
1892 /* Preserve chaining and index. */
1893 new_env
->next_cpu
= next_cpu
;
1894 new_env
->cpu_index
= cpu_index
;
1896 /* Clone all break/watchpoints.
1897 Note: Once we support ptrace with hw-debug register access, make sure
1898 BP_CPU break/watchpoints are handled correctly on clone. */
1899 QTAILQ_INIT(&env
->breakpoints
);
1900 QTAILQ_INIT(&env
->watchpoints
);
1901 #if defined(TARGET_HAS_ICE)
1902 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1903 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1905 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1906 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1914 #if !defined(CONFIG_USER_ONLY)
1916 static inline void tlb_flush_jmp_cache(CPUArchState
*env
, target_ulong addr
)
1920 /* Discard jump cache entries for any tb which might potentially
1921 overlap the flushed page. */
1922 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1923 memset (&env
->tb_jmp_cache
[i
], 0,
1924 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1926 i
= tb_jmp_cache_hash_page(addr
);
1927 memset (&env
->tb_jmp_cache
[i
], 0,
1928 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1931 static CPUTLBEntry s_cputlb_empty_entry
= {
1939 * If flush_global is true (the usual case), flush all tlb entries.
1940 * If flush_global is false, flush (at least) all tlb entries not
1943 * Since QEMU doesn't currently implement a global/not-global flag
1944 * for tlb entries, at the moment tlb_flush() will also flush all
1945 * tlb entries in the flush_global == false case. This is OK because
1946 * CPU architectures generally permit an implementation to drop
1947 * entries from the TLB at any time, so flushing more entries than
1948 * required is only an efficiency issue, not a correctness issue.
1950 void tlb_flush(CPUArchState
*env
, int flush_global
)
1954 #if defined(DEBUG_TLB)
1955 printf("tlb_flush:\n");
1957 /* must reset current TB so that interrupts cannot modify the
1958 links while we are modifying them */
1959 env
->current_tb
= NULL
;
1961 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1963 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1964 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1968 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1970 env
->tlb_flush_addr
= -1;
1971 env
->tlb_flush_mask
= 0;
1975 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1977 if (addr
== (tlb_entry
->addr_read
&
1978 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1979 addr
== (tlb_entry
->addr_write
&
1980 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1981 addr
== (tlb_entry
->addr_code
&
1982 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1983 *tlb_entry
= s_cputlb_empty_entry
;
1987 void tlb_flush_page(CPUArchState
*env
, target_ulong addr
)
1992 #if defined(DEBUG_TLB)
1993 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1995 /* Check if we need to flush due to large pages. */
1996 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
1997 #if defined(DEBUG_TLB)
1998 printf("tlb_flush_page: forced full flush ("
1999 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
2000 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
2005 /* must reset current TB so that interrupts cannot modify the
2006 links while we are modifying them */
2007 env
->current_tb
= NULL
;
2009 addr
&= TARGET_PAGE_MASK
;
2010 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2011 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2012 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
2014 tlb_flush_jmp_cache(env
, addr
);
2017 /* update the TLBs so that writes to code in the virtual page 'addr'
2019 static void tlb_protect_code(ram_addr_t ram_addr
)
2021 cpu_physical_memory_reset_dirty(ram_addr
,
2022 ram_addr
+ TARGET_PAGE_SIZE
,
2026 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2027 tested for self modifying code */
2028 static void tlb_unprotect_code_phys(CPUArchState
*env
, ram_addr_t ram_addr
,
2031 cpu_physical_memory_set_dirty_flags(ram_addr
, CODE_DIRTY_FLAG
);
2034 static bool tlb_is_dirty_ram(CPUTLBEntry
*tlbe
)
2036 return (tlbe
->addr_write
& (TLB_INVALID_MASK
|TLB_MMIO
|TLB_NOTDIRTY
)) == 0;
2039 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2040 unsigned long start
, unsigned long length
)
2043 if (tlb_is_dirty_ram(tlb_entry
)) {
2044 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2045 if ((addr
- start
) < length
) {
2046 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2051 /* Note: start and end must be within the same ram block. */
2052 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2056 unsigned long length
, start1
;
2059 start
&= TARGET_PAGE_MASK
;
2060 end
= TARGET_PAGE_ALIGN(end
);
2062 length
= end
- start
;
2065 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
2067 /* we modify the TLB cache so that the dirty bit will be set again
2068 when accessing the range */
2069 start1
= (unsigned long)qemu_safe_ram_ptr(start
);
2070 /* Check that we don't span multiple blocks - this breaks the
2071 address comparisons below. */
2072 if ((unsigned long)qemu_safe_ram_ptr(end
- 1) - start1
2073 != (end
- 1) - start
) {
2077 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2079 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2080 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2081 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2087 int cpu_physical_memory_set_dirty_tracking(int enable
)
2090 in_migration
= enable
;
2094 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2096 ram_addr_t ram_addr
;
2099 if (tlb_is_dirty_ram(tlb_entry
)) {
2100 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2101 + tlb_entry
->addend
);
2102 ram_addr
= qemu_ram_addr_from_host_nofail(p
);
2103 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2104 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2109 /* update the TLB according to the current state of the dirty bits */
2110 void cpu_tlb_update_dirty(CPUArchState
*env
)
2114 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2115 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2116 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2120 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2122 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2123 tlb_entry
->addr_write
= vaddr
;
2126 /* update the TLB corresponding to virtual page vaddr
2127 so that it is no longer dirty */
2128 static inline void tlb_set_dirty(CPUArchState
*env
, target_ulong vaddr
)
2133 vaddr
&= TARGET_PAGE_MASK
;
2134 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2135 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2136 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2139 /* Our TLB does not support large pages, so remember the area covered by
2140 large pages and trigger a full TLB flush if these are invalidated. */
2141 static void tlb_add_large_page(CPUArchState
*env
, target_ulong vaddr
,
2144 target_ulong mask
= ~(size
- 1);
2146 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2147 env
->tlb_flush_addr
= vaddr
& mask
;
2148 env
->tlb_flush_mask
= mask
;
2151 /* Extend the existing region to include the new page.
2152 This is a compromise between unnecessary flushes and the cost
2153 of maintaining a full variable size TLB. */
2154 mask
&= env
->tlb_flush_mask
;
2155 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2158 env
->tlb_flush_addr
&= mask
;
2159 env
->tlb_flush_mask
= mask
;
2162 static bool is_ram_rom(MemoryRegionSection
*s
)
2164 return memory_region_is_ram(s
->mr
);
2167 static bool is_romd(MemoryRegionSection
*s
)
2169 MemoryRegion
*mr
= s
->mr
;
2171 return mr
->rom_device
&& mr
->readable
;
2174 static bool is_ram_rom_romd(MemoryRegionSection
*s
)
2176 return is_ram_rom(s
) || is_romd(s
);
2179 /* Add a new TLB entry. At most one entry for a given virtual address
2180 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2181 supplied size is only used by tlb_flush_page. */
2182 void tlb_set_page(CPUArchState
*env
, target_ulong vaddr
,
2183 target_phys_addr_t paddr
, int prot
,
2184 int mmu_idx
, target_ulong size
)
2186 MemoryRegionSection
*section
;
2188 target_ulong address
;
2189 target_ulong code_address
;
2190 unsigned long addend
;
2193 target_phys_addr_t iotlb
;
2195 assert(size
>= TARGET_PAGE_SIZE
);
2196 if (size
!= TARGET_PAGE_SIZE
) {
2197 tlb_add_large_page(env
, vaddr
, size
);
2199 section
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2200 #if defined(DEBUG_TLB)
2201 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x" TARGET_FMT_plx
2202 " prot=%x idx=%d pd=0x%08lx\n",
2203 vaddr
, paddr
, prot
, mmu_idx
, pd
);
2207 if (!is_ram_rom_romd(section
)) {
2208 /* IO memory case (romd handled later) */
2209 address
|= TLB_MMIO
;
2211 if (is_ram_rom_romd(section
)) {
2212 addend
= (unsigned long)memory_region_get_ram_ptr(section
->mr
)
2213 + section_addr(section
, paddr
);
2217 if (is_ram_rom(section
)) {
2219 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
2220 + section_addr(section
, paddr
);
2221 if (!section
->readonly
)
2222 iotlb
|= phys_section_notdirty
;
2224 iotlb
|= phys_section_rom
;
2226 /* IO handlers are currently passed a physical address.
2227 It would be nice to pass an offset from the base address
2228 of that region. This would avoid having to special case RAM,
2229 and avoid full address decoding in every device.
2230 We can't use the high bits of pd for this because
2231 IO_MEM_ROMD uses these as a ram address. */
2232 iotlb
= section
- phys_sections
;
2233 iotlb
+= section_addr(section
, paddr
);
2236 code_address
= address
;
2237 /* Make accesses to pages with watchpoints go via the
2238 watchpoint trap routines. */
2239 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2240 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2241 /* Avoid trapping reads of pages with a write breakpoint. */
2242 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
2243 iotlb
= phys_section_watch
+ paddr
;
2244 address
|= TLB_MMIO
;
2250 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2251 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2252 te
= &env
->tlb_table
[mmu_idx
][index
];
2253 te
->addend
= addend
- vaddr
;
2254 if (prot
& PAGE_READ
) {
2255 te
->addr_read
= address
;
2260 if (prot
& PAGE_EXEC
) {
2261 te
->addr_code
= code_address
;
2265 if (prot
& PAGE_WRITE
) {
2266 if ((memory_region_is_ram(section
->mr
) && section
->readonly
)
2267 || is_romd(section
)) {
2268 /* Write access calls the I/O callback. */
2269 te
->addr_write
= address
| TLB_MMIO
;
2270 } else if (memory_region_is_ram(section
->mr
)
2271 && !cpu_physical_memory_is_dirty(
2272 section
->mr
->ram_addr
2273 + section_addr(section
, paddr
))) {
2274 te
->addr_write
= address
| TLB_NOTDIRTY
;
2276 te
->addr_write
= address
;
2279 te
->addr_write
= -1;
2285 void tlb_flush(CPUArchState
*env
, int flush_global
)
2289 void tlb_flush_page(CPUArchState
*env
, target_ulong addr
)
2294 * Walks guest process memory "regions" one by one
2295 * and calls callback function 'fn' for each region.
2298 struct walk_memory_regions_data
2300 walk_memory_regions_fn fn
;
2302 unsigned long start
;
2306 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2307 abi_ulong end
, int new_prot
)
2309 if (data
->start
!= -1ul) {
2310 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2316 data
->start
= (new_prot
? end
: -1ul);
2317 data
->prot
= new_prot
;
2322 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2323 abi_ulong base
, int level
, void **lp
)
2329 return walk_memory_regions_end(data
, base
, 0);
2334 for (i
= 0; i
< L2_SIZE
; ++i
) {
2335 int prot
= pd
[i
].flags
;
2337 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2338 if (prot
!= data
->prot
) {
2339 rc
= walk_memory_regions_end(data
, pa
, prot
);
2347 for (i
= 0; i
< L2_SIZE
; ++i
) {
2348 pa
= base
| ((abi_ulong
)i
<<
2349 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2350 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2360 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2362 struct walk_memory_regions_data data
;
2370 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2371 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2372 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2378 return walk_memory_regions_end(&data
, 0, 0);
2381 static int dump_region(void *priv
, abi_ulong start
,
2382 abi_ulong end
, unsigned long prot
)
2384 FILE *f
= (FILE *)priv
;
2386 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2387 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2388 start
, end
, end
- start
,
2389 ((prot
& PAGE_READ
) ? 'r' : '-'),
2390 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2391 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2396 /* dump memory mappings */
2397 void page_dump(FILE *f
)
2399 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2400 "start", "end", "size", "prot");
2401 walk_memory_regions(f
, dump_region
);
2404 int page_get_flags(target_ulong address
)
2408 p
= page_find(address
>> TARGET_PAGE_BITS
);
2414 /* Modify the flags of a page and invalidate the code if necessary.
2415 The flag PAGE_WRITE_ORG is positioned automatically depending
2416 on PAGE_WRITE. The mmap_lock should already be held. */
2417 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2419 target_ulong addr
, len
;
2421 /* This function should never be called with addresses outside the
2422 guest address space. If this assert fires, it probably indicates
2423 a missing call to h2g_valid. */
2424 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2425 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2427 assert(start
< end
);
2429 start
= start
& TARGET_PAGE_MASK
;
2430 end
= TARGET_PAGE_ALIGN(end
);
2432 if (flags
& PAGE_WRITE
) {
2433 flags
|= PAGE_WRITE_ORG
;
2436 for (addr
= start
, len
= end
- start
;
2438 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2439 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2441 /* If the write protection bit is set, then we invalidate
2443 if (!(p
->flags
& PAGE_WRITE
) &&
2444 (flags
& PAGE_WRITE
) &&
2446 tb_invalidate_phys_page(addr
, 0, NULL
);
2452 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2458 /* This function should never be called with addresses outside the
2459 guest address space. If this assert fires, it probably indicates
2460 a missing call to h2g_valid. */
2461 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2462 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2468 if (start
+ len
- 1 < start
) {
2469 /* We've wrapped around. */
2473 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2474 start
= start
& TARGET_PAGE_MASK
;
2476 for (addr
= start
, len
= end
- start
;
2478 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2479 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2482 if( !(p
->flags
& PAGE_VALID
) )
2485 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2487 if (flags
& PAGE_WRITE
) {
2488 if (!(p
->flags
& PAGE_WRITE_ORG
))
2490 /* unprotect the page if it was put read-only because it
2491 contains translated code */
2492 if (!(p
->flags
& PAGE_WRITE
)) {
2493 if (!page_unprotect(addr
, 0, NULL
))
2502 /* called from signal handler: invalidate the code and unprotect the
2503 page. Return TRUE if the fault was successfully handled. */
2504 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2508 target_ulong host_start
, host_end
, addr
;
2510 /* Technically this isn't safe inside a signal handler. However we
2511 know this only ever happens in a synchronous SEGV handler, so in
2512 practice it seems to be ok. */
2515 p
= page_find(address
>> TARGET_PAGE_BITS
);
2521 /* if the page was really writable, then we change its
2522 protection back to writable */
2523 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2524 host_start
= address
& qemu_host_page_mask
;
2525 host_end
= host_start
+ qemu_host_page_size
;
2528 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2529 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2530 p
->flags
|= PAGE_WRITE
;
2533 /* and since the content will be modified, we must invalidate
2534 the corresponding translated code. */
2535 tb_invalidate_phys_page(addr
, pc
, puc
);
2536 #ifdef DEBUG_TB_CHECK
2537 tb_invalidate_check(addr
);
2540 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2550 static inline void tlb_set_dirty(CPUArchState
*env
,
2551 unsigned long addr
, target_ulong vaddr
)
2554 #endif /* defined(CONFIG_USER_ONLY) */
2556 #if !defined(CONFIG_USER_ONLY)
2558 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2559 typedef struct subpage_t
{
2561 target_phys_addr_t base
;
2562 uint16_t sub_section
[TARGET_PAGE_SIZE
];
2565 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2567 static subpage_t
*subpage_init(target_phys_addr_t base
);
2568 static void destroy_page_desc(uint16_t section_index
)
2570 MemoryRegionSection
*section
= &phys_sections
[section_index
];
2571 MemoryRegion
*mr
= section
->mr
;
2574 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
2575 memory_region_destroy(&subpage
->iomem
);
2580 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
2585 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
2589 p
= phys_map_nodes
[lp
->ptr
];
2590 for (i
= 0; i
< L2_SIZE
; ++i
) {
2591 if (!p
[i
].is_leaf
) {
2592 destroy_l2_mapping(&p
[i
], level
- 1);
2594 destroy_page_desc(p
[i
].ptr
);
2598 lp
->ptr
= PHYS_MAP_NODE_NIL
;
2601 static void destroy_all_mappings(void)
2603 destroy_l2_mapping(&phys_map
, P_L2_LEVELS
- 1);
2604 phys_map_nodes_reset();
2607 static uint16_t phys_section_add(MemoryRegionSection
*section
)
2609 if (phys_sections_nb
== phys_sections_nb_alloc
) {
2610 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
2611 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
2612 phys_sections_nb_alloc
);
2614 phys_sections
[phys_sections_nb
] = *section
;
2615 return phys_sections_nb
++;
2618 static void phys_sections_clear(void)
2620 phys_sections_nb
= 0;
2623 /* register physical memory.
2624 For RAM, 'size' must be a multiple of the target page size.
2625 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2626 io memory page. The address used when calling the IO function is
2627 the offset from the start of the region, plus region_offset. Both
2628 start_addr and region_offset are rounded down to a page boundary
2629 before calculating this offset. This should not be a problem unless
2630 the low bits of start_addr and region_offset differ. */
2631 static void register_subpage(MemoryRegionSection
*section
)
2634 target_phys_addr_t base
= section
->offset_within_address_space
2636 MemoryRegionSection
*existing
= phys_page_find(base
>> TARGET_PAGE_BITS
);
2637 MemoryRegionSection subsection
= {
2638 .offset_within_address_space
= base
,
2639 .size
= TARGET_PAGE_SIZE
,
2641 target_phys_addr_t start
, end
;
2643 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
2645 if (!(existing
->mr
->subpage
)) {
2646 subpage
= subpage_init(base
);
2647 subsection
.mr
= &subpage
->iomem
;
2648 phys_page_set(base
>> TARGET_PAGE_BITS
, 1,
2649 phys_section_add(&subsection
));
2651 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
2653 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
2654 end
= start
+ section
->size
;
2655 subpage_register(subpage
, start
, end
, phys_section_add(section
));
2659 static void register_multipage(MemoryRegionSection
*section
)
2661 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
2662 ram_addr_t size
= section
->size
;
2663 target_phys_addr_t addr
;
2664 uint16_t section_index
= phys_section_add(section
);
2669 phys_page_set(addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
2673 void cpu_register_physical_memory_log(MemoryRegionSection
*section
,
2676 MemoryRegionSection now
= *section
, remain
= *section
;
2678 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
2679 || (now
.size
< TARGET_PAGE_SIZE
)) {
2680 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
2681 - now
.offset_within_address_space
,
2683 register_subpage(&now
);
2684 remain
.size
-= now
.size
;
2685 remain
.offset_within_address_space
+= now
.size
;
2686 remain
.offset_within_region
+= now
.size
;
2689 now
.size
&= TARGET_PAGE_MASK
;
2691 register_multipage(&now
);
2692 remain
.size
-= now
.size
;
2693 remain
.offset_within_address_space
+= now
.size
;
2694 remain
.offset_within_region
+= now
.size
;
2698 register_subpage(&now
);
2703 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2706 kvm_coalesce_mmio_region(addr
, size
);
2709 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2712 kvm_uncoalesce_mmio_region(addr
, size
);
2715 void qemu_flush_coalesced_mmio_buffer(void)
2718 kvm_flush_coalesced_mmio_buffer();
2721 #if defined(__linux__) && !defined(TARGET_S390X)
2723 #include <sys/vfs.h>
2725 #define HUGETLBFS_MAGIC 0x958458f6
2727 static long gethugepagesize(const char *path
)
2733 ret
= statfs(path
, &fs
);
2734 } while (ret
!= 0 && errno
== EINTR
);
2741 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2742 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2747 static void *file_ram_alloc(RAMBlock
*block
,
2757 unsigned long hpagesize
;
2759 hpagesize
= gethugepagesize(path
);
2764 if (memory
< hpagesize
) {
2768 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2769 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2773 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2777 fd
= mkstemp(filename
);
2779 perror("unable to create backing store for hugepages");
2786 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2789 * ftruncate is not supported by hugetlbfs in older
2790 * hosts, so don't bother bailing out on errors.
2791 * If anything goes wrong with it under other filesystems,
2794 if (ftruncate(fd
, memory
))
2795 perror("ftruncate");
2798 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2799 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2800 * to sidestep this quirk.
2802 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2803 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2805 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2807 if (area
== MAP_FAILED
) {
2808 perror("file_ram_alloc: can't mmap RAM pages");
2817 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2819 RAMBlock
*block
, *next_block
;
2820 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
2822 if (QLIST_EMPTY(&ram_list
.blocks
))
2825 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2826 ram_addr_t end
, next
= RAM_ADDR_MAX
;
2828 end
= block
->offset
+ block
->length
;
2830 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2831 if (next_block
->offset
>= end
) {
2832 next
= MIN(next
, next_block
->offset
);
2835 if (next
- end
>= size
&& next
- end
< mingap
) {
2837 mingap
= next
- end
;
2841 if (offset
== RAM_ADDR_MAX
) {
2842 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
2850 static ram_addr_t
last_ram_offset(void)
2853 ram_addr_t last
= 0;
2855 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2856 last
= MAX(last
, block
->offset
+ block
->length
);
2861 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
2863 RAMBlock
*new_block
, *block
;
2866 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2867 if (block
->offset
== addr
) {
2873 assert(!new_block
->idstr
[0]);
2875 if (dev
&& dev
->parent_bus
&& dev
->parent_bus
->info
->get_dev_path
) {
2876 char *id
= dev
->parent_bus
->info
->get_dev_path(dev
);
2878 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2882 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2884 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2885 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
2886 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2893 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2896 RAMBlock
*new_block
;
2898 size
= TARGET_PAGE_ALIGN(size
);
2899 new_block
= g_malloc0(sizeof(*new_block
));
2902 new_block
->offset
= find_ram_offset(size
);
2904 new_block
->host
= host
;
2905 new_block
->flags
|= RAM_PREALLOC_MASK
;
2908 #if defined (__linux__) && !defined(TARGET_S390X)
2909 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2910 if (!new_block
->host
) {
2911 new_block
->host
= qemu_vmalloc(size
);
2912 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2915 fprintf(stderr
, "-mem-path option unsupported\n");
2919 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2920 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2921 an system defined value, which is at least 256GB. Larger systems
2922 have larger values. We put the guest between the end of data
2923 segment (system break) and this value. We use 32GB as a base to
2924 have enough room for the system break to grow. */
2925 new_block
->host
= mmap((void*)0x800000000, size
,
2926 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2927 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
2928 if (new_block
->host
== MAP_FAILED
) {
2929 fprintf(stderr
, "Allocating RAM failed\n");
2933 if (xen_enabled()) {
2934 xen_ram_alloc(new_block
->offset
, size
, mr
);
2936 new_block
->host
= qemu_vmalloc(size
);
2939 qemu_madvise(new_block
->host
, size
, QEMU_MADV_MERGEABLE
);
2942 new_block
->length
= size
;
2944 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2946 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
2947 last_ram_offset() >> TARGET_PAGE_BITS
);
2948 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2949 0xff, size
>> TARGET_PAGE_BITS
);
2952 kvm_setup_guest_memory(new_block
->host
, size
);
2954 return new_block
->offset
;
2957 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
2959 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
2962 void qemu_ram_free_from_ptr(ram_addr_t addr
)
2966 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2967 if (addr
== block
->offset
) {
2968 QLIST_REMOVE(block
, next
);
2975 void qemu_ram_free(ram_addr_t addr
)
2979 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2980 if (addr
== block
->offset
) {
2981 QLIST_REMOVE(block
, next
);
2982 if (block
->flags
& RAM_PREALLOC_MASK
) {
2984 } else if (mem_path
) {
2985 #if defined (__linux__) && !defined(TARGET_S390X)
2987 munmap(block
->host
, block
->length
);
2990 qemu_vfree(block
->host
);
2996 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2997 munmap(block
->host
, block
->length
);
2999 if (xen_enabled()) {
3000 xen_invalidate_map_cache_entry(block
->host
);
3002 qemu_vfree(block
->host
);
3014 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
3021 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3022 offset
= addr
- block
->offset
;
3023 if (offset
< block
->length
) {
3024 vaddr
= block
->host
+ offset
;
3025 if (block
->flags
& RAM_PREALLOC_MASK
) {
3029 munmap(vaddr
, length
);
3031 #if defined(__linux__) && !defined(TARGET_S390X)
3034 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
3037 flags
|= MAP_PRIVATE
;
3039 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3040 flags
, block
->fd
, offset
);
3042 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3043 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3050 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3051 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
3052 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
3055 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
3056 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
3060 if (area
!= vaddr
) {
3061 fprintf(stderr
, "Could not remap addr: "
3062 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
3066 qemu_madvise(vaddr
, length
, QEMU_MADV_MERGEABLE
);
3072 #endif /* !_WIN32 */
3074 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3075 With the exception of the softmmu code in this file, this should
3076 only be used for local memory (e.g. video ram) that the device owns,
3077 and knows it isn't going to access beyond the end of the block.
3079 It should not be used for general purpose DMA.
3080 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3082 void *qemu_get_ram_ptr(ram_addr_t addr
)
3086 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3087 if (addr
- block
->offset
< block
->length
) {
3088 /* Move this entry to to start of the list. */
3089 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
3090 QLIST_REMOVE(block
, next
);
3091 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
3093 if (xen_enabled()) {
3094 /* We need to check if the requested address is in the RAM
3095 * because we don't want to map the entire memory in QEMU.
3096 * In that case just map until the end of the page.
3098 if (block
->offset
== 0) {
3099 return xen_map_cache(addr
, 0, 0);
3100 } else if (block
->host
== NULL
) {
3102 xen_map_cache(block
->offset
, block
->length
, 1);
3105 return block
->host
+ (addr
- block
->offset
);
3109 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3115 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3116 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3118 void *qemu_safe_ram_ptr(ram_addr_t addr
)
3122 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3123 if (addr
- block
->offset
< block
->length
) {
3124 if (xen_enabled()) {
3125 /* We need to check if the requested address is in the RAM
3126 * because we don't want to map the entire memory in QEMU.
3127 * In that case just map until the end of the page.
3129 if (block
->offset
== 0) {
3130 return xen_map_cache(addr
, 0, 0);
3131 } else if (block
->host
== NULL
) {
3133 xen_map_cache(block
->offset
, block
->length
, 1);
3136 return block
->host
+ (addr
- block
->offset
);
3140 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3146 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3147 * but takes a size argument */
3148 void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
3153 if (xen_enabled()) {
3154 return xen_map_cache(addr
, *size
, 1);
3158 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3159 if (addr
- block
->offset
< block
->length
) {
3160 if (addr
- block
->offset
+ *size
> block
->length
)
3161 *size
= block
->length
- addr
+ block
->offset
;
3162 return block
->host
+ (addr
- block
->offset
);
3166 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
3171 void qemu_put_ram_ptr(void *addr
)
3173 trace_qemu_put_ram_ptr(addr
);
3176 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
3179 uint8_t *host
= ptr
;
3181 if (xen_enabled()) {
3182 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
3186 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
3187 /* This case append when the block is not mapped. */
3188 if (block
->host
== NULL
) {
3191 if (host
- block
->host
< block
->length
) {
3192 *ram_addr
= block
->offset
+ (host
- block
->host
);
3200 /* Some of the softmmu routines need to translate from a host pointer
3201 (typically a TLB entry) back to a ram offset. */
3202 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
3204 ram_addr_t ram_addr
;
3206 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
3207 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
3213 static uint64_t unassigned_mem_read(void *opaque
, target_phys_addr_t addr
,
3216 #ifdef DEBUG_UNASSIGNED
3217 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
3219 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3220 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, size
);
3225 static void unassigned_mem_write(void *opaque
, target_phys_addr_t addr
,
3226 uint64_t val
, unsigned size
)
3228 #ifdef DEBUG_UNASSIGNED
3229 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
3231 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3232 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, size
);
3236 static const MemoryRegionOps unassigned_mem_ops
= {
3237 .read
= unassigned_mem_read
,
3238 .write
= unassigned_mem_write
,
3239 .endianness
= DEVICE_NATIVE_ENDIAN
,
3242 static uint64_t error_mem_read(void *opaque
, target_phys_addr_t addr
,
3248 static void error_mem_write(void *opaque
, target_phys_addr_t addr
,
3249 uint64_t value
, unsigned size
)
3254 static const MemoryRegionOps error_mem_ops
= {
3255 .read
= error_mem_read
,
3256 .write
= error_mem_write
,
3257 .endianness
= DEVICE_NATIVE_ENDIAN
,
3260 static const MemoryRegionOps rom_mem_ops
= {
3261 .read
= error_mem_read
,
3262 .write
= unassigned_mem_write
,
3263 .endianness
= DEVICE_NATIVE_ENDIAN
,
3266 static void notdirty_mem_write(void *opaque
, target_phys_addr_t ram_addr
,
3267 uint64_t val
, unsigned size
)
3270 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3271 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3272 #if !defined(CONFIG_USER_ONLY)
3273 tb_invalidate_phys_page_fast(ram_addr
, size
);
3274 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
3279 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
3282 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3285 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3290 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3291 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
3292 /* we remove the notdirty callback only if the code has been
3294 if (dirty_flags
== 0xff)
3295 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3298 static const MemoryRegionOps notdirty_mem_ops
= {
3299 .read
= error_mem_read
,
3300 .write
= notdirty_mem_write
,
3301 .endianness
= DEVICE_NATIVE_ENDIAN
,
3304 /* Generate a debug exception if a watchpoint has been hit. */
3305 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3307 CPUArchState
*env
= cpu_single_env
;
3308 target_ulong pc
, cs_base
;
3309 TranslationBlock
*tb
;
3314 if (env
->watchpoint_hit
) {
3315 /* We re-entered the check after replacing the TB. Now raise
3316 * the debug interrupt so that is will trigger after the
3317 * current instruction. */
3318 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3321 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3322 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3323 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3324 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3325 wp
->flags
|= BP_WATCHPOINT_HIT
;
3326 if (!env
->watchpoint_hit
) {
3327 env
->watchpoint_hit
= wp
;
3328 tb
= tb_find_pc(env
->mem_io_pc
);
3330 cpu_abort(env
, "check_watchpoint: could not find TB for "
3331 "pc=%p", (void *)env
->mem_io_pc
);
3333 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
3334 tb_phys_invalidate(tb
, -1);
3335 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3336 env
->exception_index
= EXCP_DEBUG
;
3339 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3340 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3341 cpu_resume_from_signal(env
, NULL
);
3345 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3350 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3351 so these check for a hit then pass through to the normal out-of-line
3353 static uint64_t watch_mem_read(void *opaque
, target_phys_addr_t addr
,
3356 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
3358 case 1: return ldub_phys(addr
);
3359 case 2: return lduw_phys(addr
);
3360 case 4: return ldl_phys(addr
);
3365 static void watch_mem_write(void *opaque
, target_phys_addr_t addr
,
3366 uint64_t val
, unsigned size
)
3368 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
3371 stb_phys(addr
, val
);
3374 stw_phys(addr
, val
);
3377 stl_phys(addr
, val
);
3383 static const MemoryRegionOps watch_mem_ops
= {
3384 .read
= watch_mem_read
,
3385 .write
= watch_mem_write
,
3386 .endianness
= DEVICE_NATIVE_ENDIAN
,
3389 static uint64_t subpage_read(void *opaque
, target_phys_addr_t addr
,
3392 subpage_t
*mmio
= opaque
;
3393 unsigned int idx
= SUBPAGE_IDX(addr
);
3394 MemoryRegionSection
*section
;
3395 #if defined(DEBUG_SUBPAGE)
3396 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3397 mmio
, len
, addr
, idx
);
3400 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3402 addr
-= section
->offset_within_address_space
;
3403 addr
+= section
->offset_within_region
;
3404 return io_mem_read(section
->mr
, addr
, len
);
3407 static void subpage_write(void *opaque
, target_phys_addr_t addr
,
3408 uint64_t value
, unsigned len
)
3410 subpage_t
*mmio
= opaque
;
3411 unsigned int idx
= SUBPAGE_IDX(addr
);
3412 MemoryRegionSection
*section
;
3413 #if defined(DEBUG_SUBPAGE)
3414 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3415 " idx %d value %"PRIx64
"\n",
3416 __func__
, mmio
, len
, addr
, idx
, value
);
3419 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3421 addr
-= section
->offset_within_address_space
;
3422 addr
+= section
->offset_within_region
;
3423 io_mem_write(section
->mr
, addr
, value
, len
);
3426 static const MemoryRegionOps subpage_ops
= {
3427 .read
= subpage_read
,
3428 .write
= subpage_write
,
3429 .endianness
= DEVICE_NATIVE_ENDIAN
,
3432 static uint64_t subpage_ram_read(void *opaque
, target_phys_addr_t addr
,
3435 ram_addr_t raddr
= addr
;
3436 void *ptr
= qemu_get_ram_ptr(raddr
);
3438 case 1: return ldub_p(ptr
);
3439 case 2: return lduw_p(ptr
);
3440 case 4: return ldl_p(ptr
);
3445 static void subpage_ram_write(void *opaque
, target_phys_addr_t addr
,
3446 uint64_t value
, unsigned size
)
3448 ram_addr_t raddr
= addr
;
3449 void *ptr
= qemu_get_ram_ptr(raddr
);
3451 case 1: return stb_p(ptr
, value
);
3452 case 2: return stw_p(ptr
, value
);
3453 case 4: return stl_p(ptr
, value
);
3458 static const MemoryRegionOps subpage_ram_ops
= {
3459 .read
= subpage_ram_read
,
3460 .write
= subpage_ram_write
,
3461 .endianness
= DEVICE_NATIVE_ENDIAN
,
3464 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3469 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3471 idx
= SUBPAGE_IDX(start
);
3472 eidx
= SUBPAGE_IDX(end
);
3473 #if defined(DEBUG_SUBPAGE)
3474 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3475 mmio
, start
, end
, idx
, eidx
, memory
);
3477 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
3478 MemoryRegionSection new_section
= phys_sections
[section
];
3479 new_section
.mr
= &io_mem_subpage_ram
;
3480 section
= phys_section_add(&new_section
);
3482 for (; idx
<= eidx
; idx
++) {
3483 mmio
->sub_section
[idx
] = section
;
3489 static subpage_t
*subpage_init(target_phys_addr_t base
)
3493 mmio
= g_malloc0(sizeof(subpage_t
));
3496 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
3497 "subpage", TARGET_PAGE_SIZE
);
3498 mmio
->iomem
.subpage
= true;
3499 #if defined(DEBUG_SUBPAGE)
3500 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3501 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3503 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
3508 static uint16_t dummy_section(MemoryRegion
*mr
)
3510 MemoryRegionSection section
= {
3512 .offset_within_address_space
= 0,
3513 .offset_within_region
= 0,
3517 return phys_section_add(§ion
);
3520 MemoryRegion
*iotlb_to_region(target_phys_addr_t index
)
3522 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
3525 static void io_mem_init(void)
3527 memory_region_init_io(&io_mem_ram
, &error_mem_ops
, NULL
, "ram", UINT64_MAX
);
3528 memory_region_init_io(&io_mem_rom
, &rom_mem_ops
, NULL
, "rom", UINT64_MAX
);
3529 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
3530 "unassigned", UINT64_MAX
);
3531 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
3532 "notdirty", UINT64_MAX
);
3533 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
3534 "subpage-ram", UINT64_MAX
);
3535 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
3536 "watch", UINT64_MAX
);
3539 static void core_begin(MemoryListener
*listener
)
3541 destroy_all_mappings();
3542 phys_sections_clear();
3543 phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
3544 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
3545 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
3546 phys_section_rom
= dummy_section(&io_mem_rom
);
3547 phys_section_watch
= dummy_section(&io_mem_watch
);
3550 static void core_commit(MemoryListener
*listener
)
3554 /* since each CPU stores ram addresses in its TLB cache, we must
3555 reset the modified entries */
3557 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
3562 static void core_region_add(MemoryListener
*listener
,
3563 MemoryRegionSection
*section
)
3565 cpu_register_physical_memory_log(section
, section
->readonly
);
3568 static void core_region_del(MemoryListener
*listener
,
3569 MemoryRegionSection
*section
)
3573 static void core_region_nop(MemoryListener
*listener
,
3574 MemoryRegionSection
*section
)
3576 cpu_register_physical_memory_log(section
, section
->readonly
);
3579 static void core_log_start(MemoryListener
*listener
,
3580 MemoryRegionSection
*section
)
3584 static void core_log_stop(MemoryListener
*listener
,
3585 MemoryRegionSection
*section
)
3589 static void core_log_sync(MemoryListener
*listener
,
3590 MemoryRegionSection
*section
)
3594 static void core_log_global_start(MemoryListener
*listener
)
3596 cpu_physical_memory_set_dirty_tracking(1);
3599 static void core_log_global_stop(MemoryListener
*listener
)
3601 cpu_physical_memory_set_dirty_tracking(0);
3604 static void core_eventfd_add(MemoryListener
*listener
,
3605 MemoryRegionSection
*section
,
3606 bool match_data
, uint64_t data
, int fd
)
3610 static void core_eventfd_del(MemoryListener
*listener
,
3611 MemoryRegionSection
*section
,
3612 bool match_data
, uint64_t data
, int fd
)
3616 static void io_begin(MemoryListener
*listener
)
3620 static void io_commit(MemoryListener
*listener
)
3624 static void io_region_add(MemoryListener
*listener
,
3625 MemoryRegionSection
*section
)
3627 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
3629 mrio
->mr
= section
->mr
;
3630 mrio
->offset
= section
->offset_within_region
;
3631 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
3632 section
->offset_within_address_space
, section
->size
);
3633 ioport_register(&mrio
->iorange
);
3636 static void io_region_del(MemoryListener
*listener
,
3637 MemoryRegionSection
*section
)
3639 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
3642 static void io_region_nop(MemoryListener
*listener
,
3643 MemoryRegionSection
*section
)
3647 static void io_log_start(MemoryListener
*listener
,
3648 MemoryRegionSection
*section
)
3652 static void io_log_stop(MemoryListener
*listener
,
3653 MemoryRegionSection
*section
)
3657 static void io_log_sync(MemoryListener
*listener
,
3658 MemoryRegionSection
*section
)
3662 static void io_log_global_start(MemoryListener
*listener
)
3666 static void io_log_global_stop(MemoryListener
*listener
)
3670 static void io_eventfd_add(MemoryListener
*listener
,
3671 MemoryRegionSection
*section
,
3672 bool match_data
, uint64_t data
, int fd
)
3676 static void io_eventfd_del(MemoryListener
*listener
,
3677 MemoryRegionSection
*section
,
3678 bool match_data
, uint64_t data
, int fd
)
3682 static MemoryListener core_memory_listener
= {
3683 .begin
= core_begin
,
3684 .commit
= core_commit
,
3685 .region_add
= core_region_add
,
3686 .region_del
= core_region_del
,
3687 .region_nop
= core_region_nop
,
3688 .log_start
= core_log_start
,
3689 .log_stop
= core_log_stop
,
3690 .log_sync
= core_log_sync
,
3691 .log_global_start
= core_log_global_start
,
3692 .log_global_stop
= core_log_global_stop
,
3693 .eventfd_add
= core_eventfd_add
,
3694 .eventfd_del
= core_eventfd_del
,
3698 static MemoryListener io_memory_listener
= {
3700 .commit
= io_commit
,
3701 .region_add
= io_region_add
,
3702 .region_del
= io_region_del
,
3703 .region_nop
= io_region_nop
,
3704 .log_start
= io_log_start
,
3705 .log_stop
= io_log_stop
,
3706 .log_sync
= io_log_sync
,
3707 .log_global_start
= io_log_global_start
,
3708 .log_global_stop
= io_log_global_stop
,
3709 .eventfd_add
= io_eventfd_add
,
3710 .eventfd_del
= io_eventfd_del
,
3714 static void memory_map_init(void)
3716 system_memory
= g_malloc(sizeof(*system_memory
));
3717 memory_region_init(system_memory
, "system", INT64_MAX
);
3718 set_system_memory_map(system_memory
);
3720 system_io
= g_malloc(sizeof(*system_io
));
3721 memory_region_init(system_io
, "io", 65536);
3722 set_system_io_map(system_io
);
3724 memory_listener_register(&core_memory_listener
, system_memory
);
3725 memory_listener_register(&io_memory_listener
, system_io
);
3728 MemoryRegion
*get_system_memory(void)
3730 return system_memory
;
3733 MemoryRegion
*get_system_io(void)
3738 #endif /* !defined(CONFIG_USER_ONLY) */
3740 /* physical memory access (slow version, mainly for debug) */
3741 #if defined(CONFIG_USER_ONLY)
3742 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
3743 uint8_t *buf
, int len
, int is_write
)
3750 page
= addr
& TARGET_PAGE_MASK
;
3751 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3754 flags
= page_get_flags(page
);
3755 if (!(flags
& PAGE_VALID
))
3758 if (!(flags
& PAGE_WRITE
))
3760 /* XXX: this code should not depend on lock_user */
3761 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3764 unlock_user(p
, addr
, l
);
3766 if (!(flags
& PAGE_READ
))
3768 /* XXX: this code should not depend on lock_user */
3769 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3772 unlock_user(p
, addr
, 0);
3782 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3783 int len
, int is_write
)
3788 target_phys_addr_t page
;
3789 MemoryRegionSection
*section
;
3792 page
= addr
& TARGET_PAGE_MASK
;
3793 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3796 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3799 if (!memory_region_is_ram(section
->mr
)) {
3800 target_phys_addr_t addr1
;
3801 addr1
= section_addr(section
, addr
);
3802 /* XXX: could force cpu_single_env to NULL to avoid
3804 if (l
>= 4 && ((addr1
& 3) == 0)) {
3805 /* 32 bit write access */
3807 io_mem_write(section
->mr
, addr1
, val
, 4);
3809 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3810 /* 16 bit write access */
3812 io_mem_write(section
->mr
, addr1
, val
, 2);
3815 /* 8 bit write access */
3817 io_mem_write(section
->mr
, addr1
, val
, 1);
3820 } else if (!section
->readonly
) {
3822 addr1
= memory_region_get_ram_addr(section
->mr
)
3823 + section_addr(section
, addr
);
3825 ptr
= qemu_get_ram_ptr(addr1
);
3826 memcpy(ptr
, buf
, l
);
3827 if (!cpu_physical_memory_is_dirty(addr1
)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3831 cpu_physical_memory_set_dirty_flags(
3832 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3834 qemu_put_ram_ptr(ptr
);
3837 if (!is_ram_rom_romd(section
)) {
3838 target_phys_addr_t addr1
;
3840 addr1
= section_addr(section
, addr
);
3841 if (l
>= 4 && ((addr1
& 3) == 0)) {
3842 /* 32 bit read access */
3843 val
= io_mem_read(section
->mr
, addr1
, 4);
3846 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3847 /* 16 bit read access */
3848 val
= io_mem_read(section
->mr
, addr1
, 2);
3852 /* 8 bit read access */
3853 val
= io_mem_read(section
->mr
, addr1
, 1);
3859 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
)
3860 + section_addr(section
, addr
);
3861 memcpy(buf
, ptr
, l
);
3862 qemu_put_ram_ptr(ptr
);
3871 /* used for ROM loading : can write in RAM and ROM */
3872 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3873 const uint8_t *buf
, int len
)
3877 target_phys_addr_t page
;
3878 MemoryRegionSection
*section
;
3881 page
= addr
& TARGET_PAGE_MASK
;
3882 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3885 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3887 if (!is_ram_rom_romd(section
)) {
3890 unsigned long addr1
;
3891 addr1
= memory_region_get_ram_addr(section
->mr
)
3892 + section_addr(section
, addr
);
3894 ptr
= qemu_get_ram_ptr(addr1
);
3895 memcpy(ptr
, buf
, l
);
3896 qemu_put_ram_ptr(ptr
);
3906 target_phys_addr_t addr
;
3907 target_phys_addr_t len
;
3910 static BounceBuffer bounce
;
3912 typedef struct MapClient
{
3914 void (*callback
)(void *opaque
);
3915 QLIST_ENTRY(MapClient
) link
;
3918 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3919 = QLIST_HEAD_INITIALIZER(map_client_list
);
3921 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3923 MapClient
*client
= g_malloc(sizeof(*client
));
3925 client
->opaque
= opaque
;
3926 client
->callback
= callback
;
3927 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3931 void cpu_unregister_map_client(void *_client
)
3933 MapClient
*client
= (MapClient
*)_client
;
3935 QLIST_REMOVE(client
, link
);
3939 static void cpu_notify_map_clients(void)
3943 while (!QLIST_EMPTY(&map_client_list
)) {
3944 client
= QLIST_FIRST(&map_client_list
);
3945 client
->callback(client
->opaque
);
3946 cpu_unregister_map_client(client
);
3950 /* Map a physical memory region into a host virtual address.
3951 * May map a subset of the requested range, given by and returned in *plen.
3952 * May return NULL if resources needed to perform the mapping are exhausted.
3953 * Use only for reads OR writes - not for read-modify-write operations.
3954 * Use cpu_register_map_client() to know when retrying the map operation is
3955 * likely to succeed.
3957 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3958 target_phys_addr_t
*plen
,
3961 target_phys_addr_t len
= *plen
;
3962 target_phys_addr_t todo
= 0;
3964 target_phys_addr_t page
;
3965 MemoryRegionSection
*section
;
3966 ram_addr_t raddr
= RAM_ADDR_MAX
;
3971 page
= addr
& TARGET_PAGE_MASK
;
3972 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3975 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3977 if (!(memory_region_is_ram(section
->mr
) && !section
->readonly
)) {
3978 if (todo
|| bounce
.buffer
) {
3981 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3985 cpu_physical_memory_read(addr
, bounce
.buffer
, l
);
3989 return bounce
.buffer
;
3992 raddr
= memory_region_get_ram_addr(section
->mr
)
3993 + section_addr(section
, addr
);
4001 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
4006 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4007 * Will also mark the memory as dirty if is_write == 1. access_len gives
4008 * the amount of memory that was actually read or written by the caller.
4010 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
4011 int is_write
, target_phys_addr_t access_len
)
4013 if (buffer
!= bounce
.buffer
) {
4015 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
4016 while (access_len
) {
4018 l
= TARGET_PAGE_SIZE
;
4021 if (!cpu_physical_memory_is_dirty(addr1
)) {
4022 /* invalidate code */
4023 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
4025 cpu_physical_memory_set_dirty_flags(
4026 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4032 if (xen_enabled()) {
4033 xen_invalidate_map_cache_entry(buffer
);
4038 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
4040 qemu_vfree(bounce
.buffer
);
4041 bounce
.buffer
= NULL
;
4042 cpu_notify_map_clients();
4045 /* warning: addr must be aligned */
4046 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr
,
4047 enum device_endian endian
)
4051 MemoryRegionSection
*section
;
4053 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4055 if (!is_ram_rom_romd(section
)) {
4057 addr
= section_addr(section
, addr
);
4058 val
= io_mem_read(section
->mr
, addr
, 4);
4059 #if defined(TARGET_WORDS_BIGENDIAN)
4060 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4064 if (endian
== DEVICE_BIG_ENDIAN
) {
4070 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
4072 + section_addr(section
, addr
));
4074 case DEVICE_LITTLE_ENDIAN
:
4075 val
= ldl_le_p(ptr
);
4077 case DEVICE_BIG_ENDIAN
:
4078 val
= ldl_be_p(ptr
);
4088 uint32_t ldl_phys(target_phys_addr_t addr
)
4090 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
4093 uint32_t ldl_le_phys(target_phys_addr_t addr
)
4095 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
4098 uint32_t ldl_be_phys(target_phys_addr_t addr
)
4100 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
4103 /* warning: addr must be aligned */
4104 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr
,
4105 enum device_endian endian
)
4109 MemoryRegionSection
*section
;
4111 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4113 if (!is_ram_rom_romd(section
)) {
4115 addr
= section_addr(section
, addr
);
4117 /* XXX This is broken when device endian != cpu endian.
4118 Fix and add "endian" variable check */
4119 #ifdef TARGET_WORDS_BIGENDIAN
4120 val
= io_mem_read(section
->mr
, addr
, 4) << 32;
4121 val
|= io_mem_read(section
->mr
, addr
+ 4, 4);
4123 val
= io_mem_read(section
->mr
, addr
, 4);
4124 val
|= io_mem_read(section
->mr
, addr
+ 4, 4) << 32;
4128 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
4130 + section_addr(section
, addr
));
4132 case DEVICE_LITTLE_ENDIAN
:
4133 val
= ldq_le_p(ptr
);
4135 case DEVICE_BIG_ENDIAN
:
4136 val
= ldq_be_p(ptr
);
4146 uint64_t ldq_phys(target_phys_addr_t addr
)
4148 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
4151 uint64_t ldq_le_phys(target_phys_addr_t addr
)
4153 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
4156 uint64_t ldq_be_phys(target_phys_addr_t addr
)
4158 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
4162 uint32_t ldub_phys(target_phys_addr_t addr
)
4165 cpu_physical_memory_read(addr
, &val
, 1);
4169 /* warning: addr must be aligned */
4170 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr
,
4171 enum device_endian endian
)
4175 MemoryRegionSection
*section
;
4177 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4179 if (!is_ram_rom_romd(section
)) {
4181 addr
= section_addr(section
, addr
);
4182 val
= io_mem_read(section
->mr
, addr
, 2);
4183 #if defined(TARGET_WORDS_BIGENDIAN)
4184 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4188 if (endian
== DEVICE_BIG_ENDIAN
) {
4194 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
4196 + section_addr(section
, addr
));
4198 case DEVICE_LITTLE_ENDIAN
:
4199 val
= lduw_le_p(ptr
);
4201 case DEVICE_BIG_ENDIAN
:
4202 val
= lduw_be_p(ptr
);
4212 uint32_t lduw_phys(target_phys_addr_t addr
)
4214 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
4217 uint32_t lduw_le_phys(target_phys_addr_t addr
)
4219 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
4222 uint32_t lduw_be_phys(target_phys_addr_t addr
)
4224 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
4227 /* warning: addr must be aligned. The ram page is not masked as dirty
4228 and the code inside is not invalidated. It is useful if the dirty
4229 bits are used to track modified PTEs */
4230 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
4233 MemoryRegionSection
*section
;
4235 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4237 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
4238 addr
= section_addr(section
, addr
);
4239 if (memory_region_is_ram(section
->mr
)) {
4240 section
= &phys_sections
[phys_section_rom
];
4242 io_mem_write(section
->mr
, addr
, val
, 4);
4244 unsigned long addr1
= (memory_region_get_ram_addr(section
->mr
)
4246 + section_addr(section
, addr
);
4247 ptr
= qemu_get_ram_ptr(addr1
);
4250 if (unlikely(in_migration
)) {
4251 if (!cpu_physical_memory_is_dirty(addr1
)) {
4252 /* invalidate code */
4253 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4255 cpu_physical_memory_set_dirty_flags(
4256 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
4262 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
4265 MemoryRegionSection
*section
;
4267 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4269 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
4270 addr
= section_addr(section
, addr
);
4271 if (memory_region_is_ram(section
->mr
)) {
4272 section
= &phys_sections
[phys_section_rom
];
4274 #ifdef TARGET_WORDS_BIGENDIAN
4275 io_mem_write(section
->mr
, addr
, val
>> 32, 4);
4276 io_mem_write(section
->mr
, addr
+ 4, (uint32_t)val
, 4);
4278 io_mem_write(section
->mr
, addr
, (uint32_t)val
, 4);
4279 io_mem_write(section
->mr
, addr
+ 4, val
>> 32, 4);
4282 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
4284 + section_addr(section
, addr
));
4289 /* warning: addr must be aligned */
4290 static inline void stl_phys_internal(target_phys_addr_t addr
, uint32_t val
,
4291 enum device_endian endian
)
4294 MemoryRegionSection
*section
;
4296 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4298 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
4299 addr
= section_addr(section
, addr
);
4300 if (memory_region_is_ram(section
->mr
)) {
4301 section
= &phys_sections
[phys_section_rom
];
4303 #if defined(TARGET_WORDS_BIGENDIAN)
4304 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4308 if (endian
== DEVICE_BIG_ENDIAN
) {
4312 io_mem_write(section
->mr
, addr
, val
, 4);
4314 unsigned long addr1
;
4315 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
4316 + section_addr(section
, addr
);
4318 ptr
= qemu_get_ram_ptr(addr1
);
4320 case DEVICE_LITTLE_ENDIAN
:
4323 case DEVICE_BIG_ENDIAN
:
4330 if (!cpu_physical_memory_is_dirty(addr1
)) {
4331 /* invalidate code */
4332 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
4334 cpu_physical_memory_set_dirty_flags(addr1
,
4335 (0xff & ~CODE_DIRTY_FLAG
));
4340 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
4342 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
4345 void stl_le_phys(target_phys_addr_t addr
, uint32_t val
)
4347 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
4350 void stl_be_phys(target_phys_addr_t addr
, uint32_t val
)
4352 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
4356 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4359 cpu_physical_memory_write(addr
, &v
, 1);
4362 /* warning: addr must be aligned */
4363 static inline void stw_phys_internal(target_phys_addr_t addr
, uint32_t val
,
4364 enum device_endian endian
)
4367 MemoryRegionSection
*section
;
4369 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4371 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
4372 addr
= section_addr(section
, addr
);
4373 if (memory_region_is_ram(section
->mr
)) {
4374 section
= &phys_sections
[phys_section_rom
];
4376 #if defined(TARGET_WORDS_BIGENDIAN)
4377 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4381 if (endian
== DEVICE_BIG_ENDIAN
) {
4385 io_mem_write(section
->mr
, addr
, val
, 2);
4387 unsigned long addr1
;
4388 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
4389 + section_addr(section
, addr
);
4391 ptr
= qemu_get_ram_ptr(addr1
);
4393 case DEVICE_LITTLE_ENDIAN
:
4396 case DEVICE_BIG_ENDIAN
:
4403 if (!cpu_physical_memory_is_dirty(addr1
)) {
4404 /* invalidate code */
4405 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4407 cpu_physical_memory_set_dirty_flags(addr1
,
4408 (0xff & ~CODE_DIRTY_FLAG
));
4413 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4415 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
4418 void stw_le_phys(target_phys_addr_t addr
, uint32_t val
)
4420 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
4423 void stw_be_phys(target_phys_addr_t addr
, uint32_t val
)
4425 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
4429 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4432 cpu_physical_memory_write(addr
, &val
, 8);
4435 void stq_le_phys(target_phys_addr_t addr
, uint64_t val
)
4437 val
= cpu_to_le64(val
);
4438 cpu_physical_memory_write(addr
, &val
, 8);
4441 void stq_be_phys(target_phys_addr_t addr
, uint64_t val
)
4443 val
= cpu_to_be64(val
);
4444 cpu_physical_memory_write(addr
, &val
, 8);
4447 /* virtual memory access for debug (includes writing to ROM) */
4448 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
4449 uint8_t *buf
, int len
, int is_write
)
4452 target_phys_addr_t phys_addr
;
4456 page
= addr
& TARGET_PAGE_MASK
;
4457 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4458 /* if no physical page mapped, return an error */
4459 if (phys_addr
== -1)
4461 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4464 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4466 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4468 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4477 /* in deterministic execution mode, instructions doing device I/Os
4478 must be at the end of the TB */
4479 void cpu_io_recompile(CPUArchState
*env
, void *retaddr
)
4481 TranslationBlock
*tb
;
4483 target_ulong pc
, cs_base
;
4486 tb
= tb_find_pc((unsigned long)retaddr
);
4488 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4491 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4492 cpu_restore_state(tb
, env
, (unsigned long)retaddr
);
4493 /* Calculate how many instructions had been executed before the fault
4495 n
= n
- env
->icount_decr
.u16
.low
;
4496 /* Generate a new TB ending on the I/O insn. */
4498 /* On MIPS and SH, delay slot instructions can only be restarted if
4499 they were already the first instruction in the TB. If this is not
4500 the first instruction in a TB then re-execute the preceding
4502 #if defined(TARGET_MIPS)
4503 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4504 env
->active_tc
.PC
-= 4;
4505 env
->icount_decr
.u16
.low
++;
4506 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4508 #elif defined(TARGET_SH4)
4509 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4512 env
->icount_decr
.u16
.low
++;
4513 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4516 /* This should never happen. */
4517 if (n
> CF_COUNT_MASK
)
4518 cpu_abort(env
, "TB too big during recompile");
4520 cflags
= n
| CF_LAST_IO
;
4522 cs_base
= tb
->cs_base
;
4524 tb_phys_invalidate(tb
, -1);
4525 /* FIXME: In theory this could raise an exception. In practice
4526 we have already translated the block once so it's probably ok. */
4527 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4528 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4529 the first in the TB) then we end up generating a whole new TB and
4530 repeating the fault, which is horribly inefficient.
4531 Better would be to execute just this insn uncached, or generate a
4533 cpu_resume_from_signal(env
, NULL
);
4536 #if !defined(CONFIG_USER_ONLY)
4538 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4540 int i
, target_code_size
, max_target_code_size
;
4541 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4542 TranslationBlock
*tb
;
4544 target_code_size
= 0;
4545 max_target_code_size
= 0;
4547 direct_jmp_count
= 0;
4548 direct_jmp2_count
= 0;
4549 for(i
= 0; i
< nb_tbs
; i
++) {
4551 target_code_size
+= tb
->size
;
4552 if (tb
->size
> max_target_code_size
)
4553 max_target_code_size
= tb
->size
;
4554 if (tb
->page_addr
[1] != -1)
4556 if (tb
->tb_next_offset
[0] != 0xffff) {
4558 if (tb
->tb_next_offset
[1] != 0xffff) {
4559 direct_jmp2_count
++;
4563 /* XXX: avoid using doubles ? */
4564 cpu_fprintf(f
, "Translation buffer state:\n");
4565 cpu_fprintf(f
, "gen code size %td/%ld\n",
4566 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4567 cpu_fprintf(f
, "TB count %d/%d\n",
4568 nb_tbs
, code_gen_max_blocks
);
4569 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4570 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4571 max_target_code_size
);
4572 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4573 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4574 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4575 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4577 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4578 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4580 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4582 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4583 cpu_fprintf(f
, "\nStatistics:\n");
4584 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4585 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4586 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4587 tcg_dump_info(f
, cpu_fprintf
);
4590 /* NOTE: this function can trigger an exception */
4591 /* NOTE2: the returned address is not exactly the physical address: it
4592 is the offset relative to phys_ram_base */
4593 tb_page_addr_t
get_page_addr_code(CPUArchState
*env1
, target_ulong addr
)
4595 int mmu_idx
, page_index
, pd
;
4599 page_index
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
4600 mmu_idx
= cpu_mmu_index(env1
);
4601 if (unlikely(env1
->tlb_table
[mmu_idx
][page_index
].addr_code
!=
4602 (addr
& TARGET_PAGE_MASK
))) {
4603 #ifdef CONFIG_TCG_PASS_AREG0
4604 cpu_ldub_code(env1
, addr
);
4609 pd
= env1
->iotlb
[mmu_idx
][page_index
] & ~TARGET_PAGE_MASK
;
4610 mr
= iotlb_to_region(pd
);
4611 if (mr
!= &io_mem_ram
&& mr
!= &io_mem_rom
4612 && mr
!= &io_mem_notdirty
&& !mr
->rom_device
4613 && mr
!= &io_mem_watch
) {
4614 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4615 cpu_unassigned_access(env1
, addr
, 0, 1, 0, 4);
4617 cpu_abort(env1
, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx
"\n", addr
);
4620 p
= (void *)((uintptr_t)addr
+ env1
->tlb_table
[mmu_idx
][page_index
].addend
);
4621 return qemu_ram_addr_from_host_nofail(p
);
4625 * A helper function for the _utterly broken_ virtio device model to find out if
4626 * it's running on a big endian machine. Don't do this at home kids!
4628 bool virtio_is_big_endian(void);
4629 bool virtio_is_big_endian(void)
4631 #if defined(TARGET_WORDS_BIGENDIAN)
4638 #define MMUSUFFIX _cmmu
4640 #define GETPC() NULL
4641 #define env cpu_single_env
4642 #define SOFTMMU_CODE_ACCESS
4645 #include "softmmu_template.h"
4648 #include "softmmu_template.h"
4651 #include "softmmu_template.h"
4654 #include "softmmu_template.h"